ROXAS: a new spectral code for isolated neutron star gravitational wave signal.

Gaël SERVIGNAT

servignat@apc.in2p3.fr Work carried in LUTH arXiv:2212.10853, arXiv:2410.16764

Journées théorie du PNHE November 5, 2024

2 Conservative vs primitive variables

Application to numerical simulations: neutron star oscillations

2 Conservative vs primitive variables

3 Application to numerical simulations: neutron star oscillations

4 Conclusion

< E

- Core collapse supernovae and binary merger simulations in General Relativity (GR) have gone under tremendous progress during the last \sim 25 years.
- Shibata and Uryu: first 3D binary neutron star (NS) merger simulation [Shibata and Uryū, 2000].
- Valencia formulation [Banyuls et al., 1997; Font, 2008]: conservative formulation of GR-hydro equations.
- Development of high-resolution shock capturing (HSRC) methods.
- Numerical Relativity (NR) simulation of compact binary mergers: waveforms of inspiral + merger + ringdown.
- Next two decades: post-O5 runs of LIGO-Virgo-Kagra + Einstein Telescope & Cosmic Explorer, sensitivity increased in the kHz band.

э.

- Most hydrodynamical codes rely on conserved variables [Banyuls et al., 1997; Font, 2008].
- Different discretisation: finite volume [Cipolletta et al., 2021], Smooth Particle Hydrodynamics [Rosswog and Diener, 2021], spectral methods [Hébert et al., 2018].
- Allows the treatment of shocks.
- Inspiral + merger simulations possible.
- Conserved \leftrightarrow physical (*primitive*) variables computationally expensive.
- $\bullet\,$ Only ${\sim}500$ merger simulations in two decades: too few for a parametric study.

Writing a full-GR, full non-linear neutron star evolution code for post-merger phase.

- Final goal: run simulations of a post-merger hypermassive neutron star with 3-argument equations of state (EoS), perform a parametric study by varying the EoS.
- Waveform extraction (gravitational waves signal).

Figure: Reproduced from [Radice et al., 2020].

We consider a perfect fluid of baryons carried by a timelike unitary 4-velocity u^{ν} :

$$T^{\mu
u}=(e+p)u^{
u}u^{\mu}+pg^{\mu
u}$$

with *e* the total internal energy, *p* the fluid pressure, with *N* the lapse function, β^i the shift vector and γ_{ij} the 3-metric.

Figure: 3+1 foliation in spacelike hypersurfaces

Figure: Illustration of the lapse and the shift

1 Context

2 Conservative vs primitive variables

3 Application to numerical simulations: neutron star oscillations

4 Conclusion

< E

The variables $D = m_B n_B \Gamma^2$, $S_j = (e + p)\Gamma^2 U_j$ and $\tau = (e + p)\Gamma^2 - p$, with $\Gamma = (1 - U_i U^i)^{-1/2}$, are conserved in the sense that $\mathbf{u} = (D, S_j, \tau)$ obeys an equation that looks like

$$\partial_t \mathbf{u} + \operatorname{div}(F(\mathbf{u})) = \operatorname{source}$$

but the knowledge of e, p, U_i is compulsory to solve Einstein equations to compute the metric. Recovery procedures are needed to recover the primitive variables in multiple steps of NR codes and account for a significant part of the computation:

- Solving for the metric.
- Solving for the Riemann problems in each grid cell at each time step.

New set of equations using primitive variables [Servignat et al., 2023]

From the principles of stress-energy and baryon number conservation:

 $\nabla_{\mu}(n_B u^{\mu})=0, \ \nabla_{\mu}T^{\mu\nu}=0,$

the following holds for a barotropic, non-reactive perfect fluid, within the 3+1 formalism of GR:

$$\begin{split} \partial_t U_i &= -v^j D_j U_i - D_i N - \frac{N}{\Gamma^2} \left(D_i H + \frac{\Gamma^2 (1 - c_s^2)}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} U_i U^j D_j H \right) \\ &+ U_j D_i \beta^j + U_i U^j D_j N \\ &+ \frac{N c_s^2}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} U_i D_j U^j + \frac{N \Gamma^2 (c_s^2 - 1)}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} U_i U^j U^l K_{jl} \\ \partial_t H &= -v^j D_i H + c_s^2 N \frac{\Gamma^2}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} \left[U^i U^j K_{ij} - \frac{U^i}{\Gamma^2} D_i H + D_i U^i \right] \end{split}$$

This new set of equations is **covariant** within the 3+1 formalism. e, p, c_s are recovered in a single call to the EoS (no iteration).

Gaël SERVIGNAT (LUTH/APC)

Nov 5, 2024

1 Context

2 Conservative vs primitive variables

3 Application to numerical simulations: neutron star oscillations

4 Conclusion

▶ ∢ ⊒

ROXAS: Relativistic Oscillations of non-a X isymmetric neutron st ArS

- Implementation based upon LORENE^a (spectral methods).
- Two distinct grids (see next slide):
 - Metric grid: spherical domains with nucleus, shells, CED.
 - Ø Hydro grid: one nucleus + shells.
- Hydro grid adapted to the surface of the star: deformed domains.
- Multi-domain matching.
- Filters.
- Well-balanced formulation of the equations.

ROXAS: Relativistic Oscillations of non-aXisymmetric neutron stArS

- Pseudospectral methods (space) + explicit finite-difference scheme (time).
- xCFC formulation of metric equations (elliptic partial differential equations).
- Rigid rotation
- GW extracted with quadrupole formula (+ improvements to first PN order).

Figure: Metric grid: spherical numerical domains in LORENE.

Figure: Hydro grid: deformed external domain (rotating star).

Test beds in spherical symmetry [Servignat et al., 2023]:

- Migration test.
- Collapse to a black hole.
- Spherically symmetric oscillations + frequency extraction: Fourier transform of R(t) (not shown here).

Non-spherically symmetric simulations:

- BU sequence: set of rigidly rotating polytropic NS + pseudo-polytropic representation of SLy4 EoS [Gulminelli and Raduta, 2015; Servignat et al., 2024].
- GW extraction with quadrupole formula (see next slides).
- Frequency extraction on $Y_{\ell m}$ decomposition of R(t).

• Quadrupole formula:

$$h_{ij}^{TT}(\boldsymbol{x},t) = \frac{2\mathcal{G}}{c^4 r} P_{ij}^{kl}(\boldsymbol{n}) \ddot{Q}_{kl}\left(t - \frac{r}{c}\right)$$

• Stress formula:

$$\ddot{Q}_{ij} = \frac{\mathcal{G}}{c^4} \int\limits_{\mathbb{R}^3} \rho(\mathbf{x}, t) (2v_i v_j - x_i \partial_j \Phi - x_j \partial_i \Phi) \, \mathrm{d}^3 x$$

• Plus/cross polarisation decomposition:

$$h_{ij}^{TT}(\boldsymbol{x},t) = rac{1}{R} \left(A_{+} \hat{\boldsymbol{e}}_{+} + A_{ imes} \hat{\boldsymbol{e}}_{ imes}
ight)$$

where

$$\hat{\boldsymbol{e}}_+ = \hat{\boldsymbol{e}}_{\boldsymbol{ heta}} \otimes \hat{\boldsymbol{e}}_{\boldsymbol{ heta}} - \hat{\boldsymbol{e}}_{\boldsymbol{arphi}} \otimes \hat{\boldsymbol{e}}_{\boldsymbol{arphi}},$$

$$\hat{oldsymbol{e}}_{ imes}=\hat{oldsymbol{e}}_{oldsymbol{ heta}}\otimes\hat{oldsymbol{e}}_{oldsymbol{arphi}}+\hat{oldsymbol{e}}_{oldsymbol{arphi}}\otimes\hat{oldsymbol{e}}_{oldsymbol{ heta}}.$$

• Expression of A_+ and A_{\times} :

$$A^{\mathsf{e}}_{+} = \ddot{I}_{zz} - \ddot{I}_{yy}, \ A^{\mathsf{e}}_{\times} = -2\ddot{I}_{yz}.$$

< E

• Weight method [Dimmelmeier et al., 2002].

 Φ_1 pure Newtonian gravitational potential:

$$\Delta \Phi_1 = 4\pi \mathcal{G} \rho.$$

Relativistic gravitational potential in the Newtonian limit (exact up to first PN order):

$$\Phi_2=rac{1}{2}\left(1-\Psi^4
ight).$$

Weighted potential:

$$\Phi_w = \frac{\Phi_1 + a\Phi_2}{1+a}, \ a = \frac{1}{2}.$$

• Relativistic density

$$\rho^* = \Psi^6 \Gamma \rho$$

- Replacing Newtonian velocity field v_i with relativistic Eulerian velocity field U_i.
- Final formula:

$$\begin{split} A^{\mathsf{e}}_{+} = & \frac{2\mathcal{G}}{c^4} \int_{\mathbb{R}^3} \rho^*(\mathbf{x}, t) \left(U_z^2 - U_y^2 + y \partial_y \Phi_w \right. \\ & \left. - z \partial_z \Phi_w \right) \, \mathrm{d}^3 x, \end{split}$$

Figure: Waveform (BU4 model).

Figure: Spectrum (BU4 model).

18 / 29

Model	$f_{\rm rot}$ [Hz]	$M[M_{\odot}]$	<i>r_e</i> [km]	$^{2}f_{2}$ [kHz]		Relative difference (%)	
				Cowling	CFC	Cowling	CFC/GR
BU0	0	1.400	11.99	1.881	1.565	0.00	0.83
BU1	347	1.431	12.30	1.367	1.080	0.51	0.09
BU2	487	1.465	12.64	1.121	0.840	0.98	0.48
BU3	590	1.502	13.03	0.918	0.640	0.09	0.63
BU4	673	1.542	13.49	0.721	0.451	1.66	1.11
BU5	740	1.585	14.03	0.520	0.280	2.69	4.64
BU6	793	1.627	14.70	0.348	0.130	2.01	12.3
BU7	831	1.665	15.55	0.163	×	11.0	×
SLy4	191	1.361	9.34	2.141	1.675	×	1.2

Nov 5, 2024

ヨト・イヨト

19/29

1 Context

- 2 Conservative vs primitive variables
- 3 Application to numerical simulations: neutron star oscillations

▶ < ⊒ ▶

- Development of a spectral code to evolve isolated neutron stars.
- New set of equations relying only on primitive variables.
- Non-barotropic, spherically symmetric oscillations studied in [Servignat et al., 2024].
- Extraction of non-axisymmetric mode frequencies with barotropic EoS (polytropes + one realistic EoS).
- GW signals extracted with quadrupole formula (+ improvements).

Assets:

- Very light code (3D simulations on laptop/office computer).
- Reasonable simulation time.
- No recovery procedure.
- Radius of the star followed by the grid.
- Very good frequency extraction (although CFC).
- Soon to be published/open source.

Limitations:

- In practice: no shock treatment.
- Spectral methods are unforgiving.
- Only oscillations/post-merger phase. Outlook:
 - Improve interpolation (done !).
 - Getting rid of CFC (low priority).
 - Perform longer simulations.
 - Implement differentially rotating profiles.

Thank you!

Figure: Roxas, the eponymous cat.

Gaël SERVIGNAT	(LUTH/APC	Z)
----------------	-----------	----

< 一型

э

- Francesc Banyuls, Jose A. Font, Jose Ma. Ibanez, Jose Ma. Marti, and Juan A. Miralles. Numerical {3 + 1} General Relativistic Hydrodynamics: A Local Characteristic Approach. Astrophysical Journal, 476(1):221–231, February 1997. ISSN 0004-637X, 1538-4357. doi: 10.1086/303604. URL https://iopscience.iop.org/article/10.1086/303604.
- F Cipolletta, J V Kalinani, E Giangrandi, B Giacomazzo, R Ciolfi, L Sala, and B Giudici.
 Spritz: general relativistic magnetohydrodynamics with neutrinos. *Class. Quantum Grav.*, 38 (8):085021, April 2021. ISSN 0264-9381, 1361-6382. doi: 10.1088/1361-6382/abebb7.
 URL https://iopscience.iop.org/article/10.1088/1361-6382/abebb7.
- H. Dimmelmeier, J. A. Font, and E. Müller. Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation. *Astronomy and Astrophysics*, 393: 523-542, October 2002. ISSN 0004-6361. doi: 10.1051/0004-6361:20021053. URL https://ui.adsabs.harvard.edu/abs/2002A&A...393..523D. ADS Bibcode: 2002A&A...393..523D.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

- José A. Font. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity. Living Reviews in Relativity, 11:7, September 2008. doi: 10.12942/lrr-2008-7. URL https://ui.adsabs.harvard.edu/abs/2008LRR....11....7F. ADS Bibcode: 2008LRR....11....7F.
- F. Gulminelli and Ad. R. Raduta. Unified treatment of subsaturation stellar matter at zero and finite temperature. *Phys. Rev. C*, 92(5):055803, November 2015. ISSN 0556-2813, 1089-490X. doi: 10.1103/PhysRevC.92.055803. URL https://link.aps.org/doi/10.1103/PhysRevC.92.055803.
- François Hébert, Lawrence E. Kidder, and Saul A. Teukolsky. General-relativistic neutron star evolutions with the discontinuous Galerkin method. *Physical Review D*, 98(4):044041, August 2018. ISSN 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.98.044041. URL https://link.aps.org/doi/10.1103/PhysRevD.98.044041.

A B < A B </p>

э.

Christian Krüger, Erich Gaertig, and Kostas D. Kokkotas. Oscillations and instabilities of fast and differentially rotating relativistic stars. *Phys. Rev. D*, 81(8):084019, April 2010. ISSN 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.81.084019. URL https://link.aps.org/doi/10.1103/PhysRevD.81.084019.

- Christian J. Krüger and Kostas D. Kokkotas. Dynamics of fast rotating neutron stars: An approach in the Hilbert gauge. *Phys. Rev. D*, 102(6):064026, September 2020. ISSN 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.102.064026. URL https://link.aps.org/doi/10.1103/PhysRevD.102.064026.
- David Radice, Sebastiano Bernuzzi, and Albino Perego. The Dynamics of Binary Neutron Star Mergers and GW170817. Annual Review of Nuclear and Particle Science, 70:95–119, October 2020. doi: 10.1146/annurev-nucl-013120-114541.

3

- S. Rosswog and P. Diener. SPHINCS_bssn: a general relativistic smooth particle hydrodynamics code for dynamical spacetimes. *Classical and Quantum Gravity*, 38:115002, June 2021. ISSN 0264-9381. doi: 10.1088/1361-6382/abee65. URL https://ui.adsabs.harvard.edu/abs/2021CQGra..38k5002R. ADS Bibcode: 2021CQGra..38k5002R.
- Gaël Servignat, Jérôme Novak, and Isabel Cordero-Carrión. A new formulation of general-relativistic hydrodynamic equations using primitive variables. *Classical and Quantum Gravity*, 40(10):105002, May 2023. doi: 10.1088/1361-6382/acc828.
- Gaël Servignat and Jérôme Novak. Roxas: a new pseudospectral non-linear code for general relativistic oscillations of fast rotating isolated neutron stars. 2024. URL https://arxiv.org/abs/2410.16764.

글 에 에 글 에 다

- Gaël Servignat, Philip J. Davis, Jérôme Novak, Micaela Oertel, and José A. Pons. One- and two-argument equation of state parametrizations with continuous sound speed for neutron star simulations. *Physical Review D*, 109(10):103022, May 2024. ISSN 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.109.103022. URL https://link.aps.org/doi/10.1103/PhysRevD.109.103022.
- Masaru Shibata and Kōji Uryū. Simulation of merging binary neutron stars in full general relativity: Γ=2 case. *Phys. Rev. D*, 61(6):064001, March 2000. doi: 10.1103/PhysRevD.61.064001.

ヨト・イヨト

Physical variables are called "primitive" variables:

- *e* the energy density, *p* the pressure
- *n_B* the baryon number density
- *m_B* a baryon mass
- $H = \ln\left(\frac{e+p}{m_B n_B}\right)$ the log-enthalpy
- U_i the Eulerian velocity field
- v_i the coordinate velocity field
- c_s the sound speed