Gravitational waves: Opening a new window on the universe

Christopher Alléné

GraSPA summer school 2024

Gravitational Waves

Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

688

Von A. EINSTEIN.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme Bei der Behandlung der meisten speziellen (ment prinzipheite),
auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen,
auf dem Gebiete der Gravitationstheorien. Dabei bedient man sich mit auf dem Gebiete der Gravitationstheorie kann man sich under auch auf dem Gebiete der Gravitationstheorie kann man sich mit die $g_{\mu\nu}$ in erster Näherung zu berechnen. Dabei bedient man sich mit die $g_{\mu\nu}$ in erster Näherung zu berechnen. Dabei beutend man sich
Vorteil der imaginären Zeitvariable $x_i = it$ aus denselben Gründen wie
Vorteil der imaginären Zeitvariable $x_i = it$ aus denselben Gründen wie Vorteil der imaginären Zeitvariable $x_i = it$ aus weiseren Gallery versten den versten auch in der speziellen Relativitätstheorie. Unter verster Näherung« ist daber verstanden, daß die durch die Gleichung $\overline{11}$

$g_{\scriptscriptstyle{\text{av}}}=-\delta_{\scriptscriptstyle{\text{av}}}+\gamma_{\scriptscriptstyle{\text{av}}}$

definierten Größen y.,, welche linearen orthogonalen Transformation definierten Größen y.,, welche linearen orthogonalen kleine Größen
gegenüber Tensorcharakter besitzen, gegen 1 als kleine Größen gegenüber Tensorcharakter besitzen, gegen 1 als anzuren die erst
handelt werden können, deren Quadrate und Produkte gegen die erst
handelt werden tilt seigt werden dürfen. Dabei ist $\delta_{\rm av} = 1$ bzw. $\delta_{\rm av} =$ handelt werden können, deren Quadrate und Produkte gegen.
Potenzen vernachlässigt werden dürfen. Dabei ist $\delta_{xx} = 1$ bzw. $\delta_{xx} =$
Potenzen vernachlässigt werden $\mu + \nu$.

je nachdem $\mu = v$ oder $\mu \neq v$. achdem $\mu = v$ oder $\mu \pm v$.
Wir werden zeigen, daß diese γ_w in analoger Weise bereel
Wir werden zeigen, daß diese γ_w in analoger Elektrodyna Wir werden zeigen, daß diese v. in analoger Elektrodyna werden können wie die retardierten Potentiale unter Init I.
Daraus folgt dann zunächst, daß sich die Gravitationsfelder mit I. Daraus folgt dann zunächst, daß sich die Gravitation
geschwindigkeit ausbreiten. Wir werden im Anschluß an dies geschwindigkeit ausbreiten. Wir werden im Ansenen Entstehungs gemeine Lösung die Gravitationswellen und deren mir vorgesehl
untersuchen. Es hat sich gezeigt, daß die von mir vorgesehl
untersuchen. Es hat sich gezeigt, daß die von mir vorgesehl natersuchen. Es hat sich gezeigt, das die von $a = |a|$.
Wahl des Remussystems gemäß der Bedingung $a = |a|$.

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
bbservatory simultaneously observatory simultaneously observatory simultaneously observatory simultaneously beserved a Observatory simultaneously observed a transient gravitational-wave signal. The signal of the Laser Interference of the Laser Interference of the Laser Interference of the Laser Interference of the Case of the Laser Interf Fragmency from 35 to 250 Hz with a peak gravitational-wave signal. The signal sweeps upwards in
predicted by general relativity for the inspiral and merger of a pair of 1.0 \times 10⁻²¹. It matches the waveform
resulting required by general relativity for the inspiral and merger of a pair of 1.0×10^{-21} . It matches the waveform
realiting single black hole. The signal swave strain of 1.0×10^{-21} . It matches the waveform
resulting sin resulting single black hole. The signal was observed with a matched-filter signal the impdown of the resulting single black hole. The signal was observed with a matched-filter signal the ringdown of the false alarm rate e Finally single plack hole. The signal was observed with a match of plack holes and the ringdown of the
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance of 24 and a
than 5. than 5.1*o*. The source fies at a luminosity distance of 410⁻¹₈₀ Mpc corresponding to a significance greater
In the source fies at a luminosity distance of 410⁻¹₈₀ Mpc corresponding to a redshift $z = 0.09^{+0.03}$
 In the source lies at a luminosity distance of 410⁺¹⁶⁰ No corresponding to a registionarce greater
In the source frame, the initial black hole masses are 36^{+5}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.0$ ² ⁶²⁺⁴*M*_o, with 3.0^{+0.5}*M*₀^{c2} radiated in gravitational $\frac{62+4}{3}M_{\odot}$ and $29+4M_{\odot}$, and the final black hole masses are $36+3M_{\odot}$ and $29+4M_{\odot}$, and the final black hole mass is
These observati

These observations demonstrate the existence of binary stellar-mass black hole mass is
detection of gravitational waves and the first observation of a binary stellar-mass black hole intervals.
detection of gravitational w detection of gravitational waves and the first observation of a binary black hole systems. This
DOI: 10.1103/PhysRev1 et 116.061100

DOI: 10.1103/PhysRevLett.116.061102

I. INTRODUCTION

In 1916, the year after the final formulation of the field
quations of general relativity. Albert E equations of general relativity, Albert Einstein predicted
the existence of gravitational movements of the existence of gravitational movements. The existence of gravitational waves. He found that

The discovery of the binary pulsar system PSR B1913+16
Hulse and Taylor $[20]$ and subgaring the discovery of the binary pulsar system PSR B1913+16
by Hulse and Taylor [20] and subsequent observations of
its energy loss by Taylor and Weishers [21] 1. ¹ This and Taylor [20] and subsequent observations of
its energy loss by Taylor and Weisberg [21] demonstrated
the existence of gravitational wave the existence of gravitational waves. This discovery,

2

Gravitational wave observatories

Michelson interferometer : a "sensor" of gravitational waves

 $h \approx 10^{-23}$
 $\Rightarrow \delta L \approx 10^{-20}$ m

Horizon distance

- "Horizon" distance:
	- Distance at which a particular standard source emitted a signal which can be detected with a Signal-to-Noise Ratio (SNR)=8
	- Standard source = binary Neutron Star (BNS) coalescence with 1.4 M_☉ for each component

Range distance

• The "Range" is the horizon averaged over the antenna factor: R=H/2.264

$$
h(t) = h_{+}(t)F_{+}(\theta, \phi, \psi) + h_{\times}(t)F_{\times}(\theta, \phi, \psi)
$$

Past and future science runs

CBC Analysis : The Matched Filtering

• In time domain:

The signal's position in the noise.

CBC Analysis: Power Spectral Density

The PSD is the autocorrelation of the noise $S_n(f)$:

$$
\langle \tilde{n}(f)\tilde{n}^*(f') \rangle = \frac{1}{2}S_n(f)\delta(f - f')
$$

• The Amplitude Spectral Density (ASD) is $\tilde{n}(f)$ and PSD=ASD²

CBC Analysis: Filters

Optimal filter is :

CBC Analysis: Filtering

- $S = \int_{-\infty}^{+\infty} \tilde{s}(f) \tilde{Q}^*(f) df$ \bullet The filtered stream of data is : $N = \int_{-\infty}^{+\infty} \tilde{n}(f) \tilde{Q}^*(f) df = S - \langle S \rangle$
- The filtered noise is :

• Similar to a scalar product :

The bigger S is, the more the stream fits to the filter

CBC Analysis: Signal-to-Noise Ratio

● Let build a Signal-to-Noise Ratio (SNR) :

$$
SNR = \frac{~~}{\sigma_N}~~
$$

● With the filtered noise standard deviation :

$$
\sigma_N=\sqrt{-<\!\!\!\!\!\times \mathcal{N}^{>2}}=\sqrt{}
$$

● SNR = 8 means signal times greater than the gaussian noise std

CBC Analysis: Signal-to-Noise Ratio

- With an optimal filter such that : $\tilde{h}(f) = \alpha \tilde{T}(f) e^{2i\pi ft}$
- The SNR is $SNR^{2}(t) = 2\alpha^{2} \int_{0}^{+\infty} \frac{|\tilde{T}(f)|^{2}}{S_{n}(f)} e^{-2i\pi f(t_{0}-t)} df$ 60 50 40 $SNR²$ SNR threshold at 5 (or 4.8)10 -40 -20 Ω 20 40 $t-t_{max}$ [ms]

13

CBC Analysis: Combined SNR

• For multiple detector triggers:

$$
cSNR = \sqrt{\sum_{itf} SNR_{itf}^2}
$$

Time of Flight limits for coincidences:

- HL: 15ms
- HV: 35ms
- LV: 35ms

CBC Analysis: Localization

● Triangularization from SNR peaks:

First BNS : GW170817

First and only multi-messenger detection Observed on August the 17th, 2017 Binary Neutron Star Localized in NGC4993

Neutron Stars internal structure

Neutron Stars internal structure

18

Hubble Constant Measurements

Contribution des BBH à la mesure de H_0

Méthode d'association :

- Evt associé à sa galaxie hôte probable (catalogue GLADE+)
- Marginalise sur les redshifts des hôtes potentiels de chaque évt.

$$
H_0 = 68^{+8}_{-6} \, km. \, s^{-1}. \, Mpc^{-1}
$$

Rate of events

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars $20₁$ $10¹$ **OOOOOOOOO** 5 **Mass Gap?** $\overline{}$

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

21

End of the second part

Weber bars and Mass-resonant detectors

- Weber bars:
	- University of Maryland;
- ALLEGRO:
	- Louisiana State University;
	- \circ 4.2K;
- NIOBE:
	- Western Australia;
	- \circ 2-5K;
- AURIGA:
	- Italy;
	- $0.1K$;
- Explorer:
	- CERN;
	- \circ 2-5K;
	- NAUTILUS:
		- INFN;
		- 1.5K;
- GRAIL:
	- Leiden University;
	- 20mK;

Pulsar Timing Array

- International Pulsar Timing Array:
	- NANOGrav ;
	- European Pulsar Timing Array;
	- Chinese Pulsar Timing Array;
	- Parkes Pulsar Timing Array;

Sources :

- Stochastic background;
- Supermassive binaries;
- **Evidence for gravitational wave** background (3 to 4.6 σ);

Space-based interferometer: LISA

- Frequency bandwidth : 0.1mHz 1Hz;
- 2.5 millions of km;
- Lagrange point L3;
- Launched 2035 (?);
- Sources:
	- Massive binaries;
	- Resolvable galactic binaries;
	- Extreme Mass Ratio Inspirals;