Internal hydrodynamical shocks as a mechanism for GRB prompt emission

A. Charlet, J. Granot, P. Beniamini ARCO - Open University of Israel

Jet collides with ambient medium (external shock wave)

> High-energy gamma rays

Visible light

Colliding shells emit low-energy gamma rays (internal shock wave)

www.

 \sim

Slower shell

Faster shell

Low-energy gamma rays

Black hole engine

> Prompt emission

> > Afterglow

Credit: NASA's Goddard Space Flight Center

GRB properties

- doubly broken power-law spectrum - Fast Rise Exponential Decay lightcurve

The ballistic approach

(Daigne & Mochkovitch 98)

2 shells \rightarrow 1 shell

$$(\Gamma_1, \Gamma_2) \to \Gamma_r \approx \sqrt{\Gamma_1 \Gamma_2}$$

internal motion dissipate energy $\epsilon = (\Gamma_{int} - 1)m_pc^2$

 \rightarrow accelerate electrons \rightarrow radiation (synchrotron, IC..)

$$\Gamma_{int} = \frac{1}{2} \left[\left(\frac{\Gamma_1}{\Gamma_2} \right)^{1/2} + \left(\frac{\Gamma_2}{\Gamma_1} \right)^{1/2} \right]$$

one zone model (single emitting front)

- lot of successes explaining observations
- cannot explain the subdominant component
 - \rightarrow photospheric? other contribution?

Model update: Rahaman+ 24a

• Buy 1 shock, get 1 free!

- 1 shock = 1 infinitely thin shell propagating & emitting
- hydro in planar
- emission calculated by adding propagation effects
- Explains obs. features without fine-tuning:
 - subdominant low-energy spectral component
 - doubly-broken power law spectrum
- Still some defaults:
 - low velocity ratio imposed to reproduce peak energies ratio
 - assumptions on propagation effects may not hold

Rahaman+ 24a

The methods

- Hydro : GAMMA (Ayache+ 22) for SRHD +
 - moving mesh suited for propagation over large scales
 - good shock capturing
 - can evolve e⁻ distributions

- Rad : Genet & Granot 09, de Colle et al. 12
 - thin shell approximation: all energy is radiated away 'instanting
 - spectral shapes: Band and synchrotron broken pow. law (syn-BPL)
 - 1 shock front = 1 source of emission

Colliding shells hydrodynamics (planar)

All quantities analytically derivable: shock fronts propagation → crossing times and radii → pulses peak & width shock strength → energy conversion → peak frequency and luminosity

$$\gamma_m = \frac{p-2}{p-1} \frac{m_p}{m_e} \frac{\epsilon_e}{\xi_e} (\Gamma_{ud} - 1)$$
$$L'_{bol,\gamma} = \epsilon_e (\Gamma_{ud} - 1) \frac{\mathrm{d}M}{\mathrm{d}t'} c^2$$

Charlet+ (in prep.)

From hydrodynamics to emission

Analytics:

- 1. define Equal Arrival Time Surface
- 2. integrate luminosity over EATS

Numerics:

- 1. identify shock
- 2. derive freq. & lum. from hydro
- 3. add contributions

Illustration of EATS (Rahaman+ 24b)

Colliding spherical shells - hydro

Spherical effects over doubling radius

- p.law below doubling radius
 converges to constant value
 - $X(R) = \left[\left(X_{\rm pl} \left(\frac{R}{R_0} \right)^l \right)^s + (X_{\rm sph})^s \right]^{1/s}$

for fiducial sim,
$$\frac{\Delta R_{\rm sph}}{R_0} = 1.52$$

 \rightarrow p. law approximation won't work to properly describe emission

 \rightarrow fit hydro to fit flux

Spherical colliding shells - emission

Peak frequency and flux

- \rightarrow extends to lower freq
- \rightarrow low freq tail $\nu_{pk}F_{\nu_{pk}} \propto \nu_{pk}^3$

From flux to central engine

R24: no saturation, derivation of source activity possible

GRB	$ u_{\rm max}/ u_{1/2} $	$\Delta R/R_0$	$t_{\rm on4}/t_{\rm off}$
140606B	0.45	1.66	1.29
131011A	0.59	1.04	0.81
$170607 \mathrm{A}$	0.36	2.36	1.85
$151027 \mathrm{A}$	0.65	0.84	0.66
$150514\mathrm{A}$	0.60	0.99	0.78
120326A	0.70	0.71	0.56
190829A	0.50	1.40	1.09

 \rightarrow need more ingredients to fit observations to central engine

Conclusion

- Internal shock model revisited
 - planar hydro model showed success in reproducing some obs. features
 - extension to spherical shells using simulations: p. law before doubling radius then saturates
 - emission from fiducial run precises results, spectral behavior closer to observations
 - exploration of fully spherical behavior for larger scope model

• Some strong assumptions

very fast cooling, homogeneous shells, no LF drift, constant microphysical parameters..

• More work to do

- include cooling regimes
- vary microphysics
- apply to more complex flows (link with GRMHD simulations results) and/or in 2D

Article coming soon!