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Theoretical Understanding of the Jet Emission

Blandford & Znajek, 1977

Accretion of magnetized plasma,
together with pair creation
mechanisms, powers a highly
magnetized jet

Does it work? With microphysics
involved?

What if we loose axisymmetry?
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— Magnetospheric physics




3+1 formalism (Komissarov, 2004) Kerr metric, KS spherical coordinates

(BD);  {(BL
Field Interpolotlon

Charge/Current Deposition




BH Embedded in a Uniform Magnetic Field
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BH Embedded in a Uniform Magnetic Field

In vacuum a=0.999 With plasma injection

a=0.999
‘l |
U

Crinquand’s PhD, 2021
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What happens if the magnetic field is
inclined with respect to the BH spin ?
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— future work with more accurate pair production



Inclined Black Hole Magnetosphere
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Inclined Black Hole Magnetosphere

In vacuum a=0.99, X=3O° With plasma injection
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> 15 millions CPU hours for 4 runs



The Jet Structure Is Affected by the Inclination
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The Jet Structure Is Affected by the Inclination
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— Development of inward Poynting flux close to the separatrix
— Outward EM flux rather comes from equatorial region of space-time
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Electromagnetic Energy Flux
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The Case of the Orthogonal Magnetosphere (x = 85°)
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The Case of the Orthogonal Magnetosphere (x = 85°)

=
<
~
N
[+a}
=
N
C

— 5.0e+00

I.
—3
2

1
~0
.

- CLRRERTRRRRNN — Inward Poynting flux compensates EM

|3

< | energy extraction on the event horizon
— Very interesting jet structure

Poynting r
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— More features should appear with a more physical pair injection






Conclusions

- The jet always follows the magnetic direction
~ Inclination has a strong impact on the jet’s shape and power

- As the current layer always develop, magnetic reconnection
provides efficient particle acceleration for all inclinations

- More analysis required to understand the physics involved here

— Crucial step into understanding of a wide range of phenomena:
wind accretion (Sg A%, ...), NS-BH binaries, ...

— Future work will involve more realistic pair production
— starved magnetospheres, lightcurves, polarization, ...
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