Speaker: Alexandre INVENTAR PhD Supervisor: Stefano GABICI

γ-ray signatures of particle acceleration from stellar clusters up to PeV energies

COSMIC-RAY SPECTRUM AND PEV

What happens at PeV scale ?

- Accelerate protons to PeV with galactic sources ?
- Go up to $\sim 100 PeV$ and explain the proton knee ?

COSMIC-RAY SPECTRUM AND PEV

What happens at PeV scale ?

- Accelerate protons to PeV with galactic sources ?
- Go up to ~ 100 PeV and explain the proton knee ?
- Standard isolated SNR paradigm not enough
 → Stellar clusters (stellar wind or enhanced SNRs)
- PeVatron pb interesting in itself, but also helps for CRs acceleration/transport, understanding of sources, and the contributions of classes of sources to the spectrum

COSMIC-RAY SPECTRUM AND PEV

What happens at PeV scale ?

- Accelerate protons to PeV with galactic sources ?
- Go up to $\sim 100 PeV$ and explain the proton knee ?
- Standard isolated SNR paradigm not enough
 → Stellar clusters (stellar wind or enhanced SNRs)
- PeVatron pb interesting in itself, but also helps for CRs acceleration/transport, understanding of sources, and the contributions of classes of sources to the spectrum
- Problem to observe CRs: CRs diffused
 → Can't link them to their original sources
- \rightarrow Use γ -ray astronomy instead + molecular clouds: $p+p \rightarrow \gamma$

OUTLINE

LHAASO

OUTLINE

For which systems and parameters can we detect an excess of γ -rays generated through p-p interactions by CRs accelerated in star clusters?

 \rightarrow Model escape and transport of CRs between sources and molecular clouds, and the consequent production of γ rays at different energies

Theory • Focus on **YMSCs (stellar wind)**, p^+ and E=3PeV (knee)

OUTLINE

For which systems and parameters can we detect an excess of γ -rays generated through p-p interactions by CRs accelerated in star clusters?

 \rightarrow Model escape and transport of CRs between sources and molecular clouds, and the consequent production of γ rays at different energies

Applications and perspectives

Theory • Focus on **YMSCs (stellar wind)**, p^+ and E=3PeV (knee)

Find corresponding existing systems, use LHAASO to compare the model to the observed γ -ray flux

- \rightarrow Identify the contributions of star clusters to CR flux at different energies (especially at PeV)
- \rightarrow obtain better constraints on different acceleration parameters (WTS efficiency, injection spectrum in the ISM,...)
- \rightarrow See if it can explain some unassociated PeVatrons (eg molecular clouds far from a cluster)

A.Inventar, 2024

DIFFERENT HADRONIC γ-RAYS PRODUCTION SCENARIOS WITH STELLAR WIND

$\frac{\text{DIFFERENT HADRONIC } \gamma \text{-RAYS PRODUCTION}}{\text{SCENARIOS WITH STELLAR WIND}}$

$\frac{\text{DIFFERENT HADRONIC } \gamma \text{-RAYS PRODUCTION}}{\text{SCENARIOS WITH STELLAR WIND}}$

TRANSPORT INSIDE THE BUBBLE: ADVECTION+DIFFUSION

 $D(p) = \frac{D_{10}}{cm^2 s^{-1}} \left(\frac{pc}{10}\right)^{\delta}$

- Advection-diffusion model (Morlino et al 2021)
- Case of adiabatic bubble, suppose $u(R < R_w) = u_I$ and $u(R > R_w) = u_{II} \left(\frac{R_w}{R}\right)^2$ with $u_{II} = u(R_w) = \frac{u_I}{4}$

$$A(r,p) = \frac{u_{II}R_{w}}{D(p)} (1 - \frac{R_{w}}{R}) \rightarrow f_{1}(p, R, t) \sim f_{inj} \frac{(1 - e^{A(R) - A(R_{s})})}{1 - e^{-A(R_{s})}}$$

$$\delta \sim 1$$

 $D_{10} \sim 10^{22}$

Gabici, Cosmic rays from star clusters A.Inventar, 2024 INTERSTELLAR GAS

TRANSPORT OUTSIDE THE BUBBLE: 3D ISOTROPIC DIFFUSION

→
$$f_2(p, R, t) \sim f_{inj} \frac{1}{D(p)R} \operatorname{erfc}\left(\frac{R}{4D(E)t}\right)$$

(Aharonian, Atoyan 1996)

$$D(p) = \frac{D_{10}}{cm^2 s^{-1}} \left(\frac{pc}{10}\right)^{\delta}$$

Kraichnan or Kolmogorov diffusion: $0.3 < \delta < 0.6$ $D_{10} \sim 10^{28}$

TRANSPORT OUTSIDE THE BUBBLE: 1D ANISOTROPIC DIFFUSION

SPATIAL DEPENDENCE OF THE γ -RAY FLUX

• Find maximal distances up to which a detectable excess is possible, at fixed energy

$$R_W \sim 3 \left(\frac{0.2N_*}{100}\right)^{\frac{3}{10}} \left(\frac{n_0}{cm^{-3}}\right)^{-\frac{3}{10}} \\ \left(\frac{t}{10Myr}\right)^{\frac{2}{5}} \left(\frac{u_W}{3000 \ km \ s^{-1}}\right)^{-\frac{1}{2}} \text{pc} \\ \sim 5pc \text{ for } n_0 \sim 100 \ cm^{-3}$$

$$\begin{split} R_s &\sim 260 \, \left(0.2 \, \frac{N_*}{100}\right)^{\frac{1}{5}} \left(\frac{n_0}{cm^{-3}}\right)^{-\frac{1}{5}} \left(\frac{t}{10Myr}\right)^{\frac{3}{5}} pc \\ &\sim 50 pc \; \text{for} \; n_0 \sim 100 \; cm^{-3} \end{split}$$

SPATIAL DEPENDENCE OF THE γ -RAY FLUX

• Find maximal distances up to which a detectable excess is possible, at fixed energy

SPATIAL DEPENDENCE OF THE γ -RAY FLUX

• Find maximal distances up to which a detectable excess is possible, at fixed energy

A. Inventar, 2024 At high energies, sensitivity gives an effective maximal distance to have a detectable excess $R_{max,effective}$

γ -RAY SPECTRA

• Fixing distances, compute the flux for any energy to compare with observed spectra

STAR CLUSTER SIMULATION: HOW LONG CAN THE EXCESS LAST?

- Random sampling with Salpeter law $M^{-2.3}$ for the mass distribution of the cluster
- Cluster 1: 100 stars with $8 M_{\odot} < M < 150 M_{\odot}$
- Cluster 2: 500 stars with $8 M_{\odot} < M < 150 M_{\odot}$

STAR CLUSTER SIMULATION: HOW LONG CAN THE EXCESS LAST?

APPLICATION: W43 CLUSTER

APPLICATION: W43 CLUSTER

A.Inventar, 2024 • Leptonic ? Big extension so difficult because of the cooling time, but should do leptonic model to be sure 11

RESULTS

 $R=75pc,\delta=0.3,\alpha_p=4.03,D_{10}=8e+26$ $R=75pc,\delta=0.23,\alpha_p=4.03,D_{10}=2.5e+27$ $R=10pc, \delta=1, \alpha_p=4.3, D_{10}=2e+22$ $R=R_s, \delta=1, \alpha_p=4.3, D_{10}=1e+26$ Background LHAASO 3yrs (point-like) CTA_north 50hrs (point-like)

Diffusion coefficient a bit bigger in the 1D scenario

RESULTS

RESULTS

Theoretical side :

- Several possible hadronic scenarios for creating γ -rays
- Excess around PeV possible with YMSC but result very sensitive to a change of parameters (α , δ , D_0 , L_w , ...)
- Limitation: γ ray detector sensitivity \rightarrow for GMCs, $R_{max} \sim 300$ pc
- Needs suppression of diffusion coefficient by factor ~ 10 at least

Theoretical side :

- Several possible hadronic scenarios for creating γ -rays
- Excess around PeV possible with YMSC but result very sensitive to a change of parameters (α , δ , D_0 , L_w , ...)
- Limitation: γ ray detector sensitivity \rightarrow for GMCs, $R_{max} \sim 300$ pc
- Needs suppression of diffusion coefficient by factor ~ 10 at least

Application : W43

- Observed UHE gamma-ray flux by LHAASO, no SNRs nor pulsars nearby yet, but powerful star cluster and massive GMCs
- We can match datapoints and constrain physical parameters. Main constrained quantity (in GMC scenario) :
- Can explain this emission, and indicate a stellar cluster contribution for PeVatrons !

Theoretical side :

- Several possible hadronic scenarios for creating γ -rays
- Excess around PeV possible with YMSC but result very sensitive to a change of parameters (α , δ , D_0 , L_w , ...)
- Limitation: γ ray detector sensitivity \rightarrow for GMCs, $R_{max} \sim 300$ pc
- Needs suppression of diffusion coefficient by factor ~ 10 at least

Application : W43

- Observed UHE gamma-ray flux by LHAASO, no SNRs nor pulsars nearby yet, but powerful star cluster and massive GMCs
- We can match datapoints and constrain physical parameters. Main constrained quantity (in GMC scenario) :
- Can explain this emission, and indicate a stellar cluster contribution for PeVatrons !

$\frac{1}{3} < \epsilon \frac{1 \ e \ 28 \ cm^2 s^{-1}}{D_{10}} < 1$

- Take into account embedded SNRs \rightarrow acceleration and reacceleration
- Apply to other such systems to have more constraints

A.Inventar, 2024

Outlooks:

Theoretical side :

- Several possible hadronic scenarios for creating γ -rays
- Excess around PeV possible with YMSC but result very sensitive to a change of parameters (α , δ , D_0 , L_w , ...)
- Limitation: γ ray detector sensitivity \rightarrow for GMCs, $R_{max} \sim 300$ pc
- Needs suppression of diffusion coefficient by factor ~ 10 at least

Application : W43

- Observed UHE gamma-ray flux by LHAASO, no SNRs nor pulsars nearby yet, but powerful star cluster and massive GMCs
- We can match datapoints and constrain physical parameters. Main constrained quantity (in GMC scenario) :
- · Can explain this emission, and indicate a stellar cluster contribution for PeVatrons !

Outlooks:

- Take into account embedded SNRs \rightarrow acceleration and reacceleration
- Apply to other such systems to have more constraints

Thank you for your attention !

(See paper in preparation for more details)

 $1 e 28 cm^2 s^-$

 $\frac{1}{3} < \epsilon^{-1}$