Physique des Neutrinos :

Le point de vue (subjectif!) d'un expérimentateur

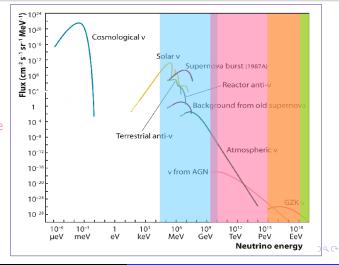
Thierry Pradier

pradier@in2p3.fr

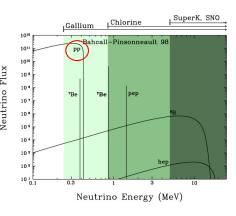
Université Louis-Pasteur Strasbourg-I & IPHC::DRS

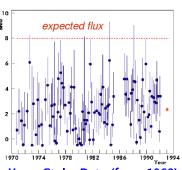
Introduction à la Session Neutrinos

- $lue{1}
 u$ Solaires & u de SN 1987A
- Neutrinos et Oscillations
 - Etats propres de masse et de saveur
 - Probabilité d'Oscillation
 - Différentes manip possibles
- 3 Contraindre la Matrice de Mélange
 - Le Secteur 12 : SNO et KamLAND
 - Le Secteur 23 : SuperK, K2K et OPERA
 - Le Secteur 13 : Chooz & DoubleChooz
- 4 Echelle des Masses et Nature du neutrino
 - Mesure directe des Masses
 - Majorana ou Dirac?
- Les futur des Neutrinos?
 - Le Fond Cosmologique de Neutrinos
 - Neutrinos et Ondes Gravitationnelles
- 6 Présentations à venir...


 ν Solaires & ν de SN 1987A Neutrinos et Oscillations Contraindre la Matrice de Mélange Les futur des Neutrinos?

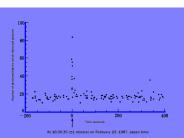
Physique des ν ...les sources

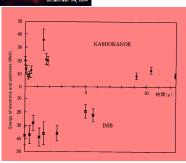



Les sources de neutrinos

- Sous la roche
- Sous l'eau/la glace
- Acoustique/Radio
- Air Showers

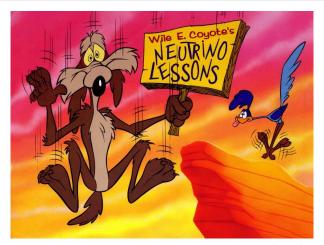
1968 : l'énigme fondatrice des u solaires





HomeStake Data (from 1968)

1987 : la naissance de l'astronomie ν



ν Solaires & ν de SN 1987A Neutrinos et Oscillations Contraindre la Matrice de Mélange Echelle des Masses et Nature du neutrinos ? Les futur des Neutrinos ? Présentations à venir...

Physique des ν : les oscillations

Etats propres de masse et de saveur Probabilité d'Oscillation Différentes manip possibles

Matrice de Mélange et Observables

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Matrice de Mélange Maki-Nakagawa-Sakata-Pontecorvo (MSNP)

Matrice de Mélange et Observables

$$\begin{pmatrix} \nu_{\mathbf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times$$

$$\begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha}{2}+i\beta} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Matrice de Mélange et Observables

$$\begin{pmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{\it CP}} \sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{\it CP}} \sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \\ \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha}{2}+i\beta} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Contraintes exp. sur 23 : $u_{\mu} \rightarrow u_{ au}$

- $\Delta m_{23}^2 = 2.38^{+0.2}_{-0.16} \times 10^{-3} eV^2$
- \bullet $\sin^2 \theta_{23} = 1.00_{-0.08}$

Etats propres de masse et de saveur Probabilité d'Oscillation Différentes manip possibles

Matrice de Mélange et Observables

$$\begin{pmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & {\rm e}^{-i\delta c_{\rm P}} \sin\theta_{13} \\ 0 & 1 & 0 \\ -{\rm e}^{-i\delta c_{\rm P}} \sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \\ \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & {\rm e}^{i\frac{\alpha}{2}} & 0 \\ 0 & 0 & {\rm e}^{i\frac{\alpha}{2}+i\beta} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Contraintes exp. sur 13 : $\bar{\nu}_e ightarrow \bar{\nu}_\mu, \ u_\mu ightarrow u_e$

- $\Delta m_{13}^2 \simeq \Delta m_{23}^2$
- δ_{CP} inconnue
- Hiérarchie inconnue, $\sin^2 \theta_{13} \lesssim 0.03$

Matrice de Mélange et Observables

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \\ \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha}{2}+i\beta} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Contraintes exp. sur 12 : $\nu_e \rightarrow \nu_\mu, \ \bar{\nu}_e \rightarrow \bar{\nu}_\mu$

- $\Delta m_{12}^2 = 8.2^{+0.6}_{-0.5} \times 10^{-5} eV^2$
- $\bullet \ \tan^2 \theta_{12} = 0.4^{+0.09}_{-0.07}$

Matrice de Mélange et Observables

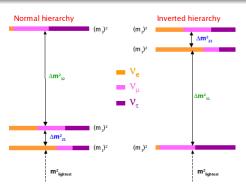
$$\begin{pmatrix} \nu_{\mathbf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \\ \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha}{2}+i\beta} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Contraintes expérimentales sur le secteur de la masse

- $m_{\rm lightest} \lesssim 2.2 \ eV$
- Nature : Majorana $\nu = \bar{\nu}$ ou Dirac inconnue

Probabilité d'Oscillation

• Probabilité de Transition :

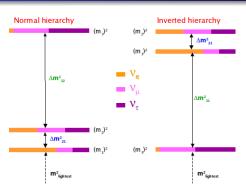

$$P(\nu_{\alpha} \longrightarrow \nu_{\beta}) = \left| \sum U_{\beta k} e^{-i\frac{E_{k}t}{\hbar}} U_{\alpha k}^{*} \right|^{2}$$

• Pour un neutrino d'énergie *E*, aprés une distance parcourue *L* :

$$P(\nu_{\alpha} \xrightarrow{\alpha \neq \beta} \nu_{\beta}) = -4 \sum_{i \neq j} \cos \theta_{ij} \sin^{2} \left(\frac{1.27 \Delta m_{ij}^{2} L}{E} \right)$$

• Transition si masses non-nulles et différentes!

Hiérarchies de masses et manip possibles



Distinction suivant $\frac{L}{E}$:

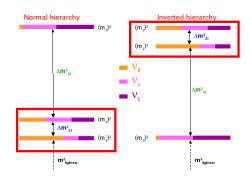
- $\frac{L}{E} \ll 1$ \Rightarrow Neutrinos Atmosphériques $\Rightarrow P(\nu_{\alpha} \rightarrow \nu_{\beta})$ indep. de θ_{12} , δ_{12}
- $\frac{L}{E} \gg 1$ \Rightarrow Neutrinos Solaires $\Rightarrow P(\nu_2 \rightarrow \nu_3)$ indep. de Δm

- $\Delta m_{12} = \delta m \ll \Delta m$

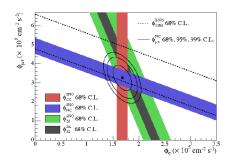
Hiérarchies de masses et manip possibles

Distinction suivant $\frac{L}{E}$:

- $\bullet \ \ \tfrac{L}{E} \ll 1$
 - \Rightarrow Neutrinos Atmosphériques $\Rightarrow P(\nu_{\alpha} \rightarrow \nu_{\beta})$ indep. de θ_{12} , δm
- $\frac{L}{F} \gg 1$
 - \Rightarrow Neutrinos Solaires
 - $\Rightarrow P(\nu_{\alpha} \to \nu_{\beta})$ indep. de Δm


•
$$\Delta m_{12} = \delta m \ll \Delta m$$

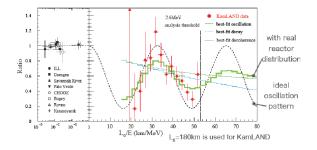
Physique des ν : contraindre la matrice



Le Secteur 12 : SNO et KamLAND Le Secteur 23 : SuperK, K2K et OPERA Le Secteur 13 : Chooz & DoubleChooz

Mesures dans le Secteur 12

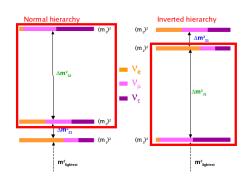
Mesures dans le Secteur 12 : Neutrinos Solaires



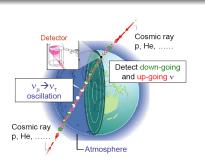
Processus expérimental

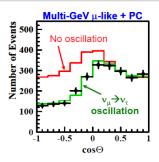
- $P(\nu_{\rm e}
 ightarrow \nu_{\rm e}) \propto \sin^2 heta_{12} \; {
 m pour} \; \left(rac{L}{E}
 ight)_{
 m soleil}$
- Disparition de ν_e du Soleil : SNO (toutes saveurs)

Mesures dans le Secteur 12 : Neutrinos de Réacteurs



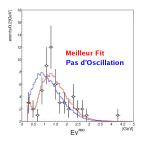
Autre Processus expérimental


- $P(\bar{\nu}_{\rm e} \to \bar{\nu}_{\rm e}) \simeq 1 \sin^2 2\theta_{12} \sin^2 \left[1.27 \Delta m_{12}^2 \left(\frac{L}{E} \right)_{\rm réacteurs} \right]$
- Disparition de $\bar{\nu}_e$ de Réacteurs : KamLAND ($L \sim 200 \, km, \; E \sim MeV$)


Le Secteur 12 : SNO et KamLAND Le Secteur 23 : SuperK, K2K et OPERA Le Secteur 13 : Chooz & DoubleChooz

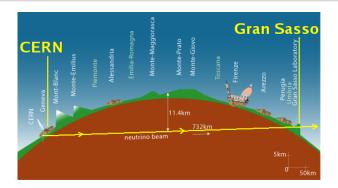
Mesures dans le Secteur 23

Mesures dans le Secteur 23 : Neutrinos Atmosphériques


Processus expérimental

- $P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 \sin^2 2\theta_{23} \sin^2 \left[1.27 \Delta m_{23}^2 \left(\frac{L}{E} \right)_{\mathrm{atmosph\acute{e}riques}} \right]$
- ullet Disparition de u_{μ} atmosphériques : SuperKamiokande

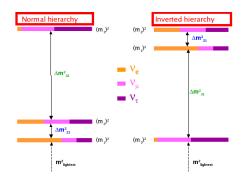
Mesures dans le Secteur 23 : Neutrinos de Réacteurs



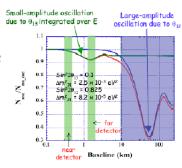
Processus expérimental

Disparition de ν_{μ} provenant de KEK : confirmation de l'Oscillation $(L \sim 200 km, E \sim 10 GeV)$

Le Secteur 12 : SNO et KamLAND Le Secteur 23 : SuperK, K2K et OPERA


Le présent du Secteur 23

Bientôt la prise de données

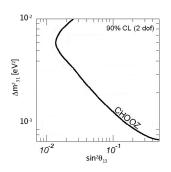

Première expérience d'apparition des ν_{τ} : OPERA \Rightarrow N. Chon-Sen

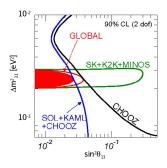
Mesures dans le Secteur 13

Mesures dans le Secteur 13 : Neutrinos de Réacteurs

$$\begin{array}{rcl} P(\bar{\nu_e} \rightarrow \bar{\nu_e}) &=& 1-\cos^4\theta_{13}\sin^22\theta_{12}\sin^2\Delta_{12} \\ &-& \sin^22\theta_{13}(\cos^2\theta_{12}\sin^2\Delta_{13} \\ &+& \sin^2\theta_{12}\sin^2\Delta_{23}) \end{array}$$

$$\begin{array}{rcl} \text{pour } (\frac{L}{F})_{\text{réacteurs}}, \text{ où } \Delta_{ij} = 1.27\Delta m_{ii}^2\frac{L}{F} \end{array}$$

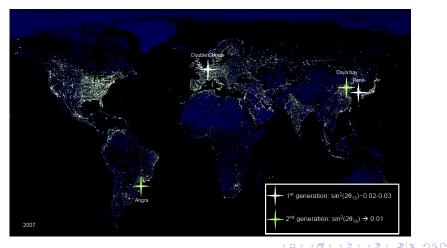



Manips passées et futures

Disparition de $\bar{\nu}_e$ provenant de réacteurs ($L \sim 1 km$, $E \sim MeV$)

```
Le Secteur 12 : SNO et KamLAND
Le Secteur 23 : SuperK, K2K et OPERA
Le Secteur 13 : Chooz & DoubleChooz
```

Mesures dans le Secteur 13 : Neutrinos de Réacteurs



Résultat historique

Expérience Chooz (1988), seul résultat sur θ_{13} jusqu'à récemment

Le Secteur 12 : SNO et KamLAND Le Secteur 23 : SuperK, K2K et OPERA Le Secteur 13 : Chooz & DoubleChooz

Mesures dans le Secteur 13 : Neutrinos de Réacteurs

Le Secteur 12 : SNO et KamLAND Le Secteur 23 : SuperK, K2K et OPERA Le Secteur 13 : Chooz & DoubleChooz

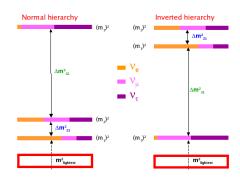
Mesures dans le Secteur 13 : Neutrinos de Réacteurs

Le Secteur 12 : SNO et KamLAND Le Secteur 23 : SuperK, K2K et OPER/ Le Secteur 13 : Chooz & DoubleChooz

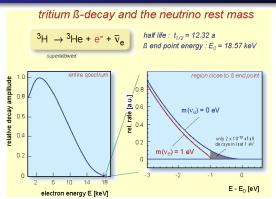
Le futur du Secteur 13

Manips futures

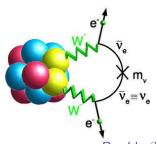
Apparition de ν_e à partir de faisceau de ν_μ d'accélérateurs ($L\sim 200-1000 km,~E\sim GeV$)

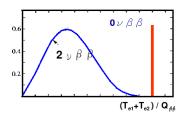


Le Secteur 12 : SNO et KamLAND Le Secteur 23 : SuperK, K2K et OPERA Le Secteur 13 : Chooz & DoubleChooz


Physique des u : Echelle de Masses et Nature du u

Mesures des Masses


Mesure cinématique directe : Tritium endpoint



Résultats expérimentaux et futur

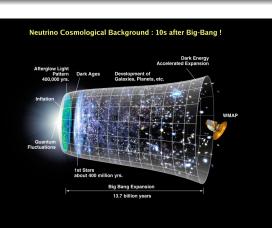
 $m_{
u} < 2.2 \; \mathrm{eV} \; \mathrm{\grave{a}} \; 95\% \; \mathrm{(Troistk/Mainz)} \Rightarrow \; 0.2 \; \mathrm{eV} \; \mathrm{(Katrin,} > 2009)$

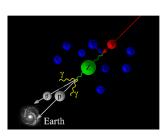
Nature du Neutrino : Double Beta decay

Double β sans neutrino $\Rightarrow \nu_{\mathrm{majorana}}$

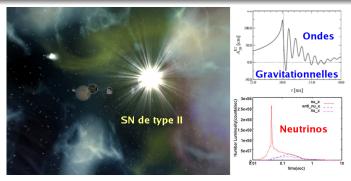

Résultat expérimental : une masse effective

$$m_{\beta\beta} = \big| |U_{e1}|^2 m_1 + e^{i\beta} |U_{e2}|^2 m_2 + e^{i\alpha} |U_{e3}|^2 m_3$$


Nature du Neutrino : Double Beta decay


isotope	expérience	dernier résultat	$\langle m_ u angle$ (sup.) [eV]
⁴⁸ Ca	Elegant VI	2004	7.2 ÷ 44.7
⁷⁶ Ge	Heidelberg/Moscow	2004	0.44 (99.9973 %)
⁸² Se	NEMO-3	2007	1.2÷3.2
¹⁰⁰ Mo	NEMO-3	2007	0.6÷2.40
¹¹⁶ Cd	Solotvina	2003	1.7
¹³⁰ Te	Cuoricino	2007	$0.16 \div 0.84$
¹³⁶ Xe	DAMA	2002	1.10÷2.9
¹⁵⁰ Nd	Irvine TPC	1997	3.0
^{160}Gd	Solotvina	2001	26.0

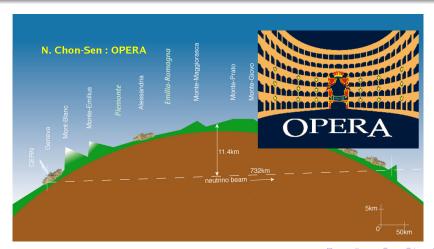
Physique des ν : le futur

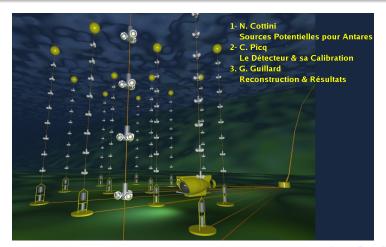

Le Fond Cosmologique de Neutrinos et les ν UHE

$$\begin{array}{c} \bullet \ \ E_{\nu_i}^{\rm r\acute{e}sonance} = \frac{m_Z^2}{2m_{\nu_i}} \simeq \\ 4 \times 10^{21} \left(\frac{1~{\rm eV}}{m_{\nu_i}}\right) ~{\rm eV} \end{array}$$

Neutrinos et Ondes Gravitationnelles : SN II

$$m_
u
eq 0 : \delta t_{
m propagation} \simeq 5.15 ms \left(rac{L}{10 kpc}
ight) \left(rac{m_
u c^2}{1 eV}
ight)^2 \left(rac{10 MeV}{E_
u}
ight)^2 \ E_
u^{SN} \sim MeV, \ \delta t_{GW-
u_e^{flash}} \lesssim 0.5 \ ms \Rightarrow \delta m^2 \sim 0.6 \ eV^2$$

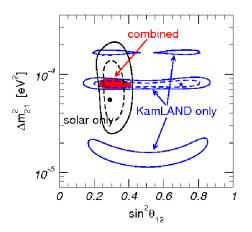

Neutrinos et Ondes Gravitationnelles : μ Quasars

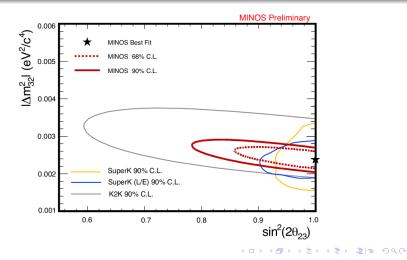

Gravité Quantique :
$$c^2p^2 = E^2\left[1 + \xi\left(\frac{E}{E_{QG}}\right) + \mathcal{O}\left(\frac{E^2}{E_{QG}^2}\right) + \ldots\right]$$

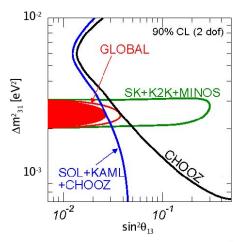
$$\Delta t_{QG} \simeq 0.15 ms\left(\frac{d}{10~kpc}\right)\left(\frac{E_{\nu}^{HE}}{1~TeV}\right)\left(\frac{10^{19}~GeV}{E_{QG}}\right) \Rightarrow E_{QG} \simeq 10^{22} GeV$$

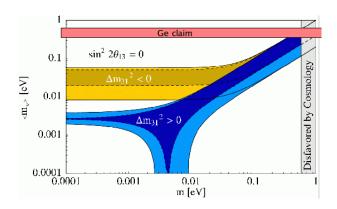
OPERA: Oscillations, étude du neutrino

ANTARES : Astronomie avec des Neutrinos $(E_{ u} \sim \textit{TeV})$


Annexe : Carte de France des Neutrinos (I)


Annexe : Carte de France des Neutrinos (II)


Annexe: Résultats Secteur 12


Annexe: Résultats Secteur 23

Annexe: Résultats Secteur 13

Annexe : Résultats Combinés Double β et Oscillations

