

Gamma ray astronomy (at TeV) Sami Caroff (LAPP) 23 July 2024

Electromagnetic radiation

CRAB NEBULA					
RADIO	INFRARED	VISIBLE LIGHT	ULTRAVIOLET	X-RAYS	Gamma rays

Thermal Gamma-ray ?

(strongest hypernova ever detected 10⁴⁹ joules !)

• It looks completely unrealistic to have thermal gamma rays, more efficient way of production of gamma rays exists

Gamma-ray production

(d) Inverse Compton

(e) Synchrotron.

Synchrotron Self Compton :

 $\frac{\mathrm{d}E}{\mathrm{d}t} \propto E$

- (d) Inverse Compton GRASPA, 23/07/2024

Gamma-ray production

GRASPA, 23/07/2024

Gamma-ray production

- How to produce gamma rays ?
 - High energetic particles (accelarated charged particles)
 - and/or photon fields (Inverse Compton)
 - and/or magnetic fields (synchrotron)
 - and/or matter (p+p interactions)
- Two types of origin for the gamma-rays
 - Leptonic $(4*E_v \sim E_e)$, more efficient because high Lorentz factor (low mass)
 - Hadronic $(10^{\star}E_{v} \sim E_{p})$, less efficient but should happen in dense regions

Cosmic rays

Cosmic Rays

Cosmic Ray Spectra of Various Experiments

- 12 decades in energy
- Power law distribution
- Galactic origin below the knee
- Principally hadronic for the galactic part
- Extra-galactic origin up to the ankle
- Charged particles
- Isotropic (allmost)
- Need natural particle accelerators

Power law

• Power law spectra :

Let's suppose a **multiplicative energy increases** after k process

Let's add a **probability P to escape** after each step

$$\mathsf{N}(\geqslant \mathsf{E}) = \mathsf{N}_{\mathsf{0}}\mathsf{P}^{\mathsf{k}}$$

Let's combine them !

$$\frac{N(\geq E)}{N_0} = \left(\frac{E}{E_0}\right)^{\ln P / \ln \beta}$$

A **power law spectrum** emerges from these very simple assumptions :

• Fermi acceleration, stochastic collision with magnetic inhomogeneities or shock waves

Cosmic Ray Spectra of Various Experiments

Second order Fermi acceleration

First order Fermi acceleration

n $\left\langle \frac{\Delta E}{F} \right\rangle \propto \left(\frac{v}{c} \right)^{\prime}$

Cosmic messengers

GRASPA, 23/07/2024

Galactic Cosmic rays

Production And acceleration

Galactic propagation

Observation

- Accelerator accelerates surrounding Interstellar medium matter
- · Galactic diffusion due to turbulent magnetic field
- Detection at Earth → **primary CR**
- Interaction with interstellar medium → production of secondary cosmic ray
- Mainly p+H collisions permit to enrich the cosmic rays with antimatter

- Secondary production explain well the amount of antiprotons in the cosmic rays...
- ...But fail to explain the amount of positrons for E>10 GeV
- This is the so-called positron excess

Primary positrons ?

Production Galactic propagation Ol And acceleration

Observation

- Local source of positrons ?
- Local because of electron cooling

$$Z\left(\frac{r_L}{33km}\right)\left(\frac{B}{1G}\right) = \frac{E_{max}}{1GeV}$$

- To accelerate particles, accelerator need to confine magnetically the particle up to the escape energy
- Two types of efficient accelerators :
 - Big accelerator with low magnetic fields
 - Compact accelerators with strong magnetic fields
- Can be translated to a typical time

$$\frac{r_L}{c} = t_L$$

- Let's take value of the order of our galaxy (1 kpc, 1μ G)
 - E = 3*10¹⁹ eV, t = 3.2kyr
- What about a pulsar ? (30 km, 10^{12} G)
 - E = 10²¹ eV, t = 100 μs
- But this formula ignore cooling of charged particle !
- Slow accelerator (galactic halo here) will be more affected by cooling ! Leptonic accelerators as well !
- In general, it make compact objects with strong magnetic fields efficient acceleration sites

- Leptonic accelerators are believed to be more bright in gamma-rays (Lorentz factor dependency)
- According to galactic cosmic rays, it exists hadronic accelerators in our galaxy, and those accelerators should accelerate up to at least ~1PeV (translated to gamma-ray 100 TeV !)
- According to positron excess in the cosmic rays, it exists leptonic accelerator producing as well antimatter
- It should exists even more extreme accelerators than 1PeV ones (but probably different of the galactic ones)...
- Compact objects with strong magnetic fields can be efficient accelerators (and so should shine in gamma-rays)...
- ... of course it is not enough to be compact, we need to have an engine to accelerates the charged particles
- Last but not least, the more compact the acceleration site, the faster acceleration should be (and possibly variability in the gamma ray flux) !
- Direct implication is : compact sources should be more variable, "big" sources should be more static

Gamma-ray observation

Detection methods

۲

•

- Direct detection :
 - Gamma ray interact with atmosphere \rightarrow only visible in space
 - Power law \rightarrow Big surface is needed \rightarrow but limited in space (weight)
 - Fermi Energy range : 20 MeV – 300 GeV

Measuring cosmic-ray and gamma-ray air showers

GRASPA, 23/07/2024

Sami Caroff

- IACTs → Imaging Atmospheric Cherenkov Telescope
- Cherenkov light produced in air
- Pro :
 - Good precision in terms of angular resolution (~0.1°) and energy resolution (~10-15%)
- Cons :
 - Narrow field of view (~5°)
 - Night observation, affected by weather and full moon (and light pollution in general)

- Water Cherenkov Array
- Secondary particles cherenkov in water tank
- Pro :
 - Vast field of view (15% of the sky)
 - Can work 24/24 7/7
- Cons :
 - Less precise in terms of angular resolution (0.75° @ 1 TeV, 0.3° @ 10TeV) and of energy resolution (95% @ 1TeV, 50% @ 10TeV)

Detection principle

 γ -ray enters the atmosphere

Electromagnetic cascade

Stereoscopy:

- Better background rejection
- Better angular resolution
- Better energy resolution

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

Primary

GRASPA, 23/07/2024

Sami Caroff

Observatories

H.E.S.S.

- Namibia (South Hemisphere)
- 5 telescopes (28m + 12m)

MAGIC

- Canarie Island, La Palma (North Hemisphere)
- 2 telescopes (17m)

VERITAS

- Arizona (North Hemisphere)
- 4 telescopes (12m)

Future observatory - CTAO

- 3 types of telescopes :
 - LST (23 m)
 - MST (12 m)
 - SST (4.3 m)
- Optimized for various energies :
 - 20 GeV 3 TeV
 - 80 GeV 50 TeV
 - 1 TeV 300 TeV
- ~100 telescopes on two sites :
 - La Palma (hémisphère Nord)
 - Paranal (hémisphère Sud)

Bestiary of gamma ray astronomy

1990

http://tevcat.uchicago.edu/

2000

http://tevcat.uchicago.edu/

2010

http://tevcat.uchicago.edu/

GRASPA, 23/07/2024

2021

http://tevcat.uchicago.edu/

GRASPA, 23/07/2024

2024

http://tevcat.uchicago.edu/ 308 sources

Galactic sources

340

320

- Galactic plane as seen by H.E.S.S. •
- **Direct image of galactic cosmic ray accelerators** •

- Explosion of massive star due to exhausted source of energy
- Shock wave + compact core (neutron star)
- Insterstellar matter accelerated by shock wave → supernova remnant
- Leptonic production by the pulsar (rotating neutron star + strong magnetic field) → pulsated emission + pulsar wind nebula

Supernova remnant

- Shell like shape smocking gun for supernova remnant (allowed by the good angular resolution of the instrument)
- Correlation of X-ray and gamma-ray (presence of shock wave and highly energetic particles)
- Open questions :
 - Able to accelerate up to PeV (100 TeV gamma-rays) ?
 - Dominance of **leptonic** or **hadronic** ? (cosmic rays are mostly hadronic)
 - Difficult to answer only with gamma-rays, neutrinos can be of great help

Supernova remnant

Pulsars

- Strong electric field at the surface of the neutron star due to rotating magnetic field
- Charged particle accelerated, pair production (leptonic)
- Crab pulsar period ~33 ms, pulsated emission permits to compute the rotational speed (and so on the rotational energy of the pulsar for example)

- Associated with the historic supernova SN1054
- Stable and bright
 - Nebula stable because because of its size (11 ly)
 - Bright because leptonic

HESS J1825-137 22000 ans

GRASPA, 23/07/2024

28m

 Cooling is compatible with electrons (leptonic emission by pulsar)

26m

24m

R.A. (J2000)

18h20m

22m

- Data compatible with diffusion (random motion)...
- ...But slower than expected, still debate in the community...
- Very plausible origin for the local positrons detected by AMS-02

Binaries

PP

- Star with compact object (black hole or neutron star)
- Modulation of the gamma ray emission due to the photon field of the companion star (absorption et IC)

Extragalactic sky

Extragalactic sources

- Vast majority of extragalactic sources are caused by accretion of matter in a black hole vicinity
- Ionised matter rotating \rightarrow rotating magnetic field \rightarrow relativistic jets
- Complex acceleration : turbulence in the jet + shock wave between the jet and the external medium
- Significant Lorentz boost in the jet because of energy beaming and doppler effect (blueshift)
- It make those sources very bright sources even at cosmological distances

Jets variability

- Apparent superluminal velocity is observed in jets
- Variability is as well boosted by the same effect (not only a consequence of the compact acceleration region)

Active galactic nuclei

- Jet engine \rightarrow supermassive black hole in galactic centers
- Very fast variability of the gamma ray flux, due to the compacity of the acceleration region
- Naive Acceleration region size : 1.8*10¹⁰ m
- ~0.01 R_s (supposing a 10⁹ Solar mass black hole, $R_s = 3 \times 10^{12} \text{ m}$)
- Taking into account jets (v = 0.99c), $1.8*10^{12}$ m

2GM

 $r_{\rm s}$

Gamma Ray Burst

- Short and bright emission of gamma-rays
- Two populations : short (< 3 s !!!!) and long (> 10 s)
- Prompt emission (shock wave in the jet) than afterglow (choc with external medium)
- Less massive engine than supermassive black hole + faster jet \rightarrow faster variability than AGNs

Gamma ray burst multi-messenger observation

- Cherenkov telescope field of view ~5° (8° for CTA), needs for external alerts (satellites X-ray or GeV gamma rays, GW, neutrinos...)
- For the short burst, production of gravitationnal wave is expected (asymmetry of the merger precursor)
- Happened in 2017, but missed by Cherenkov telescopes (due to day light...)
- But detected by satellites !
- 4 GRBs detected by cherenkov telescopes so far (~2k in total for Fermi)

• Combination of "close" (z = 0.15), very energetic (well aligned jets)

Fundamental physics

- Gamma-ray absorption due to the amount of light between the sources and the observer
- Positrons and electrons can produce gamma-rays (echos)
- Galactic magnetic fields can create extended echos
- Oscillation between gamma-ray and axion like particles in a magnetic field (absorption)
- Lorentz Invariance Violation is predicted for some Quantum Gravity models at the Planck energy (E~10¹⁹ GeV), Delay between high and low energy events is expected in such cases

- Pair production with interaction with photons is one of the main limit for the depth of gamma-ray observation
- Recently OP313 (blazar) observed at z=1 (7.8 Billions light years https://www.lapp.in2p3.fr/2024-0 1-science-4693
- This is why low energy (~100 GeV) are interesting for extragalactic physics
- This is what would make neutrinos interesting for astronomy (no interactions)

Dark Matter

- Galactic center
 - + Large statistics
 - Important astrophysical background
- Dwarf galaxy
 - Low stat
 - + Weak astrophysical background
- Spectral lines
 - + no background \rightarrow smoking gun
 - Very low stat

- Leptonic accelerators are believed to be more bright in gamma-rays (Lorentz factor dependency) → Yes they are, pulsar and pulsar wind nebulae are main class of galactic particle accelerators
- According to galactic cosmic rays, it exists hadronic accelerators in our galaxy, and those accelerators should accelerate up to at least ~1PeV (translated to gamma-ray 100 TeV !) → Yes, pulsar and pulsar wind nebulae are important class of gamma ray sources
- According to positron excess in the cosmic rays, it exists leptonic accelerator producing as well antimatter

 → Close and extended leptonic sources are observed in gamma-rays
- It should exists even more extreme accelerators than 1PeV ones (but probably different of the galactic ones)... → Yes, Jets are extreme accelerators, but difficult to tell maximal energies due to EBL
- Compact objects with strong magnetic fields can be efficient accelerators (and so should shine in gamma-rays)... → Yes, these objects are pulsars (neutron star), and black holes. In case of ultrarelativitic jets, the acceleration is even more boosted
- ... of course it is not enough to be compact, we need to have an engine to accelerates the charged particles → engines are supernova remnants shocks, rotating neutron star, accretion disk around black holes
- Last but not least, the more compact the acceleration site, the faster acceleration should be (and possibly variability in the gamma ray flux) ! → True but ultra relativistic jets as well enhance this
- Direct implication is : compact sources should be more variable, "big" sources should be more static → this is more or less true, if we excluded ultra relativistic jet effects

Back-up slides

- For E > 10 GeV, positron propagation can be simplified by a diffusion-energy loss equation
- Energy loss due to synchrotron and IC scaterring
- Scale of propagation can be defined based on diffusion and energy loss
- Positron excess up to ~500 GeV → give a constraint on distance of source
- Positron sphere $\rightarrow \sim < 1-4$ kpc
- Positrons are produced locally

Pulsar or Dark Matter ?

Dark matter need unrealistic boosting factor of annihilation to explain positron fraction
Close pulsar is a natural explanation to this excess...