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Sketch of the talk

1. Einstein, Bohr, Bell, and the experiments : which outcome ?  
* From the EPR-Bohr debate (1935) to loophole-free Bell tests (2015)
* Let us forget about Hilbert space and operators and...

- define a (contextually) objective quantum state then …
- deduce probabilities from quantization.
A. Auffèves & P. Grangier, Found. Phys. 46, 121 (2016)
http://arxiv.org/abs/1409.2120

2. Revisiting contextuality : Gleason rather than Kochen-Specker. 
* Reconstructing the quantum formalism

A. Auffèves & P. Grangier, Found. Phys. 50, 1781 (2020) 
http://arxiv.org/abs/1910.13738
A. Auffèves & P. Grangier, Entropy 24 (2), 199 (2022) 
https://arxiv.org/abs/2111.10758

* Some other issues... and an algebraic outlook

http://arxiv.org/abs/1409.2120
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The Einstein-Bohr debate
* Einstein, Podolsky, Rosen (EPR) 1935 : quantum 
mechanics is incomplete ("hidden information")
* Bohr disagrees, intense debate over many years
but not much attention from majority of physicists

• Quantum mechanics accumulates success:

• Understanding nature: structure and properties of matter, 
quantum theory of light, interactions between light and matter...

• New concepts, and revolutionary inventions: transistor, laser…

•  No disagreement on the validity of quantum predictions, only 
on its interpretation: debate considered as "philosophical".

The situation changed radically with Bell' theorem  (1964) 
and the acknowledgement of its importance  (1969-82... ) :

One can make experimental tests of « local realism »
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Bell’s theorem in a nutshell...
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Consider local supplementary parameters theories (in 
the spirit of Einstein’s ideas on EPR correlations):

   B(λ,b) = +1 or −1   ρ(λ) ≥ 0,   ρ(λ) dλ∫ = 1

λ λ

Then the two photons of a same pair have a common property λ

   A(λ,a) = +1 or −1

  SQM = 2 2 = 2.828...> 2
a b

a’
b’

But... Conflict !
Experiment ? 

Entangled pair of photons

Look at the polarization correlation coefficient E(a, b) = ( A B )av.λ
between the measurements results, then (Bell-CHSH inequalities) :

   −2 ≤ S ≤ 2   with   S = E(a,b) − E(a, ʹb ) + E( ʹa ,b) + E( ʹa , ʹb )



5

Four generations of experiments
Pioneers (1972-76): Berkeley, Harvard, Texas A&M

•  Convenient inequalities: CHSH (Clauser Horne Shimony Holt)
•  First results contradictory (Clauser = QM; Pipkin ≠ QM), but       

clear trend in favour of Quantum mechanics (Clauser, Fry)
•  Significantly different from the ideal scheme

Experiments at Institut d’Optique by Aspect et al. (1977-82)
• A source of entangled photons of unprecedented efficiency
• Schemes closer and closer to the ideal GedankenExperiment
• First test of quantum non locality (relativistic separation)

Third generation experiments (1984-2014, many places...)
• New sources of entangled pairs (Zeilinger et al.)
•  Separate closure of loopholes (improved locality, detection..)
• Entanglement at a large distance... towards Q. communications

Fourth generation experiments (2015 - ... )
•  Simultaneous closure of all  loopholes (nearly ideal expts) 
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Alain 
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John 
Clauser

Anton 
Zeilinger



B. Hensen et al., Nature 526, 682 (2015).
“Loophole-free Bell Inequality  Violation Using 
Electron Spins  Separated by 1.3 Kilometres”
M. Giustina et al., Phys. Rev. Lett. 115, 250401 (2015).
“Significant-Loophole-Free Test of
Bell's Theorem with Entangled Photons”
L. K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015).
“Strong Loophole-Free Test  of Local Realism”
W. Rosenfeld et al, Phys. Rev. Lett. 119, 010402 (2017).
“Event-ready Bell test using entangled atoms 
simultaneously closing detection and locality loopholes”

Careful  but  unavoidable  conclusion : 

Bell ’s hypotheses (local realism) are untenable !



(...).  

[must be instaneous: N. Gisin et al, Nat. Phys. 8, 868 (2012)]



Philosophical standpoint  

Many physicists (including me) will support  Physical Realism, understood as : 
The purpose of physics is to study entities of the natural world, existing independently 
from any particular observer's perception, and obeying universal and intelligible rules.

Many physicists (inc. me) look at certain and reproducible events as real, so we like :
If, without in any way disturbing a system, we can predict with certainty (i.e., with 
probability equal to unity) the value of a physical quantity, then there exists an element  
of physical reality corresponding to this physical quantity. 
A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935) 

but Bell tests show that this view does not work as such... so don't forget  Bohr : 
The very conditions which define the possible types of predictions regarding the 
future behavior of the system constitute an inherent element of the description of any 
phenomenon to which the term "physical reality" can be properly attached.
N. Bohr,  Phys. Rev. 48, 696 (1935) 

What are these  « very conditions » required by Bohr to speak 
about the physical reality of quantum phenomena ? 



Element of physical reality vs modality 

If, without in any way disturbing a system neither changing the context, 
we can predict with certainty (i.e., with probability equal to unity) the 

value of a physical quantity, then there exists an element physical reality 
corresponding to this physical quantity. It is called a modality. 

* This  statement agrees with both the « certainty »  required by Einstein and 
the « very conditions »  required by Bohr to make and to check  definite  and 
reproducible predictions  (i.e. with objectivity, taken as contextual).

* Therefore the « object » carrying the element 
of  physical reality is a system within a context.    

Context

Observer

System

Physical 
reality

* The « split » between system and context is not 
a problem for CSM, because a modality is defined
in terms of both the system and  the context, and 
the system cannot include the context.

EPR
+

CSM

« Although it can describe anything, 
a quantum description cannot include everything »
A. Peres and W. H. Zurek, Am. J. Phys. 50, 807 (1982)



Physical reality

ContextObserver

System

Classical ontology  :
the observer can know the "real" 
physical properties of the system,  
and the context is only  used as an 
auxiliary tool for measurements. 

Physical reality

ContextObserver

System

Usual quantum ontology : through 
successive "entangling" interactions 
and unitary evolution, the system 
will  include the context, and also 
(ultimately ) the observer.  

Physical reality
ContextObserver
System

CSM ontology : the context appears  
always between  the system and the 
observer, and definite values of the 
relevant  physical properties 
(modalities) are attributed jointly to 
the system and the context.   

Some ontology... Found. Phys. 46, 121 (2016)
arxiv:1409.2120



Axiom 1 (modalities)
(i) Given a physical system, a modality is defined as the values of a complete set of physical

quantities that can be predicted with certainty and measured repeatedly on this system. 
(ii) Here “complete” means the largest possible set compatible with certainty and repeatability, 

for all possible modalities attached to this set. This complete set of physical quantities is
called a context, and a modality is attributed to a system within a context. 

(iii) Modalities in different contexts may be connected with and certainty (extracontextuality)

Axiom 2 (contextual quantization)
(i) For a given context, there exist N distinguishable modalities, that are mutually

exclusive: if one modality is true, or realized, the others are wrong, or not realized. 
(ii) The value of N, called the dimension, is a characteristic property of a given quantum 

system, and is the same in all relevant contexts. 

Axiom 3 (changing contexts)
Given axioms 1 and 2, the different contexts relative to a given quantum system are related
between themselves by continuous transformations which are associative, have a neutral
element (no change), and an inverse. Therefore the set of context transformations has 
the structure of a continuous group.

The CSM physical axioms
Contexts, Systems and Modalities



Modalities in a Bell experiment
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4 different contexts : MQ
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Global context : classical

N = 4 mutually exclusive 
modalities in each context
Violation of Bell’s ineq. : 
agreement with expts !

16 mutually exclusive 
modalities in a global context 

Obeys Bell’s ineq. : 
contradiction with expts !



a
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b b'
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4 different contexts : MQ 4 other different contexts : MQ

|+,+〉 | -, -〉

|1,1〉 |1,-1〉

|1,0〉 |0,0〉

|+, -〉 | -, +〉

|Y+〉 |Y-〉

|F+ 〉 |F- 〉

Sz1, Sz2
m1 = ±1/2
m2 = ±1/2

Total spin S2, Sz
S = 0,1  

m = -1,0,1

Bell states
|F± 〉 = (|+,+〉 ± |-, -〉)/√2
|Y± 〉 = (|+,-〉 ± |-, +〉)/√2Crucial observation : The 

certainty of a modality can be 
transferred between different 
contexts : extracontextuality !

Modalities in a Bell experiment



Extra-contextuality  and extravalence

Definition : When a system  interacts in succession with different contexts, 
certainty and repeatability can be transferred between their modalities. This is 
called extracontextuality, and this defines an equivalence class between 
modalities, called extravalence (it is reflexive, symmetric, transitive). 

Theorem : Given an initial modality and context, the probability to get 
another modality in another context keeps the same value as long as the 
initial and final extravalence classes remain the same.

Þ extravalent modalities embed the idea of non-contextuality 
of probability assignments: the probability belongs 

to the extravalence class, not to the modality. 

The modalities ui  , vj , xl  , wk belong to four 
different contexts, and ui is extravalent with xl , 
resp. vj with wk (full lines). Then all probabilities 
represented by dashed lines are equal.

ui vj

xl wk



Contextuality, non-contextuality and extra-contextuality
Let us consider a version of the Kochen-Specker theorem by A. Cabello

9 contexts (measurements) with 4 modalities (results) bm = 1,2,3,4  per context, 
36 modalities with 18 pairs of extravalent modalities (same color). 

Rules (for a non-contextual hidden variable theory) : 
1/ one and only one modality is true for each context
2/ if a modality is true in one context, the extravalent modality is also true
3/ any possible modality must be either true (realized) or wrong (not realized). 

From 1/ and 3/,  9 slots must be marked true (one for each context)
From 2/ and 3/, an even number of slots must be marked true

But  9 is not even, so the rules cannot hold together
=> There is no non-contextual hidden variable theory.  

C1 C2 C3 C4 C5 C6 C7               C8              C9
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So let’s face it: there is a fundamental randomness in nature !

Then the questions are: how to describe mathematically this non-determinism in a 
probabilistic way, and how to manage the ‘Heisenberg cut’ between quantum 

systems and macroscopic contexts ? 



Checking out extra-contextuality

No hidden variables, modalities are contextually objective and extra contextual.



Born’s rule : the CSM way (1)

Now forget QM, and ask : how can we make sure that
- there are only N mutually exclusive modalities in any context

- the certainty of a modality can be transferred between contexts

- the probability to find a given result (reproducible with certainty after being 
found) given an initial ‘state’ is a function f (Pn), where f depends only on the 
initial state, and  Pn = |ψn ⟩⟨ψn|  is a projector  associated with the result.

- the probabilities are additive for mutually orthogonal (commuting) projectors, 
and ∑n f (Pn) = 1 for any orthogonal set such that ∑n Pn = Id

Let’s attribute a N x N projector to an extravalence class, with
- orthogonal projectors ó mutually exclusive modalities (in a context)

- same projector ó mutually certain modalities (in an extravalence class)

Inductive reasoning : use projectors !



Deductive part : recovering the usual QM formalism

- Theorem (Uhlhorn) :  unitary transformations between contexts.  
Consider two contexts Cp (with N mutually orthogonal projectors Pi), 
Cq (with N mutually orthogonal Qj).  Expressing the Pi as a function of the 
Qj when changing the context must preserve the orthogonality of the Pi : 
then  it must be a unitary or antiunitary transformation (Uhlhorn’s theorem). 
 We want also to connect continuously the context change with the identity 

(no change of context, Cp = Cq) : unitary transformation only. 

- Theorem (Gleason) : Born’s rule. 
The previous requirements fit with the hypotheses of Gleason’s theorem :
- if the probability 1 is reached when changing contexts  then one gets 

     Born’s rule for pure states,  p(j | i) = Trace(Pi Qj). 
- otherwise one gets Trace(r Qj) where r is a density matrix. 

Born’s rule : the CSM way (2)



22

Entropy 2022, 1, 0 3 of 6

choice of such a specific orthogonal set of projectors associated with a context is not given
a priori, but once it is done, the sets of projectors in all other contexts should be obtained
by a bijective map G reflecting the structure of the continuous group G of context changes.
For consistency, if two orthogonal projectors are associated with two mutually exclusive
modalities, they should stay orthogonal under the map G, whatever choice is made for
the projectors associated with a “reference" (fiduciary) context. Then, let us consider the
following.

Theorem 1 (Uhlhorn’s theorem [20,21]). Let H be a complex Hilbert space with dim(H) �

3, and let P1(H) denote the set of all rank-one projections on H. Then, every bijective map

G: P1(H) ! P1(H), such that pq = 0 in P1(H) if and only if G(p)G(q) = 0, is induced by a

unitary or anti-unitary operator on the underlying Hilbert space.

This theorem implies that if orthogonality is conserved as required above, then the
transformations between the sets of projectors associated with different contexts is unitary
or anti-unitary. (As a reminder, an anti-unitary operator U is a bijective antilinear map,
such that hUx|Uyi = hx|yi

⇤ for all vectors x, y in H). In the case of a continuous group of
transformations, which is the case here, then the transformation must be unitary (and not
anti-unitary) as long as it is continuously connected to the identity, which is the situation
we are interested in (see also below).

The strength and importance of Uhlhorn’s theorem is that it requires that the map
keeps the orthogonality of rank-one projections, or equivalently of non-normalized vectors
(or rays). A transformation mapping an orthonormal basis onto an orthonormal basis is
clearly a unitary or anti-unitary transform; however, this result is far from obvious if the
conservation of the norm is not required. A related (but weaker) result is Wigner’s theorem,
reaching the same conclusion as Uhlhorn’s if the modulus of the scalar product of any two
vectors is conserved by the transformation. Uhlhorn’s theorem is much more powerful,
since it only assumes that the scalar product is conserved when it is zero, i.e., when the two
rays are orthogonal [22].

We thus get a major result: once a set of mutually orthogonal projectors associated with
a fiduciary context has been chosen, the sets of projectors associated to all other contexts
are obtained by unitary transformations, so we are unitarily “moving” in a Hilbert space.
There are also various arguments for using unitary (complex) rather than orthogonal (real)
matrices. In our framework, the simplest argument is to require that all permutations of
modalities within a context are continuously connected to the identity. This is not possible
with (real) orthogonal matrices, which split into two subsets with determinants ±1, but is
possible with unitary ones [12,14].

4. Necessity of Born’s Rule

The next step is to consider the probability f (Pi) to get a modality associated with
projector Pi. By construction, a context is such that Âi=N

i=1 Pi = I and Âi=N

i=1 f (Pi) = 1 for any
complete set {Pi}. However, these are just the hypothesis of Gleason’s theorem, so there is
a density matrix r such that f (Pi) = Trace(rPi). More precisely :

Theorem 2 (Gleason’s Theorem [23,24]). Let f be a function to the real unit interval from the

projection operators on a separable (real or complex) Hilbert space with a dimension at least 3. If

one has Âi f (Pi) = 1 for any set {Pi} of mutually orthogonal rank-one projectors summing to the

identity, then there exists a positive-semidefinite self-adjoint operator r with unit trace (called a

density operator), such that f (Pi) = Trace(rPi).

If we start from a known modality as written in Section 2 above, then the probability
value 1 is reached and r is also a projector Qj, so that f (Pi) = Trace(QjPi) which is the
usual Born’s rule. As already explained in [1], we considered initial and final modalities,
i.e., rank 1 projectors [14], but, more generally, Gleason’s theorem provides the probability
law for density operators (convex sums of projectors), interpreted as statistical mixtures.
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The intuitive idea behind these statements is that making more measurements in QM
(by changing the context) cannot provide “more details” about the system, because this
would increase the number of mutually exclusive modalities, contradicting Hypothesis 2.
One might conclude that changing context randomizes all results, but this is not true either,
as some modalities may be related with certainty between different contexts.

This is why extravalence is an essential feature of the construction, both as a physical
requirement, and as a justification for Gleason’s hypotheses. Given also Uhlhorn’s hypothe-
ses, that changing the context must preserve the mutual exclusiveness of modalities, or the
orthogonality of projectors, Born’s rule appears as a necessity.
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1/ A projector | y ⟩⟨ y | does not define a modality but an extravalence
class, so to make physical sense of  the QM formalism one needs

• a state (vector)  | yn ⟩ or projector | yn ⟩⟨ yn | 
AND 

• an observable (operator)  ∑k ak | yk ⟩⟨ yk | with | yn ⟩∈{| yk ⟩}
Both of them are needed to define a physical modality and to get

actual probabilities over a set of mutually exclusive events.

2/ But then the formalism should be able to describe both the quantum 
system and the classical context, i.e. both sides of the (in)famous

« Heisenberg cut ».   How to do that ? 

Completing the (usual) quantum formalism

It can be said that the usual | y ⟩ is predictively incomplete ; see
P. Grangier, Entropy 23 (12),1660 (2021) https://arxiv.org/abs/2012.09736

Contextual inferences, nonlocality, and the incompleteness of quantum mechanics

https://arxiv.org/abs/2012.09736


Naively, one would expect to get an “infinitely large Hilbert space”, still with the 
same algebraic properties, but this turns out to be completely wrong. 

Hint for qubits: d º 2, dim(H∞) = 2À0 = À1 i.e. the power of continuum.
=> There is no countable basis dense in H∞
=> H∞ is not separable – different from all we use in quantum physics

Quoting von Neumann*:  Infinite (tensor) products differ essentially from the finite
ones in this, that they split up into “incomplete tensor products”. (...) What happens
could be described in the quantum-mechanical terminology as a splitting up of the 
tensor product into “non-intercombining systems of states”, corresponding to the 
incomplete direct products quoted above.”

* J. von Neumann, Compositio Mathematica 6, 1-77  (1939)

CSM construction :  universality and completeness. 
Found. Phys. 51, 76 (2021)   http://arxiv.org/abs/2003.03121

M. Van Den Bossche & P. Grangier, https://arxiv.org/abs/2209.01463

* Composite systems are described using tensor products as usual.

* Contexts = infinite tensor product ? Taking this limit breaks unitarity, and leads to 
sectorization in type III algebra (see : von Neumann 1939, “On infinite direct products”). 

http://arxiv.org/abs/


CSM construction :  universality and completeness. 
Found. Phys. 51, 76 (2021)   http://arxiv.org/abs/2003.03121

M. Van Den Bossche & P. Grangier, https://arxiv.org/abs/2209.01463

* Composite systems are described using tensor products as usual.

* Contexts = infinite tensor product ? Taking this limit breaks unitarity, and leads to 
sectorization in type III algebra (see : von Neumann 1939, “On infinite direct products”). 

* Using a sectorized global algebra : tensor product between two vN algebra,
the usual type I non commutative for the system ⨂ type III for the context.  
Globally all is type III, and this provides a complete description corresponding
to the modalities, and not to the usual y describing an extravalence class  : ok.
The algebra is universal, but there is no universal wavefunction.

* Major point : there is no need to specify all details for the context (this is not 
possible :  there are « infinitely many » details), and it is enough to label the different
sectors by using the commutative ‘center’ of the type III algebra. This is just what is
needed for a classical description of the context. 

* This description applies to any (isolated) system within a context, so it is also
complete since it fully specifies a modality.  It is also universal in the sense that it
describes anything, but not everything (it is a ToA, not a ToE). 

http://arxiv.org/abs/
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Closing the loop of CSM
Found. Phys. 51, 76 (2021)   https://arxiv.org/abs/2209.01463

Entropy 25, 1600 (2023).   https://arxiv.org/abs/2310.06099
4

D2 Observables as operators – From the orthogo-
nal rays given by the ⇧̂i’s, hermitian operators on
a D-dimensional Hilbert space can be constructed
by considering each ⇧̂i as an eigenspace associated
to mi, the corresponding eigenvalue. If mi corre-
sponds to a single observable quantity, this yields
an operator M̂ =

PD
i=1 mi⇧̂i. If mi is a tuple of

several observable quantities, a tuple of operators
can be constructed in a similar way.

One thus recovers the standard definition of ob-
servables in a complete set of commuting observables
(CSCO), in relation with the spectral theorem. In this
framework, traces over products of projectors and ob-
servables thus emerge naturally as the way to compute
an experimental expectation value of the said observable.

Again, the intuitive idea behind the postulates is
that making more measurements in QM (by changing
the context) cannot provide more details about the
system, because this would increase the number of
mutually exclusive modalities, contradicting P2. One
might conclude that changing context totally randomises
all results and that nothing can be predicted, but this
is not true either: some modalities may be related
with certainty between di↵erent contexts, this is why
extravalence is an essential feature of the construction
– actually, extravalent modalities tie the other, non
extravalent modalities to a predictible probability
distribution, through Gleason’s theorem [8, 14].

The final step, moving out from usual TBQM, is to
apply this formalism to a countable infinity of systems
with infinite tensor products (ITP) of elementary Hilbert
spaces, to model the macroscopic limit. Doing so, one
moves from the separable Hilbert spaces and type-I
operators considered in TBQM towards non-separable
Hilbert spaces and Type-II and type-III operators
described by Murray and von Neuman in the 1930’s
and 1940’s [3]. In this limit, unitary equivalence and
unitarity overall are lost [4], and the predicted behaviour
looks very much like the classical one [18–20, 25, 26].
Therefore the overall mathematical description fits with
the initially postulated separation between microscopic
systems and macroscopic contexts (Heisenberg cut),
closing the loop of the reconstruction (Fig. 1).

C. Discussion.

We note that in the above approach there is no need to
call for partial traces, or loss of information, since deco-
herence is built in initially by the postulates, and finally
recovered from the (mathematically) infinite character of
the context; this full loop is thus self-consistent. It is also
quite possible to make type-I calculations, for instance to

Quantisation

FIG. 1: Closing the loop of Contexts, Systems and Modali-
ties (CSM) by using Infinite Tensor Products (ITP).

calculate decoherence times in a given experiment; but
it should be made explicit that they are approximations,
able to get very close to the actual non-unitary jump,
but unable to manage it. On the other hand, the over-
all framework sets a clear separation between the micro-
scopic (system) level and the macroscopic (context) level,
and makes sure that there is nothing like super-contexts,
or some variety of Wigner’s friend, that would be able
to turn an unbounded context back into a system [21].
Similarly, reasonings based upon a universally extended
unitary evolution do not fit in our framework.

D. The crucial role of unitary transformations.

Given the above statements, it is important to give
more details on what unitary transformations are, and
are not, according to the CSM approach. In standard
QM, unitary transformations appear with a variety of
di↵erent roles. A standard one is time evolution – on
which we will come back below. In relation with the pre-
vious sections, one may look at a related issue, that is
the role of unitary transformations in quantum measure-
ments. This turns out to be quite important in the CSM
framework, since a modality must be associated with a
certain and repeatable result in a given context. How-
ever, this is not the most frequent situation in practical
QM: actually, in most cases a unitary transformation is
inserted in the quantum measurement itself.
For instance, let us ask how to make a measurement

that gives a certain and repeatable modality, in the fol-
lowing situations: (i) a coherent state |↵i of an harmonic
oscillator (or quantized electromagnetic field mode), (ii)
a Bell state for two spins, and (iii) an arbitrary state
of a quantum register. Looking first at a coherent state
|↵i, it is clear that neither photon counting nor coherent
detection will do the job: the first one gives a Poisson
distribution of photo-counts, and the second one gives an
amplitude value, with some probability distribution de-
pending on how the measurement is implemented. But
how to get the required certainty can be guessed easily
[9]: let us deterministically translate |↵i by (�↵), get

Infinite Tensor
Products

Dualism
(Heisenberg cut)

Reductionism
(emergence at infinity)

https://arxiv.org/abs/2209.01463


Looking more closely at Bell’s options
Entropy 23 (12),1660 (2021)   https://arxiv.org/abs/2012.09736 

(2) There are influences going faster than
light => Violation of « elementary locality » 
without faster than light signalling. 

(3) The quantities a and b are not 
independent variable  => Violation of 
« free choice », there are no random
independant events. 

(4) The whole analysis can be ignored, 
that’s quantum mechanics => Violation of 
« predictive completeness »,  cannot be
formulated in a classical or deterministic
framework, but makes sense for QM. 

Needs randomness
and contextuality,
=> to be chosen !

then y has to  be
completed by specifying
the measurement context. 

Strong tension with
relativistic causality
=> to be avoided

or not : Bohmian 
mechanics makes 

this choice.

Full predetermination, 
no actual randomness
=> to be avoided

or not : G. t’Hooft 
makes this choice.

Completing y « from above » by specifying the context is a valid option for 
physical realism, under the QM empirical constraints. 



As a conclusion…

Quantum entanglement is
experimentally validated by 

testing Bell’s inequalities, and 
it is definitely non-classical.

Physical ideas
leading to new 
theory and new 

experiments

Applications 
leading to new 
technological
developments

Philosophical ideas
about the nature of 

physical reality
(ontology)
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Postulating the Unicity of the Macroscopic Physical World 



Hard subjectivist ("crazy bayesian")
- how certain are you that you are certain ? 
- a probability assignment is not a fact (Caves, Fuchs and Schack...)
- the fact : it is possible to design a set of measurements so that if you perform it 
again and again on the same system it will give again and again the same result. 
In such a case we tell that the system is in a well defined modality / quantum state.

Philosophical options...

Hard realist ("deceived lover of hidden variables") 

- a state corresponds to a set of elements of physical reality (= the results can be 

predicted with certainty and measured without changing in any way the system).

- the fact : reality is ok, but it must be attributed jointly to the context and the  

system; then a modality is a quite acceptable element of physical reality, and it  

gives a meaning to « non locality without any spooky action at a distance ».  



Hard platonist ("mathematical objects do exist")
- a vector in an Hilbert space is not a mathematical tool, but a definition of reality 
- unitarity of evolution is basic, the observed classical world must "emerge" from it
- the fact : manipulating  vectors (projectors) in an Hilbert space is the quantum 
way to calculate probabilities, it is not a "reality". The "reality" is the modality, 
i.e. the set of values of physical properties that you will obtain again and again 
by performing measurements on the same system in the same context.

Philosophical options...

Super-hard platonist ("mathematical objects exist physically")
- nothing else than | ψ ⟩ exist  (within a universal  | ψ ⟩ ) 
- the many-world picture must be understood ontologically: there are many « me »
- the fact : same as above, but here it is not recognized as a fact, since the only 
"facts" are about | ψ ⟩ itself, so there is no way to agree (physical realism is gone).  


