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General Relativity

Standard theory of gravity (1915)

Gravity = Curvature of spacetime

Gravitational deflection of light

e Eddington experiment (1919)

Thorough tests in the Solar System

Figure: 1919 solar eclipse.
Credits: Eddington
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Black Holes

Black hole «++ Event horizon

No-hair theorem — Kerr

Spacetime singularity

Tests in the strong field regime

e Event Horizon Telescope (2019)

Figure: Simulated photograph of a BH.
Credits: Luminet

Photon rings v ey T



Context

Black Holes

Figure: Simulated photograph of a BH. Figure: First image of SgrA*.
Credits: Luminet Credits: Event Horizon Telescope
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Event Horizon Telescope

MS87*  April 11, 2017

50 pas

Brightness Temperature (107 K)

Figure: EHT array of the 2017 campaign. Figure: First image of a black hole.
Credits: Event Horizon Telescope Credits: Event Horizon Telescope
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Project

Scientific question
Can we detect a deviation from the black-hole standard model?

Reasoning steps:

o Find distinctive image features induced by the spacetime properties
@ Associate reliable electromagnetic observable signatures

@ Disentangle between the geometry and the astrophysics

Methods:

@ Numerical simulations via the ray-tracing code GYOTO
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Trajectories of free photons

@ Photon sphere = unstable circular orbits of light

@ One point of the disk

@ n = half turns around the black hole before leaving to infinity
= several images
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Figure: Geodesics of photons emitted at the innermost stable circular orbit
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Photon rings

Image features

@ Critical curve = projection of the photon sphere
@ Inner shadow = region inside the projected equatorial event horizon

@ n-th lensing band = impact points of light rays of order n > 0
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Figure: Horizon, critical curve and n =1 Figure: Impact parameters of the features
lensing band on the observer's screen. along the polar angle on the screen.
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Context Photon rings Models

Photon rings

o Critical curve, horizon, lensing bands = mathematical regions

@ Observable photon rings = radiation of the accretion disk
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Figure:
Left panel: modeled image of the emission of an accretion disk observed at 230 GHz

Right panel: embedded rings. Credits: Wong, Johnson
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Parametrised framework

Simulated Image

—

Compact Object

@ Spacetime geometry
@ Properties of M87*
@ RZ spherically symmetric

o ds? = ds?(e,a;,b;),i €N

Irene Urso

Thin Accretion Disk

~

@ Astrophysical emission
e Keplerian/Radial velocity

@ Synchrotron radiation

° j, = jl/(Cu Vemaa,/B77) x I,
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Parameters

Accretion disk:

e Emissivity j, (¢, Vem ,, 3,7)

@ Ne xr % O, O(T_B, B oxr7, C(Binnem@e;inner)
Compact object:

@ All metric parameter affect the geodesic motion

@ Only lower order parameters affect near-horizon phenomena:
Event horizon Photon sphere ISCO

€ v v v
ay X v v
by X X X

@ ag and by are constrained by observations in the Solar System
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1D cross sections

@ Separate intensity profiles: n=0 image and n=1 photon ring

@ Measure the radial position of the intensity peaks

P |

I, normalised

LN

Figure: 1D intensity cuts

A

Shadow

Radial distance b
Figure: 1D intensity profile and peaks
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Image analysis

Redshift effects

o All I™ peak at the radial position of the equatorial event horizon

. . o bs _ 3 . o l/ObS . pobs.uobs
o Redshifted intensity: I = ¢g°I;™ with g = o = ey
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Figure: Redshifted profiles for a Schwarzschild black hole seen face-on
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Discussion

n = 0 image

n = 0 peaks’ position degenerate for every disc's dynamics

Sewharzschild RZa; =01 [0 RZe=01
Keplerian Radial
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Figure: Impact parameters of the intensity's peaks along the polar angle on the screen
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n = 1 photon ring

n = 1 peaks’ position disentanglable and always in the Keplerian case
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Figure: Impact parameters of the intensity's peaks along the polar angle on the screen
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Detectability

@ n = 1 photon ring not detectable with present instruments

@ Angular resolution of an interferometer:

A
R~ —
B )
with A the observed wavelength and B the maximum baseline
e High-frequency ground array of the ngEHT (ongoing)

e BHEX space-based array (Small Explorer proposed to NASA)
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Avenues

Astrophysics:

e Geometrically thick disk

o Time variability
Geometry:

@ Rotating black hole
Methodology:

o Interferometric signal
Objects of study:

o Polarised images

Discussion References

Figure: Polarised image of M87*.

@ n=2 photon ring Credits: Event Horizon Telescope
Photon rings November 2024 15 /15
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Very Long Baseline Interferometry
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Complex visibility

e Spatial correlation function: V =V (B, /\),
with A the wavelength and B, the projection of the baseline

e Fourier transform of the brightness distribution in the sky I

o Van Cittert-Kernike theorem

V(u) [ I(a,8)e 2wt dads
V(0,0) [ I(ev, 6)dedd ’

with (a, 0) the usual right ascension and declination
and (u,v) their Fourier conjugate frequencies



Visibility amplitude
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Figure: Visibility amplitude of a Gyoto simulated image. Credits: Paugnat et al. 2022



Photon ring detectability

EHT + space telescope: deviations of 0.1 mJy detectable at 345 GHz
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Figure: Visibility amplitude of the n=1 photon ring for { =3 and a1 =0 or a1 = 0.1



Comapct object

@ Spherically symmetric black hole

@ Rezzolla-Zhidenko parametrised and hierarchical metric:

B(r) |*
ds? = —| N(r) 2dt® + dr? + r?(d6? + sin? 6d¢?) |
N 2

(r)

Nz( )=al =[e|l—z)+ (a0 ~[e)(1—2)*+ Az) (1 —2)’]
(@) =1+ bo [(1—2)+ B(z)(1-x)? ’

o b
Alx) = . 0 Bl)= P
1 ——— 1+
as |x by |z
1+1+,,. 1+ﬁ

where we introduced the variable z :=1 —ry /r and 1 + € = 2M/ry,
with 74 the radius of the horizon and M the mass of the black hole



Metric impact

on image features
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Figure: Dependence of the event horizon,

photon shell, critical curve and ISCO on ¢, a3



Accretion disk

Set-up:

@ Geometrically thin disk inclined at 163°

Dynamics:
o Keplerian velocity with the Cunningham hypothesis

@ Radially infalling velocity

Emission:
e Optically thin disk

@ Thermal synchrotron emission



Thermal synchrotron emission

@ Synchrotron power emitted by an ultrarelativistic electron: P,

@ Power of a population of electrons in thermal equilibrium:
O¢,ne
di
L, = fo Pl, dnedqoc 1,

B Ue
with B the magnetic field, ©. the dimensionless temperature and
n. the density following a Maxwell distribution of speeds v,

e Hypotheses of power-law fall-offs: n. oc r=®, O, x r#, B oc 77

@i =a—2Fand iy =v+20



Emissivity

N em GHZ 3 7i1 3 em GHZ i2/3
° ju A 1" 2[30 ]<nn7ner) eXp[ ¢y~ 2[30 ](nnrner)

1/3
_ 3.7x10°
where C — <Binﬂ’3r®g;inner sin9>
with Binner, Ociinner the values of B and ©, at the inner radius rinner
and 0 the angle between the emission direction and the magnetic field

e Various observing frequencies of the ngEHT: 230, 345 GHz

o IT™M o< g,



Apparent shape of circular rings
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Figure: Direct and first-lensed apparent positions of rays emitted from isoradial distances



Null geodesics

Figure: Geodesics of photons in the Schwarzschild spacetime
and corresponding image at infinity of the black-hole seen face-on



GYOTO

Initial condition: vyps, X#, X ‘Q
Black hole: guu = g, finners Bem: em Initial condition
Accretion disk: ¢

Speed of light in vacuum: ¢ =2.99 x10% m/s
Planck constant: h =6.63 x1073* s

Accretion disk ° 15™(r) = expl—Cr/rinner]
T job
Black hole E o (Uubs )3
Ifm Vem
hvem = — CPem * Uem

Figure: Scheme of the functioning of GYOTO



Adaptative ray-tracing

Figure: Adaptatively ray-traced points



Polarisation

o Polarisation: privileged
orientation of the radiation

@ Regular magnetic field

@ n = number of half turns
@ Even: same polarisation

@ Odd: same polarisation

@ Change of polarisation:
dependence on the BH spin

Figure: Ray-tracing in a thick disk.
Credits: Elizabeth Himwich
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