

Riccardo Bellan

(experimental) LHC physics

What do we want to measure?

Example: let's assume a Higgs boson is produced at the LHC ... It is a **SM particle**, we **can predict** how and how frequently

... we look for "stable" particles from an unstable particle decays

this is what we are looking for...

Step I: find events with the right ingredients

We are looking for $e^+e^-\mu^+\mu^-\dots$

Is this event OK?

CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-03 01:19:17.320393 GMT Run / Event / LS: 323940 / 44997009 / 65

Step I: find events with the right ingredients

We are looking for $e^+e^-\mu^+\mu^-\dots$

What about this one?

Step I: find events with the right ingredients

We are looking for $e^+e^-\mu^+\mu^-\dots$

And this one?

Step 2: signal and background

Irreducible background

The final state is exactly the same, but it does not come from the process you are looking for

Reducible background

The final state looks like the same because some of the particles fake what you are looking for

Riccardo Bellan

Interesting processes are rare!

Lose some signal, suppress backgrounds...

- Selections based on particle properties to reduce reducible background
 - Shower shapes, track properties, ...
- Selections based on event properties to distinguish signal from background
 - Particle kinematics, decay kinematics event shape, ...
- Try to keep signal while reducing background!
 - Increase S/B...

Step 3: reconstruct properties of initial particle

• We have 4 particles...

with their energy (calorimeters), charge and momentum (tracker)

- Use pairs of opposite sign e⁺e⁻ and $\mu^+\mu^-$
- Reconstruct invariant mass from the 4 particles $\,M$:

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

 But, even after selection, we don't have just true Higgs bosons left...

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

Number of events

Events in real life do not come with a label! No way to distinguish signal from background on an event-by-event base...

m_{4I}

 Background gets estimated...

> ... from simulation (normalized to data)

 ... directly from data ("control regions", enriched in background events)

The question we should pose is: *provided that*

How significant is an excess?

- p₀: probability that the excess is due to a fluctuation of background
- Significance: $Z \sim \frac{S}{\sqrt{B}}$ $p_0 = 1 \operatorname{Erf}\left(\frac{Z}{\sqrt{2}}\right)$ • Convention:
- Convention:
 - 3σ is an evidence (p₀ = 0.27%)

How significant is an excess?

- p₀: probability that the excess is due to a fluctuation of background
- Significance: $Z \sim \frac{S}{\sqrt{B}}$ $p_0 = 1 \operatorname{Erf}\left(\frac{Z}{\sqrt{2}}\right)$ • Convention:
 - 3σ is an evidence (p₀ = 0.27%)

CERN Auditorium, July 4th 2012

110 115 120 125 130 135 140 145

Maximum excess observed at

Expected from SM Higgs m_H=126.5

Global significance: 4.1-4.3 a (for LEE

10-

10.0

years HIGGS boson discovery

CERN Auditorium, July 4th 2022

ls it a *scalar* boson?

What's a particle spin?

An intrinsic particle quantum number that follows angular momentum algebra

An electron has always an intrinsic angular momentum of $\frac{1}{2}$ ħ

 $\hbar = 1.0545 \times 10^{-34} J \cdot s$

How can we recognize the spin of an unstable particle?

spin 0

spin l

spin 2

Spin-0 decays in all directions with equal probability; spin-1 prefers decaying toward or away from the direction of spin; spin-2 prefers the poles and the equator to the region in between. These pictures exaggerate the real distributions for clarity.

Riccardo Bellan

(experimental) LHC physics

Spin with $H \rightarrow 4$ leptons

Is it responsible for masses?

)= adpt + (++ b), ~ ~ (0, p >0

Combine many other decay modes

- $H \rightarrow ZZ^* \rightarrow 4\ell$
- $H \rightarrow WW^* \rightarrow 2\ell 2\upsilon$
- $H \rightarrow \gamma \gamma$
- $H \rightarrow \tau \tau$
- *H* → μμ
- $H \rightarrow cc$
- $H \rightarrow b\overline{b}$

. . .

• $pp \rightarrow ttH$

 If the Higgs boson is responsible for masses, we expect each of these cross-sections / decay rates to be proportional to m_F², where F is the final state particle

A few more words on QCD

- QCD (strong) interactions are carried out by massless spin-1 particles called gluons
 - Gluons are massless
 - Should imply long range interaction
 - Gluons couple to color charges
 - Gluons have color themselves
 - They can couple to other gluons \rightarrow confinement

Principle of asymptotic freedom

- ✓ At short distances strong interactions are weak
 - Quarks and gluons are essentially free particles
 - Perturbative regime (can calculate!)
- At large distances, higher-order diagrams dominate
 - Interaction is very strong
 - Perturbative regime fails, have to resort to effective models

quark-quark effective potential

single gluon confinement exchange

Confinement, hadronization, jets

CMS Experiment at the LHC, CERN Data recorded: 2018-May-09 22:21:35.609792 GMT Run / Event / LS: 316058 / 353438669 / 284

Neutrino (and other invisible particles) at colliders

- Interaction length $\lambda_{int} = A / (\rho \sigma N_A)$
- Cross section $\sigma \sim 10^{-38} \text{ cm}^2$
 - This means 10 GeV neutrinos can pass through more then a million km of rock
- Neutrinos are usually detected in HEP experiments through *missing (transverse) energy, or better, transverse momentum*

- Missing energy resolution depends on
 - Detector acceptance
 - ✓ Detector noise and resolution (e.g. calorimeters)

- When a b quark is produced, the associated jet will very likely contain at least one B meson or hadron
- B mesons/hadrons have relatively long lifetime
 - 🖌 ~ I.6 ps
 - They will travel away form collision point before decaying
- Identifying a secondary decay vertex in a jet allow to tag its quark content
- Similar procedure for c quark...

All jets 44%

- Tau are heavy enough that they can decay in several final states
 - Several of them with hadrons
 - Sometimes neutral hadrons
- Mean lifetime ~ 0.29 ps
 - ✓ 10 GeV tau flies ~ 0.5 mm
 - \checkmark Too short to be directly seen in the detectors
- Tau needs to be identified by their decay products ($m_{\tau} = 1777 \text{ MeV} \rightarrow \text{many}$ accessible final states)
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

Riccardo Bellan

Combine many other decay modes

Many unanswered questions...

Why there are 3 families of particles? Are there more?

Why there's more matter than antimatter?

How do neutrinos get mass?

Why is there a hierarchy of masses (top quark mass >>

electron mass)?

Are there more forces?

What keeps the Higgs mass so small?

How do we incorporate gravity?

What is Dark Matter?

... as many possible answers to probe!

Super-symmetry?

New heavy bosons?

Dark Matter particles?

 V(R) R/C
 V(R) Booldaws A S, A/C
 V(R) Formation
 V(R) S, C/C

 Up and
 C
 C
 D

 V(R) R/C
 C
 D
 D

 V(R) R/C
 C
 C
 D

 V(R) R/C
 V(R) C
 C
 D

 <t

Any new theory needs to agree with the SM!

Extended Higgs sector?

Composite quark and leptons?

Large extradimensions? Black holes? Gravitons?

Simple example: heavy Z' boson

- Use very clean dilepton decay channel

 e.g. electron-positron, or μ⁺μ⁻.
 - Drell-Yan modeling important, but clear peak over a continuum ("bump hunting")
 - Control resolution
- Result expressed as a 95% confidencelevel excluded (upper) cross-section

More complex example: Dark Matter searches

 10^{-1}

10⁻²

400

600

800

1000

Z→vv

- Use MET shape to extract signal contribution
 - Similar shape for signal and backgroundBackground modeling very important
- Main contributions (monojet example)
 - Ζ(νν)+jet
 - W(Iv)+jet, where charged lepton is not reconstructed

Signal

ET

(GeV)

700

59.7 fb⁻¹ (13 TeV)

QCD

H(inv), B = 25%

Axial, $m_{med} = 2 \text{ TeV}$ $m_r = 1 \text{ GeV}$

1200

p__miss (GeV)

1400

Z(vv)+jets

WW/ZZ/WZ

600

- Data

W(lv)+jets

op quark

Masses not within LHC reach

• Search for indirect effects on cross-sections of known processes

The Effective-Field Theory approach

Example: di-boson production

- Search for small deviations in the predicted cross-section in the high-energy tails of the invariant mass distributions
- Exclude/find energy scales at which BSM physics could pop up

The LHC will run for a long time...

Additional information

Probing Higgs couplings at the LHC

σ[pb] @ 13 TeV # Higgs produced in 140 fb⁻¹ in one experiment

Spin with $H \rightarrow 41$ (& combination)

- Sensitive variables combined in BDT score
 - Intermediate boson masses: m_{z1}, m_{z2}
 - \checkmark Z₁ production angle: θ^*
 - Z₁ decay plane angle: Φ₁
 - Angle between the Z₁ and Z₂ decay planes: Φ
 - Decay angles of negative leptons: θ_1, θ_2

0

0.5

BDT output

0

-1

-0.5

Standard Model Higgs decays

(experimental) LHC physics

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTC

Η 🤇 γγ

Higgs signals on July 4th 2012

Higgs signals with the *latest* 13 TeV data...

H → γγ

H → 4I

What spin do particles have?

fermions
{
 (quarks, leptons)
 spin = +1/2,-1/2 1/2 massive bosons Ð (W, Z bosons) spin = +1,0,-1 massless bosons (photon, gluon)
 spin = +1, -1 9

What can a spin 0 particle decay to?

What can a spin I particle decay to?

What can a spin 2 particle decay to?

So, what spin has our Higgs-like particle?

