

Annual Meeting 2024

WP21 — JRA3 — Precision tests of the Standard Model

Misha Gorshteyn, Universität Mainz

Low-energy precision tests: complementarity to the LHC

Naively: to feel heavy new particles need to operate at comparable energy

High-precision measurements introduce a new scale (example: EW Observable)

$$\Lambda_{\rm NP} \sim v_{\rm EW} \sqrt{\frac{[\rm Obs]}{\Delta[\rm Obs]}}$$

Typical reach of modern precision experiments ~ 50 TeV (competitive to colliders)

Low-energy probes work like filters: study a restricted parameter space of New Physics models (complementary to colliders) SMEFT: 2499 6D Op's

JRA3 guides global effort in $(g-2)_{\mu}$, CKM unitarity tests, PVES

Highlights since last annual meeting

Reformulation of SM theory of V_{ud} from beta decay CKM unitarity deficit 2.5σ with nuclear decays Neutron decay: no unitarity deficit, comparable precision if discrepancies resolved Revival of interest to nuclear corrections, new synergies (PVES - CKM unitarity)

FNAL muon g-2 experiment: Runs 2/3 confirm Run 1 and BNL 5.1σ discrepancy with SM theory that uses world-data driven HVP but just 1σ when SM theory uses lattice QCD or CMD-3 low-energy data

MUonE experiment test run

study of HVP in spacelike alternative and complementary to R-ratio

CKM unitarity in the top row

Cabibbo unitarity: deficit observed; discrepancies?

$$V_{ud}^{2} + V_{us}^{2} + V_{ub}^{2} - 1 = -0.0015(6)_{V_{ud}}(4)_{V_{us}}$$

$$\sim 0.95^{2} - 0.05^{2} + 0.05^{2} - 10^{-5}$$

$$0.228^{0.224} + 0.226^{0}$$

Cold neutrons live longer than UCN

KI2 and KI3 disagreement (via Vud)

Universal correction Δ_R^V

Equally affects free and bound neutron decay

$$\Delta_R^V = \frac{\alpha}{2\pi} \left\{ 3 \ln \frac{M_Z}{M_p} + \ln \frac{M_Z}{M_W} + \tilde{a}_g \right\} + \delta_{\text{QED}}^{HO} + 2 \square_{\gamma \mathbf{W}}$$

 γW -box: main source of theory uncertainty since 40 years JRA3: γW -box from dispersion relations (DR) + lattice

Marciano, Sirlin 2006: $\Delta_R^V = 0.02361(38) \longrightarrow V_{ud} = 0.97420(10)_{Ft}(18)_{RC}$ DR (Seng et al. 2018): $\Delta_R^V = 0.02467(22) \longrightarrow V_{ud} = 0.97370(10)_{Ft}(10)_{RC}$

Confirmed by first ever direct LQCD calculationLQCD on pion + pheno: $\Delta_R^V = 0.02477(24)_{LQCD^{\pi}+pheno}$ LQCD on neutron: $\Delta_R^V = 0.02439(19)_{LQCD^n}$

Seng, MG, Feng, Jin, 2003.11264 Yoo et all, 2305.03198

Ma, Feng, MG et al 2308.16755

Nuclear structure correction $\delta_{NS} = 2[\Box_{\gamma W}^{VA, \text{ nucl}} -$ VA, free n ך

Nuclear environment, nuclear excitation spectrum, ...

Until 2024: only calculated in nuclear shell model; Free-n box subtraction implicit, uncertainties ad-hoc

2024: First ab-initio calculation of δ_{NS}

First case study: ${}^{10}C \rightarrow {}^{10}B$ in No-Core Shell Model (NCSM)

DR formalism to make the free-n box subtraction explicit

M. Gennari, M. Drissi, MG, P. Navratil, C.-Y. Seng, arXiv: 2405.19281

 $\bar{
u}_{e}$

 $A_i \to A^* \to A$

 W^+

 $n \rightarrow N^* \rightarrow p$

 W^+

Nuclear structure correction δ_{NS} : numerical results

Systematic uncertainty: compare different nuclear forces

Convergence (basis size) OK

Ab-initio result for ${}^{10}C \rightarrow {}^{10}B$:

$$\delta_{\rm NS} = -0.406(39)\%$$
 arXiv: 2405.19281

Compare to Hardy-Towner (old-fashion SM)

$$\delta_{\rm NS} = -0.347(35)\% \tag{2014}$$

$$\delta_{\rm NS} = -0.400(50)\% \qquad (2020)$$

Isospin-breaking correction $\delta_{\rm C}$

Coulomb repulsion of protons, but not neutrons —> isospin symmetry broken (0.1-1%) Until now purely theoretical, but model dependence

JRA3: data-driven approach! Relate $\delta_{\rm C}$ to nuclear radii: known or measurable

Superallowed decays within iso-triplet Isospin symmetry connects 3 charge radii, transition CC radius and neutron skins

Experimental plans:

neutron skins of stable 0+ isotopes ²⁶Mg, ⁵⁴Fe, ... at MESA (synergy with nuclear EoS) Charge radii with µ atoms (^{9,10}Be, ²⁶Al,Mg, ^{40,41}K) at PSI (MuX, QUARTET)

STRONG-2020 Annual Meeting, Frascati, June 20-21, 2024

Seng, MG 2208.03037; 2304.03800; 2212.02681

Muon g-2

$(g-2)_{\mu}$ SM theory and the role of JRA3

JRA3 and the Muon g-2 Theory Initiative:

Coordinated the global effort for the SM prediction

Especially important in view of

- conflicting data sets
- conflicting calculations
- necessity to define theory uncertainty

Annual Meeting, Frascati, June 20-21, 2024

Lattice QCD HVP for $(g-2)_{\mu}$

Ab-initio calculation of HVP on lattice

to exp. Result

CMD-3, BMW HVP alone \sim no anomaly

Prospects for $(g-2)_{\mu}$

Experiment: all data taken

Full analysis in 2025 with 1/2 statistical error for 140 ppb total uncertainty

Theory: further effort on HLBL

WP update: expect (cf. lattice results) some upward shift of central value, precision < 15%

Deliverables, Milestones

What we	pro	theory side various contributions to $(g-2)_{\mu}$ will be studied to see how they depend on the experimental constraints. This will be done using a variety of methods concentrating on Euclidean methods (Lund, Giessen) and dispersive constraints (Manz, Bern). The groundwork for a new comprehensive analysis of the HLbL including the study of Litted Constraints and double counting issues at boundaries and between different types of contributions (Lund, Giessen, Barcelona, Marseille, Bucarest, LPHNE) will be laid. This will include comparison with lattice QCD, meson form factors, and other processes with off-shell photons. Meson transition form factors and hadronic decays will be studied theoretically (UBO, UU, Lund, Prague, Orsay, Bern, Mainz, UAB, FZJ). Deliverables (brief description and month of delivery) D21.1-Electroweak MAID (month 18). For weak π , η production will be made accessible on the existing MAID website, and computer code provided for download. This deliverable is also the Milestone 1, and will serve as input for Milestone 3, new v π MC event generator. The formalism will be extended to kaon and multi-pion channels and to nuclear targets, and will be directly applicable to the conditions of the actual short baseline neutrino experiments.				
Deliverables	MS29 MS30 MS31 MS32 MS33 MS34	D21.2-Report on spacelike HVP in muon-electron scattering at CERN vs timelike HVP (month 24). We will obganizelasworkshop on this topic, the Milestone 2.D2113-Report of factorial association of the Milestone 2.Rubble association factorial association from a least with one of the two Virtual Access projects within this proposal will be beneficial for this tasksubmitted to a peer-reviewed journal Coderdon and Leffibrance networking amongst the consortion throughout the function of the function of T1 and T2.D213-Report of the Milestone common of the two factorial association from T1 and T2.				
Milestones	MS35 MS37 MS38 MS39 MS40 MS42 MS43	etgantze full stimulation in the for T1 and T2. 20 15 Software released Work package number 22 Lead Beneficiary Istituto Nazionale di Fisica Nucleare Work package title JRA4-3D structure of the nucleon in momentum space (TMD neXt) Participant number 30 18 24 21 39 18 Website up and running Short name of participant 30 18 24 21 39 18 Website up and running Short name of participant 30 18 24 21 0 42 Software released and validated Short name of participant 30 18 24 21 0 42 Software released and validated Short name of participant 30 18 24 21 0 42 Software released and validated Short name of participant 30 18 24 21 0 42 Software released and validated Short name of participant 30 18 24 21 0 42 Software released and validated Book of abstracts 30 16 0 21 <				
17	MS44	Signation of these distributions is encoded in their dependence on spin. The complete three-dimensional internation of these distributions is encoded in the second and the				

47MD PPH Stars in experimental observables they are often combined with Transverse-Momentum Dependent

What we delivered

Deliverables

Milestones

Deliverable No	Deliverable Name	Nature	Delivered Month		Link/Reference	
D21.1	WeakMAID Website	Website	36		https://wwwth.kph.uni-mainz.de/ weakmaid/	
D21.2	Report on Spacelike HVP in MuonE at CERN vs timelike HVP			13	Phys.Rept.887 (2020) 1-166	
D21.3	Report on hadronic corrections to precision tests of SM in weak sector		Universe 9 (2023) 422 Ann.Rev.Nucl.Part.Sci. 74 (2024) 23-47			
D21.4	Database on hadronic processes relevant for HVP and HLbL	ase on hadronic ses relevant for HVP Website 42 _bL		42	https://precision-sm.github.io/	
Milestone No	Deliverable Name	Delivered Me		Mea	ns of verification	
MS37	WeakMAID Website	YES	YES Website		up and running	
MS38	HVP space- vs timelike HVP workshop	YES		Book of abstracts		
MS39	New $\nu \pi$ production MC event generator	NO		(Software validated and released)		
MS40	Database on hadronic processes relevant for HVP and HLbL	YES		First version of website up <u>https://precision-sm.github.io/</u>		

JRA3: significant progress in precision tests of EW sector of SM

Overachieved in several tasks

One objective had to be dropped (insufficient manpower)

Outlook for next call:

Current discrepancy in HVP has to be resolved to interpret $(g-2)_{\mu} \exp$. Precise determination of weak mixing angle and neutron skins Rich program in beta decay, Vud, Vus and CKM unitarity Improved experimental precision requires coordinated theory support