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Gravitation: the classical theory

e Flat space, absolute time
e Instantaneous interaction between distant masses
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Gravitation: the modern theory

Theory of General Relativity (GR)
Einstein 1915-1918 : geometric theory of gravitation
A mass "bends" and "deforms " space-time

The trajectory of an object is influenced by the curvature of space-time

J. A. Wheeler : “Space tells matter how to move
and matter tells space how to curve”
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Theoretical piece: curved space

What is a curved space ? ( = "manifold" )
o examples : sphere, saddle

Can we measure curvature ?
o we cannot see our space from "outside"
o but we can measure angles
o the sum of the angles of a triangle is not
always equal totr!
positive curvature

Zangles:oz+5+fy>7r

negative curvature

Zangles:a—i—ﬂ+v<7r




Theoretical piece: curved space-time

In General Relativity
o spacetime is curved and locally flat
o one cannot go "out" to see the curvature
o ‘intrinsically" curved space
=> intrinsic curvature

go straight (free fall) = follow a "geodesic"
note that the time is also curved !

as a first approximation, finds the results
(trajectories) of newtonian mechanics



Theoretical piece: tensors

Tensor = mathematical object
Does not depend on the coordinate system
Extends the notion of vector

In a specific coordinate system, multidimensional array
Example: electrical conductivity of an anisotropic crystal

ji= ol BT

Note : summation is implicit over repeated indices (Einstein convention)
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Special Relativity

e In space-time (ST), need to measure:
the distance between two points;
the angle between two vectors;
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e The interval: d32 — —dt2 - d:zj2 — dy2 -+ dz2

e \Which can be written :
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General Relativity

e In space-time, describe by pseudo-riemannian manifold:

Nuv — Guv ()

e And the metric is symmetric, and torsion-less




General Relativity

To translate a vector, need to connect ST region with different metric:
— TP
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Covariant derivative Christoffel symbols or Connexion
Basis vectors va
ry '\ I°,,
The connection is written as : s .
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Curved Space-Time

The commutator of cov. derivatives exhibit the curvature :

D, D] 0" = R*0° T

Ricci Identity

With the Riemann curvature tensor or Riemann tensor :
Qv I = o 9 T« T« P Q- P
R pvs — ()1,/ I Bp — ()‘z‘?f I VL + (F vp [ Bu — [ B /_)F VL )

The difference from Minkowski metric from the curvature tensor :

RMV — RA’W//\ Ricci tensor
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The Einstein Field Equation

e To tell how matter curve spacetime and how the curved spacetime modify
matter trajectory:

1 drG
RMV — §gNVR -+ Agw/ — i
W-J C
7
Y cosmological constant
curvature term energy-momentum term

T

UV

Non-linear equations
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From Einstein Field Equations to Gravitational Waves

e Describe the perturbation from flat space: HHY —= (_g)l/zg“’/ — 77"“/

e Einstein equation with h:

P _ 167TG7_W

e with: C4

C4

™ = (—g)T" + AP

BN

stress-energy tensor Non-linearities



From Einstein Field Equations to Gravitational Waves

e Describe the perturbation from flat space: HHY —= (_g)l/zg“’/ — 77"“/

e Einstein equation with h:

167G PR\

N
Ry — Hv yatio
o wWith: c4 \\ [

T = (—g)T +

BN

stress-energy tensor Non-linearities
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From Einstein Field Equations to Gravitational Waves

e Solution for linearized (A, = 0) theory in vacuum (7,,, =0): [ ]h*Y = ()

_i(k-T—w-t

and :
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Gravitational Waves from a Source

Solution with a source (7, #0):

Use Green functions
o Solution of the wave equation
in the presence of a point source (delta func.)

Retarded potential

4G T v (t _ [=Z] ) fl)
Tt) = —— —— ——d%
C 7 — 2|

source

extended source of GW
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Gravitational Waves from a Source

e Approximations :
o isolated source;
o compact source,
o observer far from the source ‘
e Taylor development of the stress- energ;J pseugo tensor:

d3 2’ |j~’_f’| ., +oo (_1)n o\" N 1 3
Lource ’f - CU/| T (t B C ¥ - Z n! cOt /d l | (t,ZU )

n=0

e It's a multipolar moment expansion of the retarded potential
e At the lowest order (Qquadrupolar moment) :

B 2G d? Iij R I; ;= reduced quadrupolar
i (t) — 7 5 — — }—— " moment of the source
R/C d t C = / dx LT 5 T()Q(t,ili_")
C% ~824x107% s2.m ! . kg? 17



Orders of magnitude

Amplitude: -
G 1

h~ —-
ct R

Example with orbiting objects: a binary system
o M = total mass, r=distance between the components
o R=observer-system distance
o I~ Mr?hence [~ M- -vig~EN?
m  where NS is the part of the source motion without spherical symmetry

'€ ENS
A R

Hence
h

I
™/
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Orders of magnitude
G

Luminosity: Low ~ — -T2

O

Reminder: I~ EN° hence T =~ EN°/T

O

T = characteristic time of energy-momentum (or mass) motion from one side
of the system to the other

In case of a transient, violent event

Low~ G720 G (BN
GW ™= 5 TS T

For a quasi-stationary dynamics

where one introduces the Schwarzschild radius Rg =

G ..., c® GM\ > NS\
bew~ 51 N"(ﬁ) ()

2GM
2
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Orders of magnitude

e Mass distribution : needs a quadrupolar moment

e Examples for a binary system

G 1
:h%327T2_4EMT2 gfrb
‘ C
& e M=1000kg,r=1m,f=1kHz, R=
300 m
o h~10%

M=14M®,r=20km,f=400 Hz,
R=1023m (15 Mpc =48,9 Mlyr)
o h~10?

Doing itin alab ? No way ! 20



Astrophysical sources

Need high masses and velocities : astrophysical sources

Binary system
o  Need to be compact to be observed by ground based detectors
o  — Neutron stars, black holes
o  Signal well modeled but rates not well known... yet

Credit: AEI, CCT, LSU

Spinning neutron stars
o  Nearly monotonic signals
o  Long duration
o  Strength not well known

Casey Reed, Penn State

Asymmetric explosion
o  Ex: core collapse supernovae
o  « burst » transient Credit: Chandra X-ray
o  Not well modeled : : Observatory

Gravitational wave background
o  First type : superposition of many faint sources
o  Second type : Residue of the Big Bang or Inflation
o  Stochastic in nature

NASA/ WMAScience Team
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Indirect evidence: PSR 1913+16

Gravitational waves

—40 -

Binary system of neutron stars

One neutron star is a radio pulsar
Discovered in 1975 by Hulse and Taylor - -
Studied by Taylor, Weisberg and co. Bwsme/ vadfr
Decay of the orbital period compatible with GW emission
Frequency of GW emitted by PSR 1913+16: ~ 0.07 mHz

fiip i
1980

O T R [ L
1985 1990 1995 2000 2005
Year

=1.0013 +£0.0021

o Undetectable by ground-based detectors (bandwidth 10 Hz- 10 kHz)
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Compact Binary Coalescence

Binary systems of compact stars at the end of their evolution
o Neutron stars (NS) and/or black holes (BH)

Very rare : a few events per million year per galaxy

Typical amplitude at the detectors:
o  ha 10722 at20 Mpc

Very distinctive waveform
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Compact Binary Coalescence

e System may be binary neutron stars (BNS), binary black holes (BBH) or

NSBH
e Phases of the coalescence
Inspiral:
o Masses m, and m, orbit each other
o GW emission -> system looses energy
o =>Frequency /', amplitude
o  Waveform characterised by a « chirp mass »
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e Merger: computed numerically (numerical GR)
e Ringdown: quasi-normal modes decomposition -

Merger Ring-
down

f/oef)G‘

Insplral

i -

— Numerical relativity
I Reconstructed (template)
1 1




\

Compact Binary Coalescence

e At Newtonian order:

(@)

Amplitude and phase evolve withtime ( 7 = Tpq — )

A(r) = () (2)°

O(1) =

CcT

5y~ 2[(33) 14"

03
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Compact Binary Coalescence

e At Newtonian order:

(@)

Amplitude and phase evolve withtime ( 7 = Tpq — )

A(r) = () (2)°

O(7) =

(@)

hy(T)
hy (T

CT

5y~ 2[(33) 14"

And the two polarization components of the wave :

A )1+C°S() cos(P(7))

(7
A(T )COS( 2 sin(®())

) =
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Compact Binary Coalescence

e At Newtonian order:
o Amplitude and phase evolve with time ( T = Tppq — T)

y

/N

O(r) = By — 2 [(

\

A(r) = ()" (2

5G./\/l

{hm) = A(r) )
() = A(r)<L sin(@(7)

x(T

)1/4

CT

) T} 5/8

o And the two polarization components of the wave :

cos(P(7))

(

\

5/4
GM z 1/4
Aob(T) — 1i2 ( (521_'_ )) (%)

. 75/8
P (1) = Do — 2 [(5GM§,1+2)> 7‘]

C

With redshift
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Compact Binary Coalescence

e At Newtonian order:

o Amplitude and phase evolve with time ( T = Tppq — T)
¢

A(T) — (GCJSA)SM (2)1/4 Ap(T) = 1}rz (GM(21+z))5/4 (%)1/4

CcT ¢

O(7) = @ — 2 | (26)” Tr/g cpobm:@o_z[(w)‘%r/g

y

/N

C

\
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o And the two polarization components of the wave : With redshift

By (r) = A(T) 2D cos(B(7)) [ hopi (7) = A (7) 220 cos (P, (7))
hy(T) = A

(T ()OSUsm(cp(T)) hobx (T) = A (1) 22 sin(@ (7))
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Compact Binary Coalescence

First detection : GW150914
o Dy = 410715 Mpc

o 3675 Mg + 29+ 4 M, — 62+ 4M,

one orbit

two GW cycles
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“Mountain” or assymmetries

Continuous Waves

Rotating neutron stars v~1—10° Hz h~10"%° at 3 kpc
Not perfectly spherical _ precess:on '

t

|
4

Oscillation modes

I.. Moment of inertia along
4TCZG 1—- E fg’n / 1 the rotation axis
/1() o 4 € — fxx " 7yy  Ellipticity in the
¢ d B l.. equatorial plane

A

I.. and £ very poorly known

Motion and orientation of the detector around the sun
o  Doppler modulation of the signal
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End of the first part



