#### Black-hole metric and disc physics degeneracy on highly lensed observables in SMBH images

#### Irene Urso

2nd year PhD student, LESIA (Paris Observatory) / LPENS (ENS) Advisors: Frédéric Vincent (LESIA), Cédric Deffayet (LPENS)

> Journées Théorie PNHE 6 November 2024





## Context Photon rings Models Image analysis Discussion References General Relativity

- Standard theory of gravity (1915)
- Gravity = Curvature of spacetime
- Gravitational deflection of light
- Eddington experiment (1919)
- Thorough tests in the Solar System



Figure: 1919 solar eclipse. Credits: Eddington

Context





Figure: Simulated photograph of a BH. Credits: Luminet

- Black hole ↔ Event horizon
- No-hair theorem  $\rightarrow$  Kerr
- Spacetime singularity
- Tests in the strong field regime
- Event Horizon Telescope (2019)

2/15

| Context | Photon rings | Models | Image analysis | Discussion | References |
|---------|--------------|--------|----------------|------------|------------|
|         |              |        |                |            |            |
|         |              | Blac   | -k Holes       |            |            |



Figure: Simulated photograph of a BH. Credits: Luminet



Figure: First image of SgrA\*. Credits: Event Horizon Telescope

#### Event Horizon Telescope



Figure: EHT array of the 2017 campaign. Credits: Event Horizon Telescope



Figure: First image of a black hole. Credits: Event Horizon Telescope

| Context | Photon rings | Models | Image analysis | Discussion | References |
|---------|--------------|--------|----------------|------------|------------|
|         |              | _      |                |            |            |
|         |              | P      | roject         |            |            |
|         |              |        | 3              |            |            |
|         |              |        |                |            |            |

#### Scientific question

Can we detect a deviation from the black-hole standard model?

Reasoning steps:

- Find distinctive image features induced by the spacetime properties
- Associate reliable electromagnetic observable signatures
- Disentangle between the geometry and the astrophysics

Methods:

• Numerical simulations via the ray-tracing code GYOTO

- Photon sphere = unstable circular orbits of light
- $\bullet\ \mathbf{n}=$  half turns around the black hole before leaving to infinity
- One point of the disk = several images



Figure: Geodesics of photons emitted at the innermost stable circular orbit

# Context Photon rings Models Image analysis Discussion References

- Critical curve = projection of the photon sphere
- Inner shadow = region inside the projected equatorial event horizon
- n-th lensing band = impact points of light rays of order n > 0



Figure: Horizon, critical curve and n = 1 lensing band on the observer's screen.

Figure: Impact parameters of the features along the polar angle on the screen.



#### Photon rings

- Critical curve, horizon, lensing bands = mathematical regions
- Observable photon rings = radiation of the accretion disk





#### Figure:

Left panel: modeled image of the emission of an accretion disk observed at 230 GHz Right panel: embedded rings. Credits: Wong, Johnson

Irene Urso



| Context | Photon rings | Models | Image analysis | Discussion | References |
|---------|--------------|--------|----------------|------------|------------|
|         |              |        |                |            |            |
|         |              | Dam    |                |            |            |
|         |              | Para   | ameters        |            |            |
|         |              |        |                |            |            |
|         |              |        |                |            |            |

Accretion disk:

• Emissivity  $j_{\nu}(\zeta, \nu_{\rm em}, \alpha, \beta, \gamma)$ 

•  $n_e \propto r^{-\alpha}$ ,  $\Theta_e \propto r^{-\beta}$ ,  $B \propto r^{-\gamma}$ ,  $\zeta(B_{\rm inner}, \Theta_{\rm e;inner})$ 

Compact object:

- All metric parameter affect the geodesic motion
- Only lower order parameters affect near-horizon phenomena:

|            | Event horizon | Photon sphere | ISCO |
|------------|---------------|---------------|------|
| $\epsilon$ | 1             | 1             | 1    |
| $a_1$      | ×             | 1             | 1    |
| $b_1$      | ×             | ×             | X    |

•  $a_0$  and  $b_0$  are constrained by observations in the Solar System

## Context Photon rings Models Image analysis Discussion References 1D cross sections

- Separate intensity profiles: n=0 image and n=1 photon ring
- Measure the radial position of the intensity peaks

![](_page_11_Figure_3.jpeg)

Figure: 1D intensity cuts

Figure: 1D intensity profile and peaks

#### Redshift effects

Image analysis

- All  $I_{
  u}^{\mathrm{em}}$  peak at the radial position of the equatorial event horizon
- Redshifted intensity:  $I_{\nu}^{\text{obs}} = g^3 I_{\nu}^{\text{em}}$  with  $g = \frac{\nu^{\text{obs}}}{\nu^{\text{em}}} = \frac{p^{\text{obs}} \cdot u^{\text{obs}}}{p^{\text{em}} \cdot u^{\text{em}}}$

![](_page_12_Figure_3.jpeg)

Figure: Redshifted profiles for a Schwarzschild black hole seen face-on

Irene Urso

![](_page_13_Figure_0.jpeg)

Figure: Impact parameters of the intensity's peaks along the polar angle on the screen

Irene Urso

 $\psi[^\circ]$ 

 $\psi[^\circ]$ 

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

Figure: Impact parameters of the intensity's peaks along the polar angle on the screen

Irene Urso

| Context | Photon rings | Models | Image analysis | Discussion | References |
|---------|--------------|--------|----------------|------------|------------|
|         |              | Dete   | ectability     |            |            |
|         |              |        |                |            |            |

- n = 1 photon ring not detectable with present instruments
- Angular resolution of an interferometer:

$$R\simeq rac{\lambda}{B}$$
,

with  $\lambda$  the observed wavelength and B the maximum baseline

- High-frequency ground array of the **ngEHT** (ongoing)
- BHEX space-based array (Small Explorer proposed to NASA)

| Context | Photon rings | Models | Image analysis | Discussion | References |
|---------|--------------|--------|----------------|------------|------------|
|         |              |        |                |            |            |
|         |              | Δ.     | (ODUOC         |            |            |
|         |              |        | Cilues         |            |            |
|         |              |        |                |            |            |

Astrophysics:

- Geometrically thick disk
- Time variability

Geometry:

• Rotating black hole

Methodology:

Interferometric signal

Objects of study:

- Polarised images
- n=2 photon ring

![](_page_16_Picture_11.jpeg)

Figure: Polarised image of M87\*. Credits: Event Horizon Telescope

| Context | Photon rings | Models | Image analysis | Discussion | References |
|---------|--------------|--------|----------------|------------|------------|
|         |              | Réf    | érences        |            |            |
|         |              |        |                |            |            |

- SE Gralla, A Lupsasca, and DP Marrone. "The Shape of the Black Hole Photon Ring: A Precise Test of Strong-Field General Relativity". In: *Physical Review D* 102.12 (2020), p. 124004.
- [2] MD Johnson et al. "Universal interferometric signatures of a black hole's photon ring". In: *Science advances* 6.12 (2020), eaaz1310.
- [3] L Rezzolla and A Zhidenko. "New parametrization for spherically symmetric black holes in metric theories of gravity". In: *Physical Review D* 90.8 (2014), p. 084009.
- [4] FH Vincent et al. "Images and photon ring signatures of thick disks around black holes". In: Astronomy & Astrophysics 667 (2022), A170.

### Backup slides

#### Very Long Baseline Interferometry

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

Figure: Relation between the planes of the sky and visibility. Credits: Frédéric Vincent

Figure: (u, v) plane coverage and visibility. Credits: EHT

#### Complex visibility

- Spatial correlation function:  $\mathcal{V} = \mathcal{V}(\vec{B}_{\perp}/\lambda)$ , with  $\lambda$  the wavelength and  $\vec{B}_{\perp}$  the projection of the baseline
- Fourier transform of the brightness distribution in the sky I
- Van Cittert-Kernike theorem

$$\frac{\mathcal{V}\left(u,v\right)}{\mathcal{V}\left(0,0\right)} = \frac{\iint I(\alpha,\delta)e^{-2i\pi\left(u\alpha+v\delta\right)}d\alpha d\delta}{\iint I(\alpha,\delta)d\alpha d\delta}$$

,

with  $(\alpha,\delta)$  the usual right ascension and declination and (u,v) their Fourier conjugate frequencies

#### Visibility amplitude

![](_page_21_Figure_1.jpeg)

Figure: Visibility amplitude of a Gyoto simulated image. Credits: Paugnat et al. 2022

#### Photon ring detectability

EHT + space telescope: deviations of 0.1 mJy detectable at 345 GHz

![](_page_22_Figure_2.jpeg)

Figure: Visibility amplitude of the n=1 photon ring for  $\zeta = 3$  and  $a_1 = 0$  or  $a_1 = 0.1$ 

#### Comapct object

- Spherically symmetric black hole
- Rezzolla-Zhidenko parametrised and hierarchical metric:

$$ds^{2} = -\overline{N(r)}^{2}dt^{2} + \frac{\overline{B(r)}^{2}}{N(r)^{2}}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) ,$$

$$\begin{cases} N^{2}(x) = x[1 - \epsilon(1 - x) + (\overline{a_{0}} - \epsilon)(1 - x)^{2} + \overline{A}(x)(1 - x)^{3}] \\ B(x) = 1 + \overline{b_{0}}(1 - x) + \overline{B}(x)(1 - x)^{2} \end{cases}$$

$$\tilde{A}(x) = \frac{\overline{a_{1}}}{1 + \frac{\overline{a_{2}x}}{1 + \frac{\overline{a_{3}x}}{1 + \frac{\overline{a_{3}x}}{1 + \frac{\overline{a_{3}x}}{1 + \frac{\overline{b_{3}x}}{1 + \frac{\overline{b_{3}x}}}}} , \quad \tilde{B}(x) = \frac{\overline{b_{1}}}{1 + \frac{\overline{b_{3}x}}{1 + \frac{\overline{b_{3}x}}}} ,$$

,

where we introduced the variable  $x \coloneqq 1 - r_{\mathcal{H}}/r$  and  $1 + \epsilon = 2M/r_{\mathcal{H}}$ , with  $r_{\mathcal{H}}$  the radius of the horizon and M the mass of the black hole

#### Metric impact on image features

![](_page_24_Figure_1.jpeg)

Figure: Dependence of the event horizon, photon shell, critical curve and ISCO on  $\epsilon$ ,  $a_1$ 

#### Accretion disk

Set-up:

• Geometrically thin disk inclined at 163°

Dynamics:

- Keplerian velocity with the Cunningham hypothesis
- Radially infalling velocity

Emission:

- Optically thin disk
- Thermal synchrotron emission

#### Thermal synchrotron emission

- Synchrotron power emitted by an ultrarelativistic electron:  $P_{\nu}$
- Power of a population of electrons in thermal equilibrium:

$$\begin{array}{c} \Theta_e, n_e \\ \downarrow \\ j_\nu = \int_0^\infty P_\nu \frac{dn_e}{d\gamma} d\gamma \propto I_\nu \\ \uparrow & \uparrow \\ B & v_e \end{array}$$

with B the magnetic field,  $\Theta_e$  the dimensionless temperature and  $n_e$  the density following a Maxwell distribution of speeds  $v_e$ 

- Hypotheses of power-law fall-offs:  $n_e \propto r^{-lpha}$ ,  $\Theta_e \propto r^{-eta}$ ,  $B \propto r^{-\gamma}$
- $i_1 = \alpha 2\beta$  and  $i_2 = \gamma + 2\beta$

#### Emissivity

• 
$$j_{\nu} \approx \eta \frac{\nu_{\rm em}[{\rm GHz}]}{230} \left(\frac{r}{r_{\rm inner}}\right)^{-i_1} \exp\left[-\zeta \sqrt[3]{\frac{\nu_{\rm em}[{\rm GHz}]}{230}} \left(\frac{r}{r_{\rm inner}}\right)^{i_2/3}\right]$$
  
where  $\zeta = \left(\frac{3.7 \times 10^5}{B_{\rm inner}\Theta_{e;\rm inner}^2} \sin \theta\right)^{1/3}$ 

with  $B_{\text{inner}}$ ,  $\Theta_{e;\text{inner}}$  the values of B and  $\Theta_e$  at the inner radius  $r_{\text{inner}}$ and  $\theta$  the angle between the emission direction and the magnetic field

• Various observing frequencies of the ngEHT: 230, 345 GHz

•  $I_{\nu}^{\rm em} \propto j_{\nu}$ 

#### Apparent shape of circular rings

![](_page_28_Figure_1.jpeg)

Figure: Direct and first-lensed apparent positions of rays emitted from isoradial distances

#### Null geodesics

![](_page_29_Figure_1.jpeg)

Figure: Geodesics of photons in the Schwarzschild spacetime and corresponding image at infinity of the black-hole seen face-on

#### GYOTO

![](_page_30_Figure_1.jpeg)

Figure: Scheme of the functioning of GYOTO

#### Adaptative ray-tracing

![](_page_31_Figure_1.jpeg)

Figure: Adaptatively ray-traced points

#### Polarisation

- Polarisation: privileged orientation of the radiation
- Regular magnetic field
- n = number of half turns
- Even: same polarisation
- Odd: same polarisation
- Change of polarisation: dependence on the BH **spin**

![](_page_32_Figure_7.jpeg)

Figure: Ray-tracing in a thick disk. Credits: Elizabeth Himwich