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Compact binary coalescence system with neutron stars (NS)

(Fernandez and Metzger, 2016)
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• Kilonova (KN) - Optical-NIR counterpart, 
witness to the nucleosynthesis of  heavy 
elements during the merger 

• KN brings information about: 
• Sky location of the source 
• Merger environment … 
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• GW170817 - GRB 170817A
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Modeling Kilonova from Binary Neutron Star merger

4

(Metzger, 2019)
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Modeling Kilonova from Neutron Star - Black Hole Merger

Ejecta = +

Neutron star -Black hole (NSBH) merger can also produce KN signature, depending on:  
• Mass ratio (m2/m1) 
• Black hole spin 
• NS Equation of State 
• … 

(Villar et al, 2017)

BH 2ϕ

θobs

Disc wind 
Ejecta

Tidal Tail 
Dynamical 

Ejecta



O4 campaign
• The Fourth GW Observing run (O4) has started in May 2023  

• > 100 gravitational-wave candidates 
• 1 confirmed NSBH: GW230529 
• 2 NSBH candidates: S230518h, S230627c 
• 1 low-significance NSBH candidate:  S240422ed 
• Massive followup from the optical community but no discovery of a clear KN counterpart

Last update on July 2024

6
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Choice of KN model
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Anand 2021-Bulla 2019 model: light curves computed with POSSIS  

• 3D Monte Carlo code for modelling radiation transport in KN 

• Does not solve the radiative transfer equation analytically but rather numerically with Monte Carlo photons 
representing radiation and propagating through the expanding ejecta→ speed up the computation 

• Key ingredients: input energy (from radioactive decay of r-process nuclei) and opacity (controlling the 
diffusion of Monte Carlo photons)

Creating photons

• Inputs:  
• Frequency 
• Energy

Propagating photons

• Optical depth:  

• Probability of interacting 
with matter: 

τ = ∫ κρdr

P = 1 − e−τ

Collecting photons

• Create observables: 
• Spectra 
• Light curves …

(Bulla, 2019 & Bulla, 2023)
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Choice of KN model
•   

•   

• viewing angle  

• half-opening angle 

mdyn

mwind

θ

ϕ

Included in this work

We define a kilonova scenario by:  ,  , mdyn mwind θ
8

Set to 30 degrees

BH 2ϕ

θobs

• 891 light curves 

• 21 different filters 



KN associated with O4 NSBH candidates
Goal:  

1) Take a critical look at observation strategies from the optical community 
2) Given the non-observation of a KN, set constraints on source ejecta and viewing 

angle properties of the 4 NSBH candidates*:

*Acronyms: 

18h: S230518h, 29: GW230529, 27c: S230627c and 22ed: S240422ed 9



 
- To ensure a KN detection, at least one observation should be done at the time of brightness peak 
- Peak time depends on KN properties  
- Compare time of optical observations with the predicted peak time from simulated KN light curves for numerous filters

Goal:  
1) Take a critical look at observation strategies from the optical community 
2) Given the non-observation of a KN, set constraints on source ejecta and viewing 

angle properties of the 4 NSBH candidates:

*Acronyms: 

18h: S230518h, 29: GW230529, 27c: S230627c and 22ed: S240422ed

Observation strategy
Goal:  

1) Take a critical look at observation strategies from the optical community 
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Observation strategy
• Compare time of optical observations with the predicted peak time from simulated KN light curves

GRANDMA 
followup
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S230518h: Observations 
in R-band covered the KN 
peak time of ~100% of the 
population. 

S240422ed: Observations 
consistent with the peak time 
of 90% of KN population in o-
band.

Observation strategy

13
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o-bandR-band

GW230529 & S230627c: Less 
observed - the «  later time  »  
strategy is not always realized 
while prompt strategy has been 
well demonstrated 

 

For J-band: advocate 
a more «  relaxed  » 
approach for near and 
infrared for which the 
peak time of the KN is 
more random

In general: Necessity to image the first moment but also the importance of imaging 1 day post-merger

R-band

R-band
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Observation strategy
Comparison with a model for KN emission from BNS



Goal:  
1) Take a critical look at observation strategies from the optical community 
2) Given the non-observation of a KN, set constraints on source ejecta and viewing 

angle properties 

Goal:  

2) Given the non-observation of a KN, set constraints on source ejecta and viewing 
angle properties of the 4 NSBH candidates*:

 
- From the information released by LIGO/Virgo we can have a estimate of the chirp mass of each candidate, S230518h, 
GW230529, S230627c, S240422ed 

- Compute a range of consistent ejected masses ,   & select a corresponding set simulated of KN light curves 

- Compare the magnitude of the light curves ( ) to the upper limit from optical observations ( ) 

- If  >  (expected KN brighter than the observation): KN light curve incompatible with observation

mdyn mwind

MKN Mobs

MKN Mobs
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Acronyms: 

18h: S230518h, 29: GW230529, 27c: S230627c and 22ed: S240422ed

KN associated with O4 NSBH candidates



100 101

m1,src

100

101

m
2
,s
rc

BNS

NSBH

BBH

• PyCBC Live method to compute the : deterministic mapping between the source-frame chirp mass 
and its source classification probabilities

pastro

Consistent with public results about GW230529

16

KN associated with O4 NSBH candidates

(Villa-Ortega, 2022) 

pastro = 1
pBBH = 0.507ℳ

src = 5.96 M
⊙

pNSBH = 0.493

Example



• Compute a range of consistent ejected masses: ,   
select a corresponding set simulated of KN light curves

mdyn mwind

17

KN associated with O4 NSBH candidates

Mrem
model

Mb
NS

= [Max(α
1 − 2CNS

η1/2
− βR̂ISCO

CNS

η
+ γ,0)]δ

Mdyn

Mb
NS

= a1Qn1
1 − 2CNS

CNS
− a2Qn2

RISCO

MBH
+ a4

Mmodel
rem = Mdyn + ζ × (Mdisk − Mdyn)

(Foucart et al, 2018, 
Kruger & Foucart, 2020)

Dyn

Wind

(M⊙)

(M⊙)



• Compute a range of consistent ejected masses: ,   select a corresponding set simulated of KN 
light curves

mdyn mwind

18

KN associated with O4 NSBH candidates

• Results (we take the broader upper limit between EoS and spins) 

• S230518h:  &  +  unconstrained 

• GW230529:  +  unconstrained 

• S230627c:  +  unconstrained 

• S240422ed: given the low significance, select all the synthetic light curves of the grid

mdyn < 0.08 M⊙ mwind < 0.04 M⊙ θ

mdyn, mwind ≤ 0.01 M⊙ θ

mdyn, mwind ≤ 0.01 M⊙ θ



• Compare the magnitude of the light curve ( ) with the one of optical observations ( )MKN Mobs

• Each optical telescope fields has a specific field of view, filter, limiting magnitude and epoch 

• Report these fields on the GW HEALPix skymap 

• Extract pixels of the skymap in each field and their associated distances

GW230529 (between 0 and 1 day) S240422ed (between 0 and 1 day)

All filters!

Telescopes considered: 
ATLAS, CSS, MASTER, ZTF

Telescopes considered: 7DT, ATLAS, BlackGEM, CSS,  DECam, GOTO, 
GRANDMA, KMTNet, Las Cumbres 1m & 2m, Magellan, MASTER, MeerLIGHT, 
PRIME, Swift UVOT, WINTER, ZTF 19

KN associated with O4 NSBH candidates



GW230529 S240422ed

20

Compatible

Incompatible

• Compute the apparent  of the synthetic KN light curves for each pixel and at the corresponding distance 

• Compare the brightness of the simulated KN with the upper limits of the fields that contain the pixel at the epoch 
of the field 

• If  > : KN light curve incompatible with observation

MKN

MKN Mobs

KN associated with O4 NSBH candidates



• Compute a scale reflecting the possibility of the « presence » of a KN: 

Synthetic KN from 
Bulla-Anand

Telescope observation

FilterTime range of the observations that occurred 
at time [0,1[, [1,2[ or [2,6[ dayst ∈ Δt =

Total number of synthetic KNe from the grid 
considered for each event

SKN,Δt,ipix =
1

ntot,KN
×

ntot,KN

∑
k=1

{1 if MKN( fil, θ, mdyn, mwind, t) > Mobs( fil, t, ipix)
0 otherwise

21

• If  > : KN light curve incompatible with observationMKN Mobs

KN associated with O4 NSBH candidates



S240422ed (between 0 and 1 day)GW230529 (between 0 and 1 day)

22

High probability of 
absence of KN

Low probability of 
absence of KN

Low probability of 
absence of KN

High probability of 
absence of KN

S240422ed: 218 deg² within the 90% credible region (85% of the skymap), for t in 
[1,2[ days, with a  > 0.7: probable absence of a KN in the observations1 − SKN,Δt,ipix

• If  > : KN light curve incompatible with observationMKN Mobs

KN associated with O4 NSBH candidates

1 − SKN,Δt,ipix



• Associate a deterministic probability to each KN scenario ( ) of being ruled out θ, mdyn, mwind

1 − Pθ,mdyn,mwind,Δt = P̄θ,mdyn,mwind,Δt = ∑
ipix

P(GW ∣ ipix) × {1 if MKN( fil, θ, mdyn, mwind, t) < Mobs( filt, t, ipix)
0 otherwise

23

KN associated with O4 NSBH candidates
• If  > : KN light curve incompatible with observationMKN Mobs
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• Discussion 2 & Key numbers:

• S230518h: it has not been possible to observe KN emitted from an on-axis collision up to a viewing angle of , 
assuming a minimum confidence of 10% for the presence of the source in this region 

• GW230529: we cannot exclude the presence of a KN in the observations 

• S230627c: we cannot exclude the presence of a KN in the observations  

• S240422ed: observations ruled out the presence of a KN (with or without GWs) 

θ = 25∘

KN associated with O4 NSBH candidatesZ
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Bottom line: Comparing models & observations is crucial 

KN associated with O4 NSBH candidatesZ

Robust models are important to allow us to: 
Optimize followup by having an estimation of peak time 

Choose the most optimized filter to observe with 
Set constraints on source properties 

Distinguish between central engines & find production modes 

Observations are important for models: 
Demonstrate their accuracy 

« Going further »: Joint GRB-KN observations → understand the GRB and KN emission 
together & create joint models

KN Hunting still going on but large limitation dependancies on modelisation, 
spin effects etc. 



Who is involved in this analysis?

ZTHANK FOR YOUR ATTENTION!
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S240422ed

KN associated with O4 NSBH candidatesZ

• Discussion 2 & Key numbers:
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• Kilonova (KN) - Optical-NIR counterpart, witness to the nucleosynthesis of  heavy elements during the merger 

• KN brings information about: 
• Sky location of the source 
• Merger environment … 

AT2017gfo

Introduction

Kilonova
Optical (t ~ 1 day)

Ejecta  ISM Shock
Radio (weeks~months)

Merger Ejecta
Tidal Tail & Disk Wind

v ~ 0.1  0.3 c-

Jet ISM Shock (Afterglow)
Optical days)(hours -

Radio -(weeks months)

θobs
GRB

(t ~ 0.1 1 s)-



Modeling Kilonova from Binary Neutron Star merger

3
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KN properties imprinted in the light curves:  

•   

•   

• viewing angle  

• half-opening angle  

• ejecta velocity 

• …

mdyn

mwind

θ

ϕ

Modeling Kilonova from Neutron Star - Black Hole Merger
Exemple



POSSIS Light Curves

3

Model Grid:  for each cell  
• Homologous expansion 

• Grid expanded at each step :  

• And  

 Opacity handled in POSSIS:  
• Line opacity from bound-bound transitions 
• Continuum opacity from either electron scattering, bound-free or free-free 

absorption 
• Wavelength-dependent opacities can be given 

t0, vi, ρi,0, Ti,0, Ye,i i

j ρi,j = ρi,0 × (tj /t0)−3

Ti,j = Ti,0 × (tj /t0)−α with α > 0



POSSIS Light Curves

3

Creating photon packets: 

•  created at each step  with  

• More quanta are created at higher compared to lower densities 

•  can be selected according to the distribution of radioactive material 
• Initial direction n sampled assuming either isotropic emission or constant surface 

brightness 
• Energy chosen from thermalization efficiency and nuclear heating rates 
• Initial frequency from T

Nph j x, e, ν, s

x



POSSIS Light Curves

3

Propagated photon packets: 
• Continuum interaction: random number to define the nature of event 

• If electron scattering: new direction & Stockes vector,  unchanged 

• Otherwise: re-emitted isotropically & new 
ν

ν



Neutron star -Black hole (NSBH) merger can also produce KN 
signature, depending on:  
• Mass ratio (m2/m1) 
• Black hole spin 
• NS Equation of State 
• … 

(Villar et al, 2017)

4

Modeling Kilonova from Neutron Star - Black Hole Merger

Ejecta Dynamical Ejecta Post-merger Ejecta= +



Modeling Kilonova from Binary Neutron Star merger

3

- - - Signature to a specific scenario not certain, or signature theoretically expected but not yet confirmed 
observationally 
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Modeling Kilonova from Neutron Star - Black Hole Merger

Ejecta = +

Neutron star -Black hole (NSBH) merger can also produce KN 
signature, depending on:  
• Mass ratio (m2/m1) 
• Black hole spin 
• NS Equation of State 
• … 

(Villar et al, 2017)

- - - Signature to a specific scenario not certain, or signature theoretically expected but not yet confirmed 
observationally 



Mej,rem = mdyn + mwind

• Dynamical ejecta (non spherical, 
lanthanide-rich) 

• Disc wind ejecta (spherical)  

Barbieri et al, 2019 5

Modeling Kilonova from Neutron Star - Black Hole Merger



S230518h: Observations in R-band covered the KN peak time of ~100% of the 
population. 

GW230529:  Observations in o-band covered the KN peak time of 51% of the population. 

S260727c:  Observations in g and r-band happened before the scenario’s predicted 
peak time.

S240422ed: Observations consistent with the peak time of 90% of KN population in 
o-band.

Observation strategy
Key Numbers

13

R-band

o-band

g-band

o-band



• Discussion 1:

14

Observation strategy

- Necessity to image the first moment but also the importance of imaging 1 
day post-merger 

- Prompt strategy has been well demonstrated by the community, the « later 
time »  strategy is not always realized.  

- We advocate a more « relaxed » approach for near and infrared for which 
the peak time of the KN is more random. 

- Measurements from the GW signal itself allows us to estimate a range of 
time at which we expect the maximum brightness → would be an 
important tool for follow-up.



• Compute a range of consistent ejected masses: ,   select a corresponding set simulated of KN 
light curves

mdyn mwind

18

KN associated with O4 NSBH candidates

2 scenarios for ejecta computation: 

• Optimistic:  = 0.8 & EoS with 
tidal deformability 

• Pessimistic:  = 0 & EoS with 
rigid NS

Spin1zBH

Spin1zBH





KN associated with O4 NSBH candidates
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100 101

m1,src

100

101

m
2
,s
rc

BNS

NSBH

BBH

• PyCBC Live method to compute the : deterministic mapping 
between the source-frame chirp mass and its source classification 
probabilities 

• Assumptions: 

• Astrophysical origin of the event 

• Uniform mass distribution in source-frame component 
masses 

• Only the detector-frame chirp mass is well measured 

• Redshift estimate derived from effective distance and SNR to 
estimate the  from a detector-frame point estimate 

→ process reversed 

• Uncertainty derived from the one on the distance

pastro

ℳsrc

Consistent with public results about GW230529 7

KN associated with O4 NSBH candidates



KN associated with O4 NSBH candidates
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S230518h
Between 0 and 1 day Between 1 and 2 day Between 2 and 6 day
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GW230529
Between 0 and 1 day Between 1 and 2 day Between 2 and 6 day



S230627c
Between 0 and 1 day Between 1 and 2 day Between 2 and 6 day
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S240422ed
Between 0 and 1 day Between 1 and 2 day Between 2 and 6 day




