

Enhanced high-energy emission in a pulsar wind interacting with a companion

Valentina Richard-Romei, Benoît Cerutti

IPAG, Université Grenoble Alpes, France valentina.richard-romei@univ-grenoble-alpes.fr

Richard-Romei & Cerutti,2024,A&A arXiv:2406.18663

PULSAR

Fast spinning & magnetised neutron star

- R = 10 15 km
- M = 1.4 2 M_{sun}
- $B_{\text{field}} = 10^9 \,\text{G} 10^{14} \,\text{G}$
- P_{spin} = ms seconds
- Spindown = 10⁻¹⁵ s/s

MAGNETOSPHERE

- E,B fields + plasma
- 3 main zones: light cylinder $R_{LC} = c/\Omega$
 - pulsar wind
 - nebula

Bühler & Blandford (2014)

Many opened questions:Rearrangement of the magnetosphere ?Strength and location of particle acceleration ?Strength of high-energy radiation ?New class of long-period high-energy transients ?

Many opened questions:Rearrangement of the magnetosphere ?Strength and location of particle acceleration ?Strength of high-energy radiation ?New class of long-period high-energy transients ?

Choice of companion characteristics

Settled in the pulsar wind

Intermediate size ($r_{comp} < \lambda_{stripe}$)

Unmagnetized companion

Perfectly conducting companion

Many opened questions:Rearrangement of the magnetosphere ?Strength and location of particle acceleration ?Strength of high-energy radiation ?New class of long-period high-energy transients ?

Choice of companion characteristics

Settled in the pulsar wind

Intermediate size ($r_{comp} < \lambda_{stripe}$)

Unmagnetized companion

Perfectly conducting companion

Astrophysical applications

pulsar – neutron star pulsar – white dwarf pulsar – planet pulsar – asteroid

Energy transfer sequence

In order to explain the electromagnetic emissions:

- need of global magnetospheric simulations
- need of kinetic scales for relativistic plasma

Global PIC simulations

2D equatorial view

November 5, 2024

2D equatorial view

Valentina Richard-Romei

November 5, 2024

2D equatorial view

Reference case: the isolated pulsar magnetosphere

- 'striped wind': magnetic field stripes of alterning polarity
- bulk Lorentz factor globally increases with radius
- highest mean Lorentz factor in the current sheets due to magnetic reconnection
- high-energy synchrotron radiation emitted from plasmoids

Valentina Richard-Romei

Parametric study

- Companion in the wind zone: P_{orb,companion} >> P_{spin,pulsar}
 companion at rest in the simulation
- 2 different regimes depending on the companion location with respect to the fms point

Bulk Lorentz factor averaged over several P_{spin}

- if r_{comp}>r_{fms}, shock
- higher r_{comp} implies broader shocked cone
- higher binary separation implies narrower shocked cone

red circle = light cylinder radius green contour line = fast magnetosonic surface

November 5, 2024

Bulk Lorentz factor averaged over several P_{spin}

- if r_{comp}>r_{fms}, shock •
- higher r_{comp} implies broader ٠ shocked cone
- higher binary separation ٠ implies narrower shocked cone

red circle = light cylinder radius green contour line = fast magnetosonic surface

November 5, 2024

15

Bulk Lorentz factor averaged over several P_{spin}

- if $r_{comp} > r_{fms}$, shock
- higher r_{comp} implies broader shocked cone
- higher binary separation implies narrower shocked cone

red circle = light cylinder radius green contour line = fast magnetosonic surface

November 5, 2024

Interaction with a companion ($d_{comp} = 9 R_{LC}, r_{comp} = r_{pulsar}$)

- **perturbations advected** in a cone behind the companion
- increased magnetic islands on the cone surface
- favorable zone for particle acceleration behind the companion
- very low density inside the cone
 highest synchrotron power at its borders

Interaction with a companion ($d_{comp} = 9 R_{LC}, r_{comp} = r_{pulsar}$)

- **perturbations advected** in a cone behind the companion
- increased magnetic islands on the cone surface
- favorable zone for particle acceleration behind the companion
- very low density inside the cone
 highest synchrotron power at its borders

Zoom on the current sheet at the companion surface

- → magnetic field lines pile up in front of the companion
- → forced reconnection

Zoom on the current sheet at the companion surface

November 5, 2024

High-energy synchrotron spectra

- **Significant enhancement** of the high-energy radiation compared to the isolated pulsar
- Emission decreases with d_{comp} and increases with r_{comp}

High-energy synchrotron spectra

- **Significant enhancement** of the high-energy radiation compared to the isolated pulsar
- Emission decreases with d_{comp} and increases with r_{comp}

additional contribution exclusively due to the shocked part

High-energy light curves

- Enhancement of the radiation flux up to ~ x10
- · 2 broad peaks per orbit: hollow cone of emission
- Higher r_{comp} \longrightarrow higher peaks and higher $\Delta \Phi$
- Higher $d_{comp} \longrightarrow$ lower peaks and lower $\Delta \Phi$

High-energy light curves

- Enhancement of the radiation flux up to ~ x10
- · 2 broad peaks per orbit: hollow cone of emission
- Higher $r_{comp} \longrightarrow$ higher peaks and higher $\Delta \Phi$
- Higher $d_{comp} \longrightarrow$ lower peaks and lower $\Delta \Phi$

November 5, 2024

Conclusion

When adding a companion in the pulsar wind:

- · Significant alteration of the dynamical and energetic properties of the pulsar wind
- Forced reconnection \rightarrow enhanced particle acceleration \rightarrow enhanced non-thermal radiation orbital-modulated hollow cone of light
- Transients should be observable on **galactic distances** (soft γ -ray band)

What about radio counterparts ?

- from plasmoid mergers (Lyubarsky, 2019; Philippov et al., 2019)
- fast radio bursts (Mottez, Zarka, Voisin, 2020; Decoene, 2021)

Recently discovered galactic long-period radio transients (Hurley-Walker et al. 2022,2023; Rea et al, 2022,2024)

Backup slides

Closed zone: Inactive zone

Closed field lines in corotation with pulsar Plasma confined in closed field loops Null poloidal current

Opened zone: Active zone

Field lines opened by pulsar rotation Outgoing Poynting flux Relativistic wind Non-zero poloidal current

Separatrix + current sheet:

Interface zone between opposite B fields Non- zero returning poloidal current Energy dissipation zone

Particle-in-cell (PIC) simulations

Particles spectra

High-energy spectra

What about radio counterparts?

- Coherent radio emission as a low frequency counterpart of relativistic magnetic reconnection
- \rightarrow Lyubarsky (2018), Philippov et al. (2019)

- · collision of plasmoids with each other and with B field
- perturbation of B field
- short fast magnetosonic pulse
- pulse escapes the plasma as a radio wave

• See also the predictions of Fast Radio Bursts in the presence of a companion (Mottez, Zarka, Voisin, 2020; Decoene, 2021)

Several discoveries of long-period (10-1000s) radio transients

which phenomenon ?

which object ?

Considered interpretations:

- isolated pulsar
- isolated magnetar
- · white dwarf
- · proto-white dwarf
- white dwarf + companion
- neutron star + companion
- star + exoplanet
- brown dwarf binaries
- new objects ?

Simulation parameters

 $\delta_{\text{cs}} < r_{\text{comp}} < \pi R_{\text{LC}}$

 δ_{cs} /r_{comp} ~ 0.15 (run D2R1) to 0.9 (run D9R05)

 $\sigma_{star} = 250, \sigma_{LC} \sim 60$

 κ_{star} = n_{star} /n_{GJ} = 10, where n_{star} is the density injected at the surface of the star

 $(d_e /\Delta r)_{LC} \sim 10 \text{ at } r = R_{LC}$

 $r_{\text{\tiny L}}$ at $r_{\text{\tiny LC}} \sim 1$ cell in the wind and ~ 70 cells inside the current sheet

Parameter	Value
Number of cells	$4096(r) \times 4096(\phi)$
Inner boundary	r_{\star}
R _{LC}	$3 r_{\star}$
<i>r</i> _{absorb}	$24 R_{\rm LC}$
$(d_{\rm e}/\Delta r)_{\rm LC}$	16.2
$\sigma_{ m LC}$	60
$P_{\rm spin}/\Delta t$	4.3×10^{4}
$r_{\rm fms}$	5.1 <i>R</i> _{LC}
$\Gamma_{ m fms}$	3.9
$d_{ m e}^{\star}/r_{\star}$	1.8×10^{-3}
Plasma composition	Electrons and positrons
Injection model	from the star surface