

Annual Meeting 2024 TA to GSI Yvonne Leifels

01 Beam times @ GSI and recent developments 02 **Experiments in 2024 and** preliminary results from 2022 Outline 03 **Overview on TA at GSI**

STR SNG-2020

Science while realizing FAIR

- Started in 2018
- Goal to provide beam time ~3 months/year during until FAIR is operational
- Using upgraded GSI facilities and sources exististing FAIR detector equipment to perform experiments in preparation of FAIR science
- No beam time in 2023
- Extended run planned for 2025

Major improvement of Ion Beam Quality Digital Spill Optimization System (SOS)

- Main focus of GSI's activities is on the construction of the FAIR facilities
- Extensive upgrade program of GSI accelerators for FAIR led to improved intensities and beam qualities
 Annual Meeting, 20-21 June 2024

Accelerator improvements

- For the first time, HADES was running Au beam extracted with Knock-out (KO) extraction and the new feedback system
- HADES observed a duty factor with effectively ~90 % beam on target time
- KO extraction with feedback also improved substantially the micro spill time structure
- The slow extraction with KO system will enable data taking with about twice larger speed

Au+Au/C+C collisions at 0,8 GeV/u (Feb./Mar. 2024

e+e- signal pairs at 0.8 AGeV

- Signal above π^0 mass - access to properties of a dense matter in the neutron star merger

HADES Online Analyses

Signal ($\mu \pm 2\sigma$) = 671 ± 47

Signal / Background = 0.45

C+C Vs_{NN} = 2.24 GeV

0 - 100% most central

Significance = 14.5

Counts / N

1080

1100

1120

1140

Deep sub-threshold strangeness production at 0.8 AGeV

- K^0/Λ signals from C+C and Au+Au
- First measured data at such low beam energy

HADES TO detector for p@4.5GeV beam:

- LGAD Technology a dedicated sensor production at FBK
- Low power FEE, vacuum operation w/o cooling
- Low material budget, 200µm total thickness
- Particle rates about 10⁸ protons/s/cm²
- Time precision < 100ps
- Active area: 2cm x 2cm

PID w/o T0 0 p (MeV) PID with TO 3000 2500 2000 0.4 0.2 4000 -2000 2000 4000 p (MeV)

Spin-off projects:

- LGAD-based ion imaging system

– Beam monitoring system for the S-DALINAC (3 GHz time-structure successfully resolved)

Pietraszko, J et al. (2020), Eur. Phys. J. A 56.7.

5000

4000

3000 2000

1000

4000

- Kruger, W. et al. (2022), NIM A 1039, p. 167046.
- Ulrich-Pur, F. et al. (2022)., DOI: 10.1088/1361-6560/ac628b
- Kedych, V. et al. (2022), https://doi.org/10.18429/jacow-ibic2022-mop29
- Ulrich-Pur, F. et al. (2024), https://doi.org/10.1088/1361-6560/ad3326

Symmetry energy at high nuclear matter densities

most relevant for neutron star physics

 $E_{sym}(\rho) = E_{sym,0} + \frac{L}{2} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2$

Constraints at low densities

- masses
 - Isobaric Analog States (IAS)
 - neutron skins
 - scattering with electrons, anti-protons
 - excitation of nuclei: Pygmy resonances, dipole polarizability...
 - neutron removal cross section
- cluster formation at low densities
- fragmentation of nuclei
- isospin diffusion und isospin drift between nuclei of different N/Z

Symmetry energy at high nuclear matter densities

density to be probed in the ASY-EOS II exp, most relevant for neutron star physics

Constraints at low densities

- masses
 - Isobaric Analog States (IAS)
- neutron skins
 - scattering with electrons, anti-protons
 - excitation of nuclei: Pygmy resonances, dipole polarizability...
 - neutron removal cross section
- cluster formation at low densities
- fragmentation of nuclei
- isospin diffusion und isospin drift between nuclei of different N/Z

Constraints a very high densities

- masses and radii of neutron stars
- tidal deformability

Symmetry energy at high nuclear matter densities

Measurement of neutron and p/d/t flow in Au+Au collisions

KRAB: new detector for reaction plane determination and on-beam centrality selection

NeuLAND: capability to resolve p,d,t

density to be probed in the ASY-EOS II exp, most relevant for neutron star physics

photograph of mCBM @ cave D (HTD), April 24th , 2024 Annual Meeting, 20-21 June 2024

2023 July - 2024 April Synthetic runs (= real-time replay @ cluster) for testing/optimizing the CBM online system prototype

2023, December (High-rate) TOF tests during machine engineering runs

2024, March Commissioning with Au beam T = 1.2 AGeV, 1st test of online system prototype.

2024, May

Ni+Ni benchmark run, T = 1.93, 1.58, 1.23 AGeV, Online reconstruction and selection (events with Λ candidate)

2024, June

Rate scans with U beam, high-rate tests & ageing studies, T = 1.06 AGeV

Groups on-site: Warsaw, Bucharest, Prague, Kolkata, Münster, Wuppertal, Bochum, Gießen, Heidelberg, Frankfurt, Darmstadt

Previous experiments Beam time 2022*

*WASA results will be reported in the talk of Josef Pochodzalla

Study of short range correlations at R3B

0.4

-0.5

Quasi-free selection in ¹²C(p,2p)¹¹B data

Mean-field/SRC separation

¹²C(p,2p)(¹⁰Bn)/(¹⁰Bep) SRC selection

Annual Meeting, 20-21 June 2024

(GeV²/c⁴)

 M_{miss}^{2}

-0.5

60

50 F

30

20

10

0

-1

Count

Hyperon Dalitz Decays at HADES

Study of $\Sigma^0 o \Lambda e^+ e^-$ Dalitz decay in pp-> $pK^+ \Sigma^0$ reaction

Reconstruction of Λ (-> p π ⁻) and e⁺e⁻ pair:

Missing mass of ($p \pi^- e^+ e^-$) > m(K p)-20MeV Side band subtraction

Towards $\Sigma^0 \to \Lambda\,$ electromagnetic transition form factor...

	Promised	Report 1	Report 2	Report 3 1.6.2022 – preliminary	Total
T&S	204.800€	0	55.562€	95.000€	150.000 * €
Days	1760	0	502	1358	1860
Travels	160	0	41	136	177
Users	80	0	28	72	83
Hours delivered	1450	0	860	969	1829

*large backlog from beam time ~ 39 travels not yet recorded

Summary

- Analyses of beam time data in 2022 ongoing
- Beam time 2024 started in February
 - major failure during last weekend, repairs ongoing
- Using spill smoothing feedback system the first time: HADES reported 90 % duty factor
 - unfortunately cooling system of HADES magnet failed and beam time was interrupted
- Successfull runs of mCBM and ASY-EOS
- TA support was very well received

^ _ □ × 11.06.2024

15:00:01

VirtAcc Info

Legend

HHD (FAST) SIS18_FAST_HHD_U_Cooled_einstell.C²³⁸U⁷³⁺ 400.0 MeV/u ESR via TE (FAST) SIS18_FAST_20240523_013946.C1

²³⁸U⁷³⁺ 905.63 MeV/u HFS (SLOW) SIS18 SLOW HFS 20240523 020119.C

²³⁸U⁷³⁺ 1.0 GeV/u HHT (FAST) SIS18_FAST_HHT_20240523_014845.C1

> ²³⁸U⁷³⁺ 400.0 MeV/u HHD (SLOW)

SIS18_SLOW_HHD_HFS_einstell.C1 238U⁷³⁺ 1.0 GeV/u

HHT (FAST) SIS18_FAST_HHT_20240610_173716.C1 ²³⁸U⁷³⁺ 400.0 MeV/u

> SIS100_RING (KO) STRINGTEST_CBM.C1

¹⁹⁷Au⁷⁹⁺ 11.13 GeV/u

ESR_RING

ESR_EXP24_STAC_1DECEL_BRANDAU_V6.C 238U⁹²⁺ 195.0 MeV/u

Über

nat's Running? @ PRO

What's Running?

STR SNG-2020