Journées de Rencontre Jeunes Chercheurs

jet 1

jet 2

9-15 décembre 2007, Dinard

Le Boson de Higgs en production par fusion de bosons vecteurs à

Atlas-LHC

Varouchas Dimitris

sous la direction de David Rousseau

Plan

A. Introduction

- o Boson de Higgs dans le Modèle Standard
- o LHC ATLAS
- B. VBF Higgs en général
 - o Topologie
 - o Caractéristiques génériques
- C. VBF Higgs en $\tau^+ \tau^-$:
 - o Reconstruction de la masse
 - o Suppression du bruit de fond
 - o Etude du Jet Veto

Modèle Standard et le boson de Higgs

□ 3 familles de quarks et de leptons ont les mêmes propriétés :

(1/2)

- les mêmes nombres quantiques sous les symétries de la nature

12/12/07 J.R.J.C.

Modèle Standard et le boson de Higgs

□ Le Modèle Standard explique les différentes masses en faisant l'hypothèse de l'existence d'un champ spécial qui imprègne tout l'espace : champ de Higgs

□ Sans le mécanisme de Higgs -dans la théorie du MSles bosons W,Z seraient d'une masse nulle \Rightarrow PAS cohérent avec l'expérience

Champ de Higgs acquière une valeur non nulle pour

Le champ de Higgs

Apparen Mass

2/2)

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

Higgs Field

LHC

27 km de circonférence dans le tunnel du LEP

Des faisceaux de protons de 7 TeV vont se rencontrer

 $(\sqrt{s} = 14 TeV)$

L'énergie disponible dans le centre de masse de la réaction élémentaire parton1-parton2 est plus faible:

$$\sqrt{\hat{s}} = \sqrt{s \cdot x_1 x_2} \approx \frac{1}{6} \sqrt{s}$$

avec x_1 et x_2 les fractions d'impulsion prises par chaque parton dans un proton

Premières collisions été 2008

But: Luminosité 10³³ cm⁻² s⁻¹ (10 fb⁻¹/an)

et puis passer à10³⁴ cm⁻² s⁻¹ (100 fb⁻¹/an)

- Δt entre croisements = 25 ns
- 20 interactions par croisement
- Taux de interactions ~
 600MHz !!

Production du boson de Higgs

Quelque limitations sur la masse:

 \square $m_H \ge 114.4 \text{ GeV/c}^2 (\text{LEP})$

 \square m_H ≤ 200 GeV/c² (corrections électrofaibles dans le cadre du Modèle Standard)

4 modes différents de production du boson de Higgs

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

7

Topologie de VBF

VBF ou WBF se rapporte au mode de production du boson de Higgs dans le cadre du M.S.

- Caractéristiques plus importantes
 - 2 jets vers l'avant (forward jets)
 - Région centrale, faible radiation de gluon en raison de colorless W/Z échange : pas d'activité

gluons

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

9

Decay products

Η

Weak-Boson Fusion

Tagging jets

n

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

Signature VBF en tau tau

Un exemple: $H \rightarrow \tau^+ \tau^- \rightarrow e^- \mu^+ + (énergie manquante)$

- Jets énergétiques vers l'avant
- Large séparation en η et large masse invariante des deux forward jets (tagging jets)
- Les produits de désintégration de Higgs entre les tagging jets

Potentiel de découverte du boson Higgs

VBF, H→tau tau

Reconstruction de la masse

Données MC & Software

	Données MC			
Signal	VBF H→tautau→ lh :~46k év.			
Bruit de fond	Z→tautau+jets∶ ~ 212k év.			
	t t-bar production = ~523k év.			
 Modèle de l'Analyse: Distributed Analysis Travail dans ATHENA Software framework d'ATLAS (c++, python) Accès aux données officiellement produits pour l'ensemble des physiciens ATLAS avec la grille : rien localement Faire l'analyse en utilisant la puissance de la grille Récupérer les résultats produits par mon analyse dans mon pc Interpréter les résultats via des histogrammes et graphes grâce à ROOT 				

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

Sélections des événements

- Appliquer différentes coupures pour diminuer le bruit de fond par rapport le signal : Augmenter l'observabilité du boson de Higgs
- Un exemple:

	Sių VBFH12	gnal Otautaulh	Bruit de Fond AlpGen Ztautau+jets		
Coupure	Nombre événements	Efficacité (%)	Nombre événements	Efficacité (%)	
Aucune	49950		255750		
1.					
2.					
•	↓		+		
•					
Jet veto	170	0,34 ± 0,03	25	0,010 ± 0,003	
Toutes coupures	170	0,34 ± 0,03	25	0,010 ± 0,003	

Varouchas Dimitris - LAL - VBF Higgs

Meilleure méthode?

Méthode ou le 3em jet se trouve entre les 2 tagging jets (*courbe verte*) présente une meilleure performance Méthode sans contraintes en eta (*courbe bleue*), la plus mauvaise comme attendu

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

20

Comparaison pileUp - NO pileUp Signal (VBF H→tautau→ Ih) Vs Ztautau+jets

12/12/07 J.R.J.C.

Comparaison pileUp - NO pileUp Signal (VBF H→tautau→ Ih) Vs tt-bar

Conclusions

- VBF Higgs, un processus très important pour la découverte d'un boson de Higgs léger dans le cadre du Modèle Standard
- Les caractéristiques de la signature permettent la suppression du bruit de fond
- Une étude complète et précise est en cours pour améliorer les résultats dérivés par une seule note préliminaire en 2003 (hep-ph/0402254 S.Asai et al.), sur le jet veto aussi

Reste beaucoup de travail

- Utiliser plus de MC donnés (pile-up, tous les processus du bruit de fond, etc.)
- Optimiser les coupures
- Jet/Cluster Veto & Forward Jet study
- Etude de MET

. . .

Back up Slides

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

	Do So	onnées MC & oftware	VBF jet1 <i>iet i</i> <i>vBF jet1</i> <i>L'effet du Pile-up</i> <i>bean</i> <i>jet i</i> <i>VBF jet2</i>				
		Sans PileUp	Avec PileUp				
	Signal	VBF H→tautau→ lh :~46k év.	VBF H→tautau→ lh : ~48k év. <i>Iuminosité : L</i> = 2·10 ³³ cm ⁻² s ⁻¹				
	Bruit de	Z→tautau+jets: ~ 212k év.	Z→tautau+jets : ~217k év. <i>Iuminosité : L = 10³³ cm</i> ⁻² s ⁻¹				
	fond	t t-bar production = ∼523k év.	t t-bar production = ~453k év. <i>Iuminosité : L = 10³³ cm</i> -²s-1				
_							
	 Modèle de l'Analyse: Distributed Analysis • Travail dans ATHENA Software framework d'ATLAS (c++, python) • Accès aux données officiellement produits pour l'ensemble des physiciens ATLAS avec la grille : rien localement • Faire l'analyse en utilisant la puissance de la grille • Récupérer les résultats produits par mon analyse dans mon pc • Interpréter les résultats via des histogrammes et graphes grâce à ROOT 						

12/12/07 J.R.J.C.

Varouchas Dimitris - LAL - VBF Higgs

Reconstruction de la masse 2/2

Sélection des événements

CUTS	II - case	lh - case	hh - case	Cut Flow, BaseLine Analysis		
Trigger	e25i» o e _{p⊺} >25GeV	r «mu20i» μ _{ρτ} > 20 GeV	«tau35i+MET40» tau _{pT} > 35 GeV	(simplifié) suivi par tous		
Dilepton	#e + #µ = 2	#e + #µ = 1		les membres		
Tight jet	#jets	$s > 1$ (leading jet $p_T > 40$)GeV)	du groupe		
Tight tau		#hadro.tau = 1	#hadro.tau = 2	Les valeurs		
Missing p _T	MET > 40 GeV	MET > 30 GeV	MET > 40 GeV	des coupures sont encore		
Collinear Approximation	0 <x<sub>I<0.75, cos(Δφ)>-0.9</x<sub>	0 <x<sub>l<0.75 , 0<x<sub>h<1 cos(Δφ)>-0.9</x<sub></x<sub>	0 <x<sub>h<1 cos(Δφ)>-0.9</x<sub>	discutées		
Μ _T	M _T <30 GeV		M _T <80 GeV	• Permet d'être sur que		
Forward Jet		tous travaillent				
Centrality	entrality two VBF forward jets in eta					
Jet Separation		challenge»)				
Di-Jet mass	Di-Jet mass M _{jj} > 700 GeV					
Central Jet Veto	lf 3th	28				

Sélections des évènements \Rightarrow

Cut Flow

	DataSet 5334 Herwig VBFH120tautaulh			DataSet 8162 AlpGen Ztautau+2,3,4,5jets			
Cut	Total Events	Total Efficiency (%)	Rel. Efficiency (%)	Total Events	Total Rel. Efficier Efficiency (%) (%)		
None	49950			255750			
a) Trigger & at least one lepton	16424	32,88 ± 0,21	32,88 ± 0,21	81061 31,69 ± 0,14 31,69		31,69 ±0,14	
b) Di - lepton Veto	14553	29,14 ± 0,20	88,6 ± 0,2	73570	28,77 ± 0,14	90,8 ± 0,2	
c) Hadronic Tau	2091	4,19 ± 0,09	14,4 ± 0,3	7175	175 2,805 ± 0,036 9,8 ± 0,7		
d) N Jets	1514	3,03 ± 0,08	72,4 ± 1,0	6361	2,487 ± 0,031	88,7 ± 1,1	
e) MET Cut	1020	$2,04 \pm 0,06$	67,4 ± 1,2	4008	1,567 ± 0,024	63,0 ± 1,4	
f) Colllinear Approximation	639	1,28 ± 0,05	62,6 ± 1,5	2323	0,908 ± 0,019	58,0 ± 1,9	
g) Transverse Mass	498	1,00 ± 0,04	77,9 ± 1,6	1940 0,759 ± 0,017 83,5 ± 1		83,5 ± 1,7	
h) Opposite Hemi	408	0,82 ± 0,04	81,9 ± 1,7	1039 0,406 ± 0,013 53,6 ±		53,6 ± 2,6	
i) Centrality	374	$0,75 \pm 0,04$	91,7 ± 1,4	528	0,206 ± 0,010	50,8 ± 3,4	
j) Tagging jet separation	227	0,45 ± 0,03	60,7 ± 2,5	95 0,037 ± 0,005		18,0 ± 3,7	
k) Mjj cut	202	$0,40 \pm 0,03$	89,0 ± 2,1	58	$0,023 \pm 0,004$	61,1 ± 9,6	
I) Jet Veto	170	0,34 ± 0,03	84,2 ± 2,6	25	0,010 ± 0,003	43,1 ± 8,3	

Pseudorapidité - η - eta

\Box η =-*ln*[*tan*(θ /2)]

$\theta[^{0}]$	90	45	40.4	15.4	15	10	5.7	2.1
η	0	0.88	1	2	2.03	2.44	3	4

30

Pile-up related to Luminosity

O high-luminosity: 10³⁴cm⁻²s⁻¹

- ~23 minimum bias events per bunch crossing ("pile-up")
- •~1000 charged tracks per event
- o low-luminosity: 10³³cm⁻²s⁻¹ (3 years): still 2.3 min. bias per event
- $\Box \Rightarrow$ minimize out of time pile-up with a fast detector response

 $\square \Rightarrow$ minimize in-time pile-up with high granularity

In scattering theory and accelerator physics

In <u>scattering theory</u> and <u>accelerator</u> physics, **luminosity** is the number of particles per unit <u>area</u> per unit <u>time</u> times the <u>opacity</u> of the target, usally expressed in $cm^{-2} s^{-1}$ or $b^{-1} s^{-1}$. The integrated luminosity is the <u>integral</u> of the luminosity with respect to time. The luminosity is an important value to characterize the performance of an accelerator.

Elementary relations for luminosity

L is the Luminosity. *N* is the number of interactions.
σ is the total <u>cross section</u>.

$$\frac{dN}{dt} = L\sigma$$

For an intersecting storage ring collider: *f* is the revolution frequency *n* is the number of bunches in one beam in the storage ring. *N_i* is the number of particles in each beam *A* is the cross section of the beam

$$L = fn \frac{N_1 N_2}{A}$$

Boson de Higgs

On pense que le vide est rempli par le champ de Higgs qui interagit avec les particules qui acquièrent alors une masse La valeur dans le vide du champ de Higgs est $v/\sqrt{2}$ avec $v = (G_F\sqrt{2})^{-1/2} = 246$ GeV Le boson de Higgs correspond aux excitations du champ autour de cette valeur moyenne dans le vide

12/12/07 J.R.J.C.

