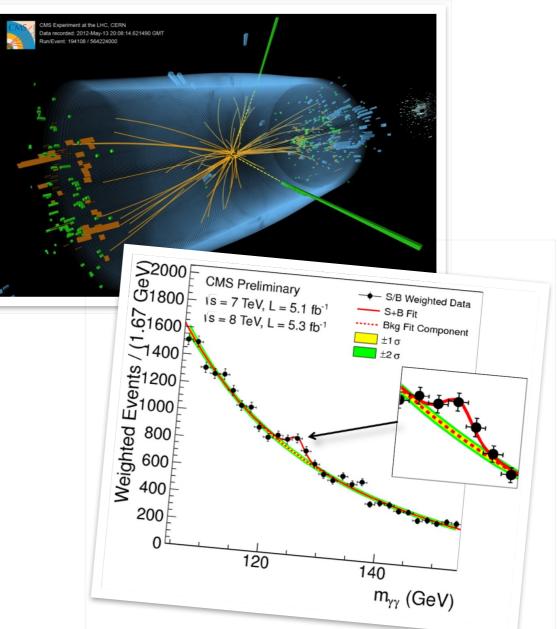


Riccardo Bellan

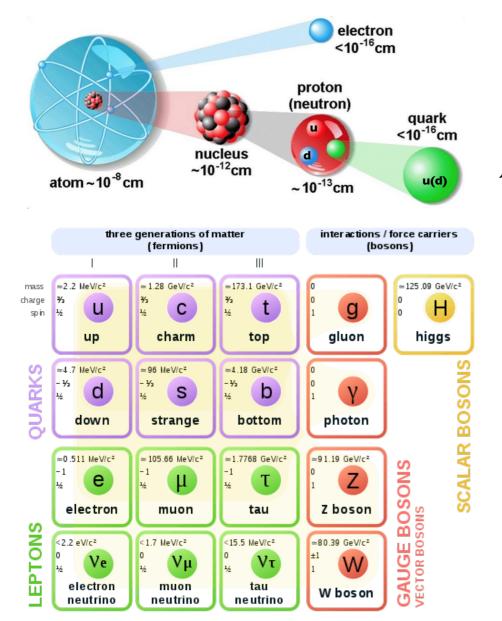
(experimental) LHC physics

Experiment = probing/building theories with data!

 $-\tfrac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu}-\tfrac{g_s}{f^{abc}}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu}-\tfrac{1}{4}g^2_sf^{abc}f^{adc}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^c_{\nu}+$ $\frac{1}{2}ig_s^2 (g_i^a \gamma^\mu g_j^a) g_\mu^a + \bar{G}^a \partial^2 G^a + g_s f^{abc} \partial_\mu \bar{G}^a G^b g_\mu^c - \partial_\nu W^+_\mu \partial_\nu W^-_\mu M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{w}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^$ $\frac{1}{2}m_{h}^{\mu}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}m_{h}^{2}H^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}m_{h}^{2} - \frac{1}{2}$ $\frac{2}{g}H^{\mu} + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^+_\nu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu W^+_\mu W^-_\nu - \psi^+_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu W^+_\mu W^-_\mu - \psi^+_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^+_\mu W^-_\mu - \psi^+_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^+_\mu W^-_\mu - \psi^+_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^+_\mu W^-_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^-_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^-_\mu W^-_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^-_\mu] + \frac$ $\begin{array}{c} g & W_{\nu}^{-1} W_{\mu}^{-1} W_{\nu}^{-1} W_{\mu}^{-1} W_{\mu}^{-1}$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{$ ${}^{\mu}_{\frac{1}{2}g^{2}}W^{\mu}_{\mu}W^{-}_{\nu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + g^{2}c^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{\nu}W^{-}_{\nu} - Z^{0}_{\mu}Z^{0}_{\mu}W^{\mu}_{\nu}W^{-}_{\nu}) +$ $g^{2} g^{2} g^{2} g^{\mu} W^{\mu}_{\mu} A_{\nu} W^{\mu}_{\nu} - A_{\mu} A_{\mu} W^{\mu}_{\nu} W^{\mu}_{\nu}) + g^{2} g^{\mu} g^{\nu} g^{\mu} G^{\mu}_{\nu} Q^{\mu}_{\nu} W^{\mu}_{\mu} W^{\mu}_{\nu} - G^{\mu}_{\nu} G$ $\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c_{\omega}^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)]+\frac{1}{2}g[W^+_\mu(H\partial_\mu\phi^--\phi^-\partial_\mu H)-W^-_\mu(H\partial_\mu\phi^+-W^+_\mu)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $(u_{\mu} u_{\mu})_{1} + \frac{1}{2} g_{c_{w}} (u_{\mu})_{1} (u_{\mu})_{0} ($ $\frac{1}{igs_wA_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+)} - \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2W^+_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+] - \frac{1}{4}g^2W^+_{\mu}[$ $\frac{1}{4}g^2 \frac{1}{c_w^2} Z_\mu^0 Z_\mu^0 [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z_\mu^0 \phi^0 (W_\mu^+ \phi^- + 1)^2 \phi^+ \phi^-]$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}))$ $W^{\mu \, \phi^{+}}_{\mu \, \phi^{+}}) + \frac{1}{2} i g^{2} s_{w} {}^{c_{w} \ \mu}_{\mu} H (W^{+}_{\mu} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-} - W^{-}_{\mu} \phi^{+}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} A_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} \phi^{+} \phi^{-}) - g^{2} \frac{2 g}{c_{w}} (2 c_{w}^{2} - 1) Z^{0}_{\mu} \phi^{+} \phi^{-}) \begin{array}{c} {}^{\mu} \psi \ {}^{j} \tau \ {}^{2} {}^{ig} \ {}^{gwarmul} ({}^{\mu} \psi \ - {}^{\mu} \mu \ {}^{j} \)^{-g} \ {}^{cw} \ {}^{2} {}^{cw} \ {}^{-1)^{2} \mu} \mu^{\mu} ({}^{\phi} \ {}^{\phi} \) \\ g^{j} s^{2}_{w} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m^{\lambda}_{e}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}^{\lambda}_{j} (\gamma \partial + m^{\lambda}_{w}) u^{\lambda}_{j} - \\ \end{array}$ $\frac{1}{d_j^{\lambda}} (\gamma \partial + m_d^{\lambda}) d_j^{\lambda} + igs_w A_{\mu} [-(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + \frac{2}{3} (\bar{u}_j^{\lambda} \gamma^{\mu} u_j^{\lambda}) - \frac{1}{3} (\bar{d}_j^{\lambda} \gamma^{\mu} d_j^{\lambda})] +$ $\frac{1}{4c_w} Z_{\mu}^{0} ([\bar{\nu}^{\lambda} \gamma^{\mu} (1+\gamma^5) \nu^{\lambda}) + (\bar{e}^{\lambda} \gamma^{\mu} (4s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_j^{\lambda} \gamma^{\mu} (\frac{4}{3} s_w^2 - 1$ $\frac{4c_w - \mu(\chi)}{1 - \gamma^5)u_j^{\lambda}} + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)\dot{k}) + (\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)\dot{k})] + (\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)\dot{k})] + (\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)\dot{k}) + (\bar{\nu}^{\lambda}\gamma^{\mu}$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})] + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_$ $\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{\lambda}^{\lambda}}{M} \left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) \right] - \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})e^{\lambda}) \right] - \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})e^{\lambda}) + \phi$ $\frac{q}{2}\frac{m_{\lambda}^{2}}{M}[H(\bar{e}^{\lambda}e^{\lambda})+i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})]+\frac{iq}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-m_u^{\lambda}))]$ $\gamma^5)u_j^{\kappa}] - \frac{a}{2} \frac{m_{\tilde{u}}^{\lambda}}{M} H(\bar{u}_j^{\lambda} u_j^{\lambda}) - \frac{a}{2} \frac{m_{\tilde{u}}^{\lambda}}{M} H(\bar{d}_j^{\lambda} d_j^{\lambda}) + \frac{ia}{2} \frac{m_{\tilde{u}}^{\lambda}}{M} \phi^0(\bar{u}_j^{\lambda} \gamma^5 u_j^{\lambda}) - \frac{a}{2} \frac{m_{\tilde{u}}^{\lambda}}{M} H(\bar{d}_j^{\lambda} d_j^{\lambda}) + \frac{a}{2} \frac{m_{\tilde{u}}^{\lambda}}{M} \frac{a}{2} \frac{a}{M} \frac{m_{\tilde{u}}^{\lambda}}{M} \frac{a}{2} \frac{a}{M} \frac{a}{2} \frac{a}$ $\frac{ig}{2}\frac{m_{\lambda}^{2}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar$ $\sum_{\substack{a=0\\c_{w}}}^{2} X^{0} + \bar{Y} \partial^{2} Y + igc_{w} W^{+}_{\mu} (\partial_{\mu} \bar{X}^{0} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{Y} X^{-}) + igs_{w} W^{+}_{\mu} (\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{Y} X^{-}$ $\overset{c_w}{\partial_{\mu}\bar{X}^+Y)} + igc_wW^-_{\mu}(\partial_{\mu}\bar{X}^-X^0 - \partial_{\mu}\bar{X}^0X^+) + igs_wW^-_{\mu}(\partial_{\mu}\bar{X}^-Y - \partial_{\mu}\bar{X}^0X^+) + igs_wW^-_{\mu}(\partial_{\mu}\bar{X}^0X^+) + igs_wW^-_{\mu}(\partial_{\mu}\bar{X}^-Y^-) + igs_wW^-_{\mu}(\partial_{\mu}\bar{X}^0X^+) + i$ $\partial_{\mu} \bar{Y} X^{+}) + igc_{w} Z^{0}_{\mu} \partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+}) + igs_{w} (\partial_{\mu} \bar{X}^{+}) + igs_{w} (\partial_{\mu} \bar{X}^$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \partial_{\mu}\bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \partial_{\mu}\bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \partial_{\mu}\bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H + \partial_{\mu}\bar{X}^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}\bar{X}^{0}H + \partial_{\mu}\bar{X}^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}H + \partial_{\mu}\bar{X}^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}H + \partial_{\mu}\bar{X}^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar$ $\tfrac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+-\bar{X}^-X^0\phi^-]+\tfrac{1}{2c_w}igM[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+$ $\frac{1}{igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]}{igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]}$



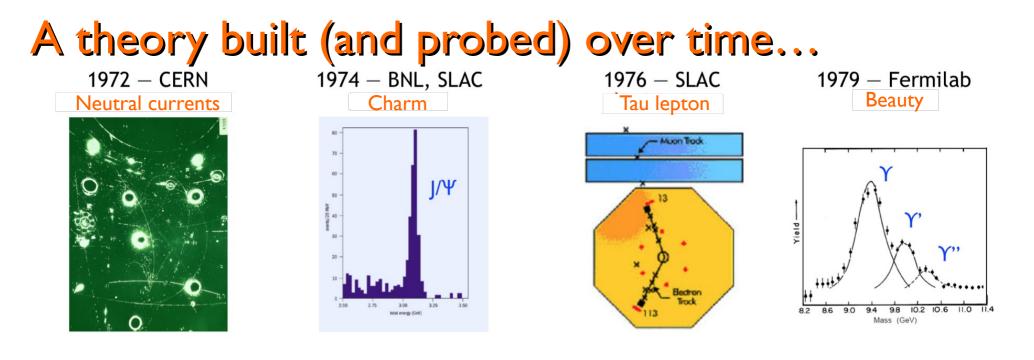
The Standard Model of particle physics in a nutshell

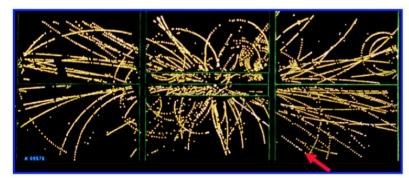


 $= \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \qquad \begin{array}{l} \text{Gauge bosons} \\ \text{Gauge boson} \\ \text{Gauge boson} \\ \text{Gauge boson} \\ \text{Gauge boson} \\ \text{Coupling to} \\ \text{fermions (EVV, QCD)} \\ \text{QCD)} \\ \text{Homogeneous} \\ + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - V(\Phi) \\ + \bar{\Psi}_{L} \hat{Y} \Phi \Psi_{R} + h.c. \end{array}$

Higgs coupling to fermions (fermion masses) Higgs coupling to bosons (boson masses)

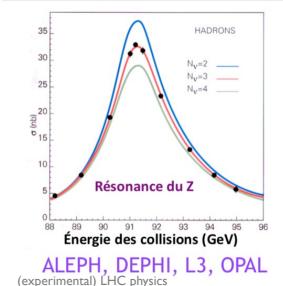
Higgs self-coupling (Higgs potential)



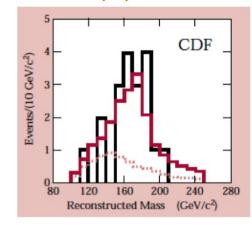


UA1, UA2

1990 – CERN/LEP Three families of neutrinos



1994 — Fermilab/TeVatron Top quark



CDF, **D**0

How do we compare experiment and predictions in a quantum field theory?

Through two fundamental quantities:

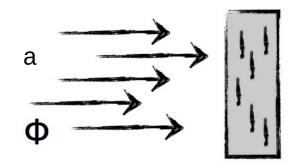
- σ (cross section): probability of a particle of being produced in collisions at a given energy (es. 13 TeV at LHC)
 - May be *differential*, that is, as a function of the energy of the particle, the angles of its trajectory, or both of them, etc.
- Γ (decay rate): probability (over time) of a particle of decaying into other particles
 - ✓ The sum of all possible decay rates Γ_i , gives the total decay rate, and because of resonance theory, it is the inverse of decay time: $\tau = 1/\Gamma$

How do we compare experiment and predictions in a quantum field theory?

Through two fundamental quantities:

- σ (cross section): probability of a particle of being produced in collisions at a given energy (es. 13 TeV at LHC)
 - May be *differential*, that is, as a function of the energy of the particle, the angles of its trajectory, or both of them, etc.

Interaction cross section



The flux $\Phi = \frac{1}{S} \dot{N}_a$ represent the number of particles, per unit of time, sent over a surface S (the illuminated area) of the target. $[\Phi]=[L^{-2}t^{-1}]$

The number of reactions per unit of time is proportional to the number of targets and the flux of the incoming particles

$$\dot{N}_r = \sigma \Phi N_{targets}$$
 [σ] = [L²]

 σ is the interaction cross section and the quantity $\mathscr{L} = \Phi N_{\text{targets}}$ is the so called instantaneous luminosity. The integrated luminosity is defined as $L = \int \mathscr{L} dt$.

The reaction rate per single target and single incoming particle is

$$W_{r} = \frac{\dot{N}_{r}}{N_{a}N_{targets}} = \sigma \frac{V_{a}}{V} = \frac{2\pi}{\hbar} |M_{fi}|^{2} \rho(E')$$

Riccardo Bellan

Interaction cross section

We can go to differentials

$$dW_r = \frac{2\pi}{\hbar} |M_{fi}|^2 \rho(E')$$

(the differential in the right part is hidden in the density state term)

With some math, see for example [], we can obtain, e.g., the cross section as a function of the solid angle

$$\frac{d \sigma_r}{d \Omega} = \frac{1}{4 \pi^2 \hbar^4} \frac{p_f^2}{v_f v_i} |M(q^2)|^2 = \frac{1}{\mathscr{L}} \frac{\Delta \dot{N}_r}{\Delta \Omega}$$

We can compare experiments and theory!

The typical units in which the cross section is expressed is the *barn*

$$1b = 100 \, fm^2 = 10^{-24} \, cm^2 \simeq \pi r_{uranium}^2$$

Luminosity in a collider

Number of events in unit of time

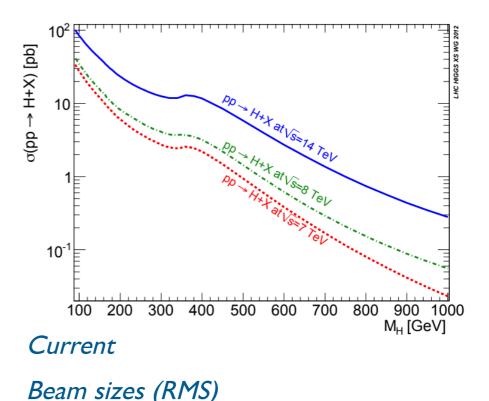
$$\dot{N}_r = \sigma \mathscr{L}$$

We want to **explore very rare processes**, i.e., with very low cross sections (or very rare decays).

 \rightarrow go higher with instantaneous luminosity!

In a collider ring:

$$\mathscr{L} = \frac{1}{4\pi} \frac{f N_1 N_2}{\sigma_x \sigma_y}$$



<u>At LHC</u>

- $N_1 = N_2 = 1.15 \cdot 10^{11} \# \text{ of protons}$
- **f** = bunch crossing frequency = j v/ ℓ , v = c and ℓ = $2\pi r$ with r = 26659 m
 - j = 2808 effective bunches, one crossing every 25 ns (f = 40 MHz), each bunch spaced 7.5 m. The effective number of bunches is 2808 (f = 31,6 MHz)
- $\sigma_x \sim \sigma_y = 16 \ \mu m$
- $\mathcal{L} \sim 1.3 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LHC

SUISSE

FRANCE

Riccardo Bellan

pp collider (2008-present) $\sqrt{s} = 7-8-13-13.6 \text{ TeV}$

CMS

LHC 27 km

LHCb-

CERN Prévessin

-

ATLAS

SPS_7 km

CERN Meyrin

ALICE

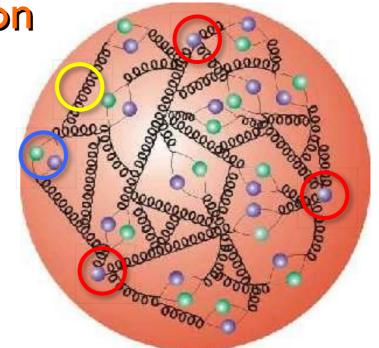
About the inner life of a proton

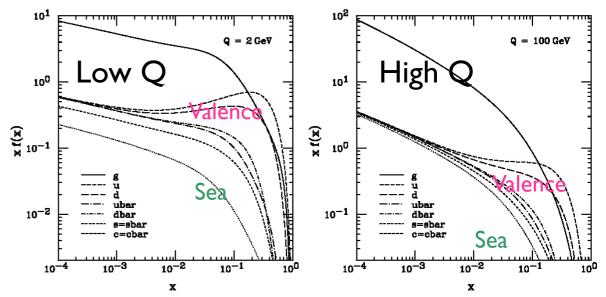
p rotons have substructure!

- partons = quarks & gluons
- 3 valence (colored) quarks bound by gluons (
- Gluons (colored) have self-interactions
- Virtual quark pairs can pop-up (sea-quark)
 - *p* momentum shared among constituents
 - described by *p* structure functions

Parton energy not 'monochromatic'

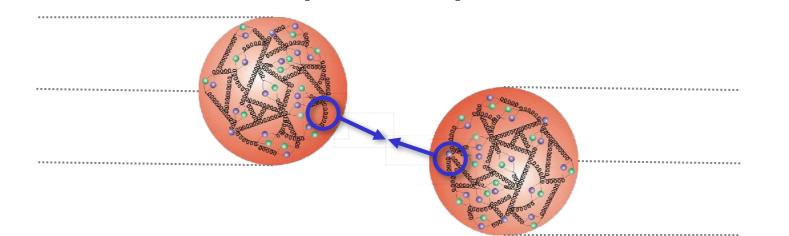
- Parton Distribution Function
- PDF = $q(x,Q^2)$, q = u,d,s,...g P_e^{in} $Q^2 = -(P_e^{in} - P_e^{fin})^2$
- Kinematic variables
 - Bjorken-x: fraction of the proton momentum carried by struck parton
 - × = P_{parton}/P_{proton}
 Q²: 4-momentum² transfer





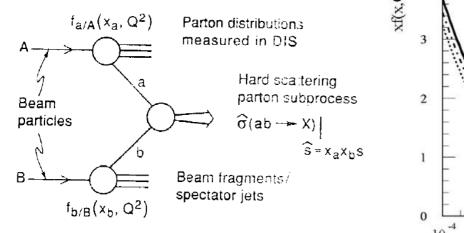
(experimental) LHC physics

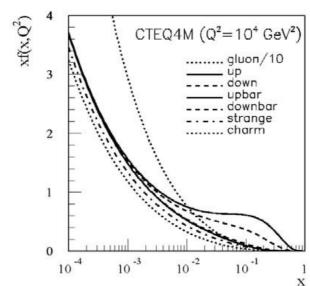
Cross sections at a proton-proton collider



$$\sqrt{\hat{s}} = \sqrt{x_a x_b s}$$

$$\sigma = \sum_{a,b} \int dx_a dx_b f_a(x,Q^2) f_b(x,Q^2) \hat{\sigma}_{ab}(x_a,x_b)$$



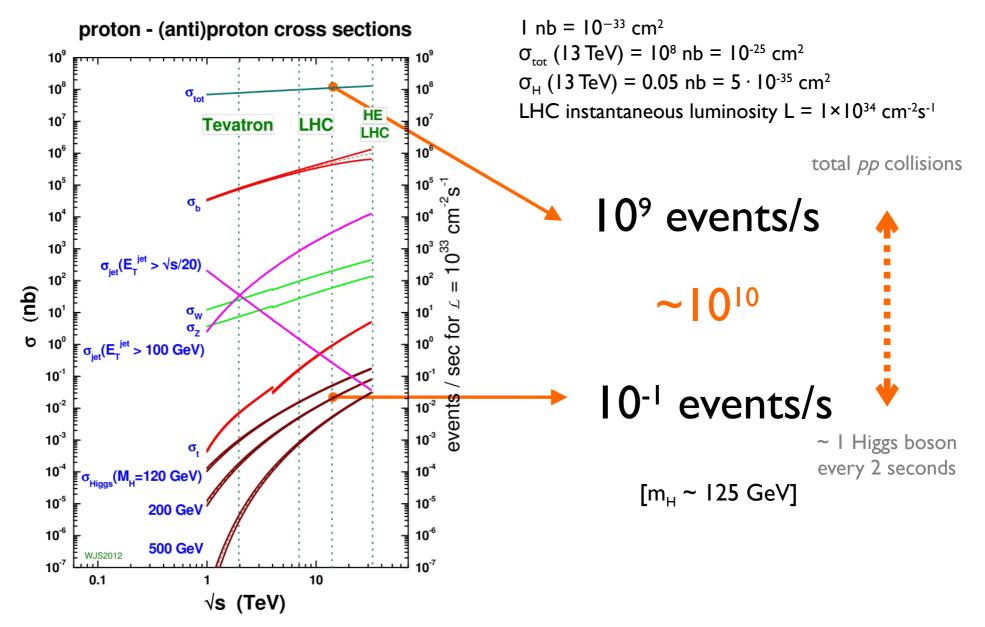


Example: to produce a particle with mass m = 100 GeV

$$\sqrt{\hat{s}}$$
 = 100 GeV
 \sqrt{s} = 14 TeV $\ll x_a x_b$ = 0.007

Riccardo Bellan

Cross-sections at LHC



How do we compare experiment and prediction in a quantum field theory?

Through two fundamental quantities:

- σ (cross section): probability of a particle of being produced in collisions at a given energy (es. I3 TeV at LHC)
 - May be *differential*, that is, as a function of the energy of the particle, the angles of its trajectory, etc.
- Γ (decay rate): probability of a particle of decaying into certain specific final particles

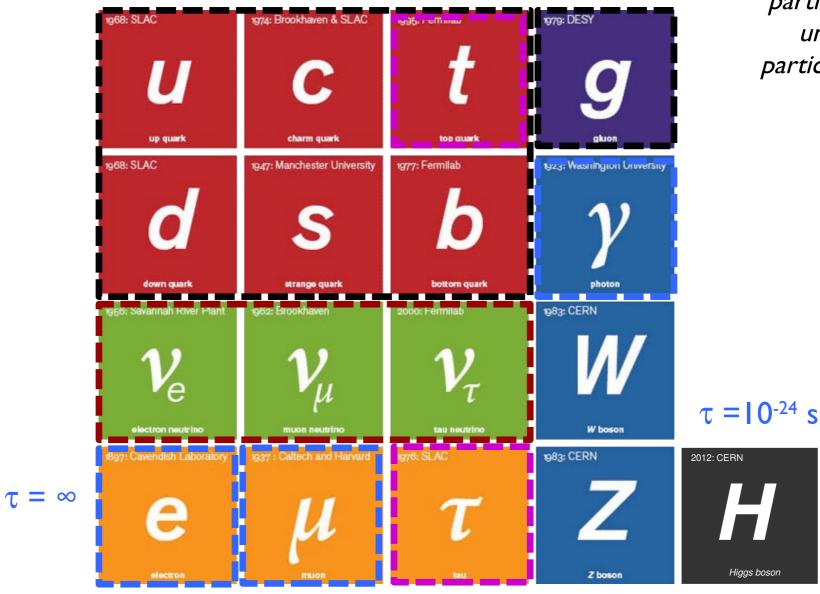
 \checkmark The sum of all Γ 's is the total decay rate, and because of resonance

theory it is the inverse of its decay time: $\tau = \hbar/\Gamma$

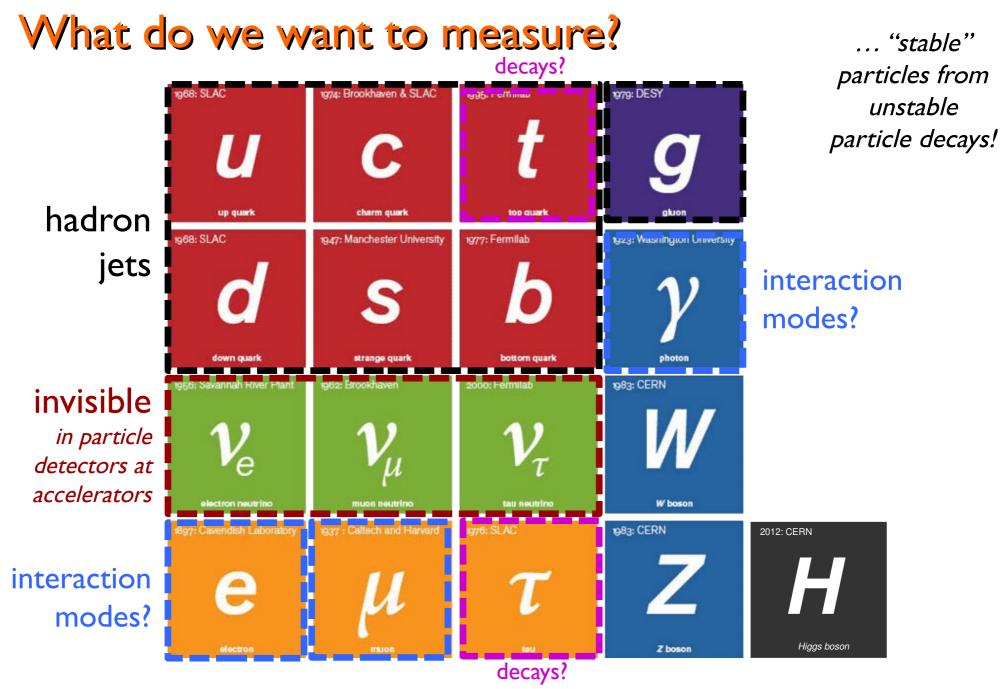
$$W_r = \frac{\Gamma}{\hbar}$$

What do we want to measure?

 $\tau = 2.2 \ \mu s$



... "stable" particles from unstable particle decays!

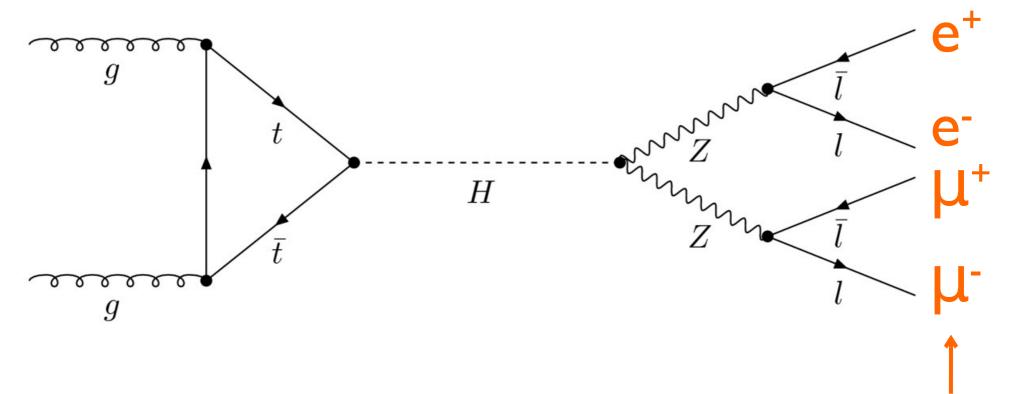


Riccardo Bellan

What do we want to measure?

Example: let's assume a Higgs boson is produced at the LHC ... It is a **SM particle**, we **can predict** how and how frequently

... we look for "stable" particles from an unstable particle decays



this is what we are looking for...

Identifying and measuring "stable" particles

Particles are characterized by
Mass [Unit: eV/c² or eV]
Charge [Unit: e]
Energy [Unit: eV]
Momentum [Unit: eV/c or eV]
(+ spin, lifetime, ...)

Particle identification via measurement of:

• ... and move at relativistic speed (here in "natural" unit: $\hbar = c = I$)

$$\begin{split} \beta &= \frac{v}{c} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}} \\ \ell &= \frac{\ell_0}{\gamma} \quad \text{length contraction} \\ t &= t_0 \gamma \quad \text{time dilation} \end{split} \qquad \begin{aligned} E^2 &= \vec{p}^2 + m^2 \\ E &= m\gamma \quad \vec{p} = m\gamma \vec{\beta} \\ \vec{\beta} &= \frac{\vec{p}}{E} \end{aligned}$$

Center of mass energy

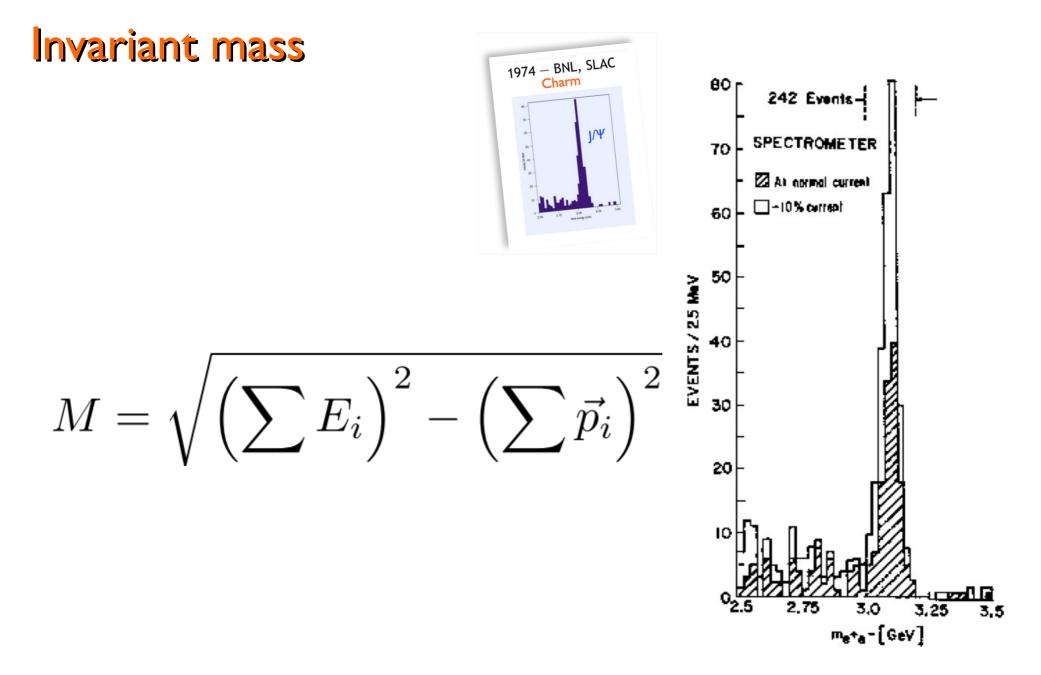
- In the center-of-mass frame the total 3-momentum is 0
- In laboratory frame, the center of mass energy can be computed as:

$$E_{\rm cm} = \sqrt{s} = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

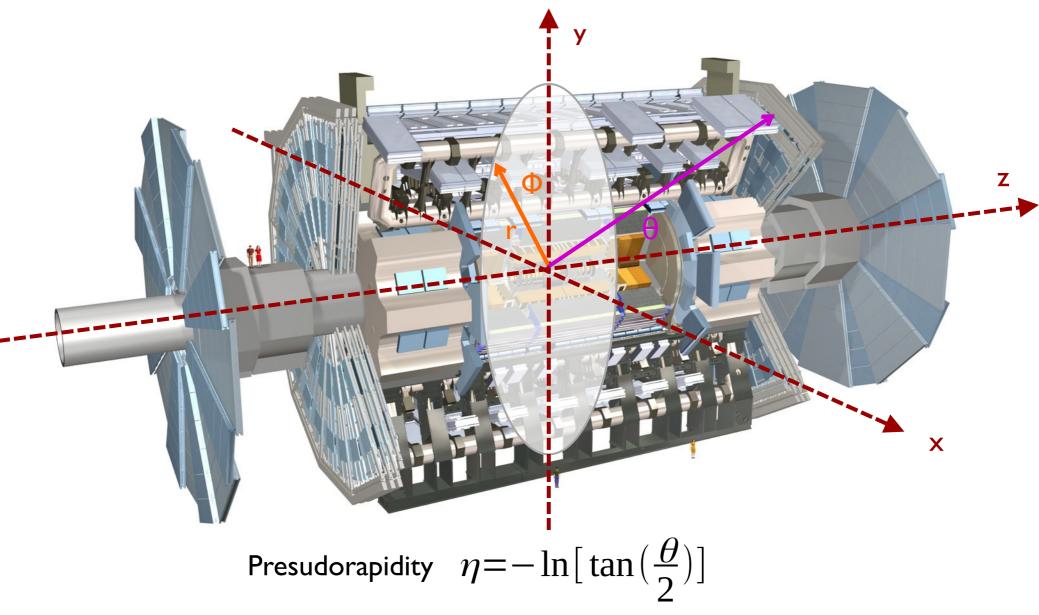
Hint: it can be computed as the "length" of the total four-momentum, that is invariant:

$$p = (E, \vec{p}) \qquad \sqrt{p \cdot p}$$

What is the "length" of a the four-momentum of a particle?



A collider experiment



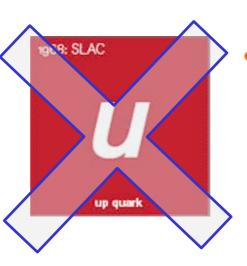
Interaction mode cheat sheet ("light" particles)

- electrically charged
- ionization (dE/dx)
- electromagnetic shower...

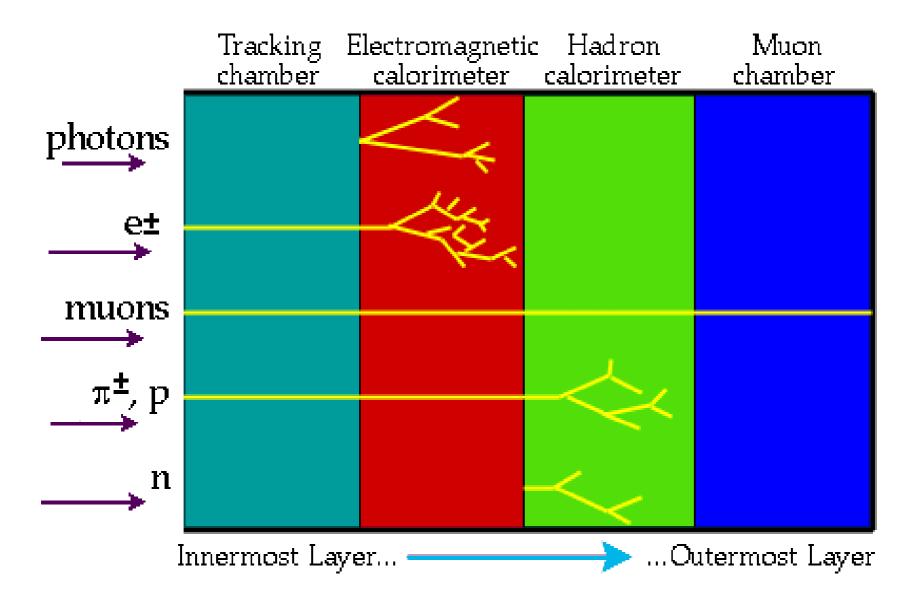
- electrically charged
- ionization (dE/dx)
- can emit photons
 - electromagnetic shower induced by emitted photon...
 - but it's rare...

produce *hadron(s)* jets via QCD hadronization process

- electrically neutral
 - pair production ✓ E >I MeV
- electromagnetic shower...

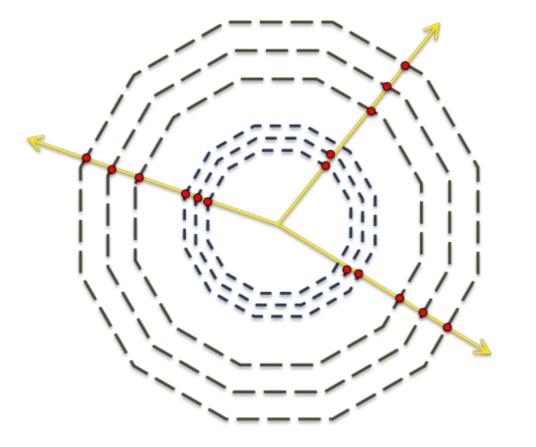


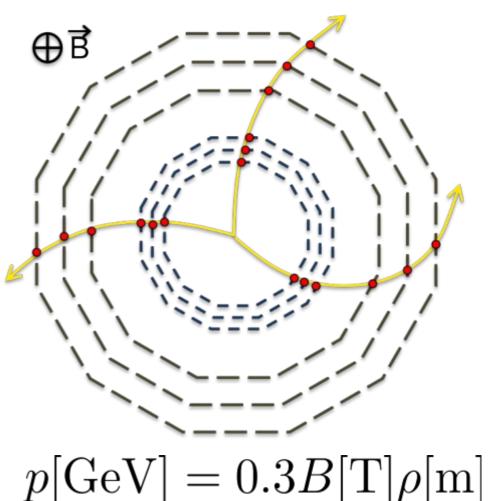
Interaction mode cheat sheet ("light" particles)



Magnetic spectrometer for ionizing particles

- A system to measure (charged) particle momentum
- Tracking device + magnetic field



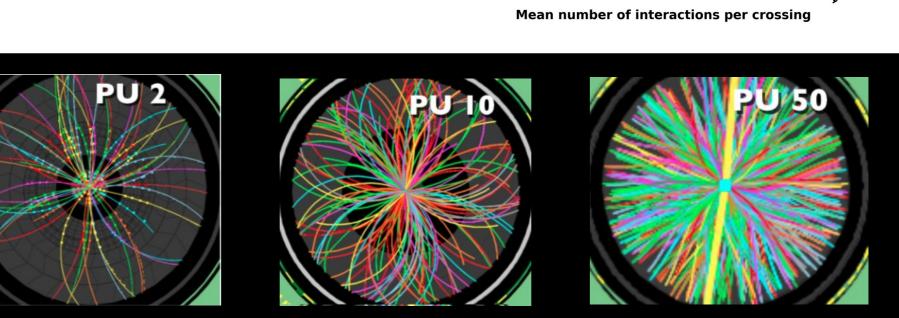


Pile-Up

 $=\frac{1}{4\pi}\frac{f N_1 N_2}{\sigma_x \sigma_y}$

per beam bunch crossing

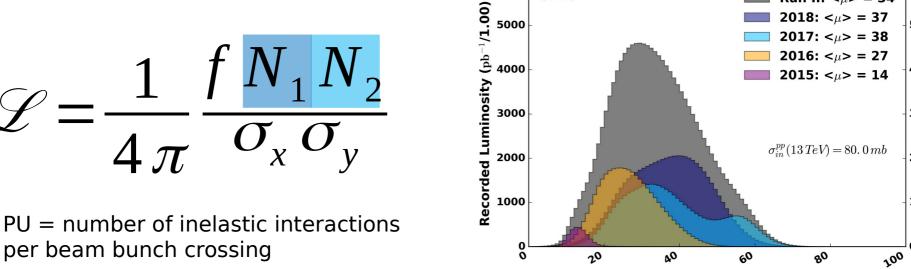
CMS Average Pileup (pp, \sqrt{s} =13 TeV)



6000

5000

CMS



25

6000

5000

4000

3000

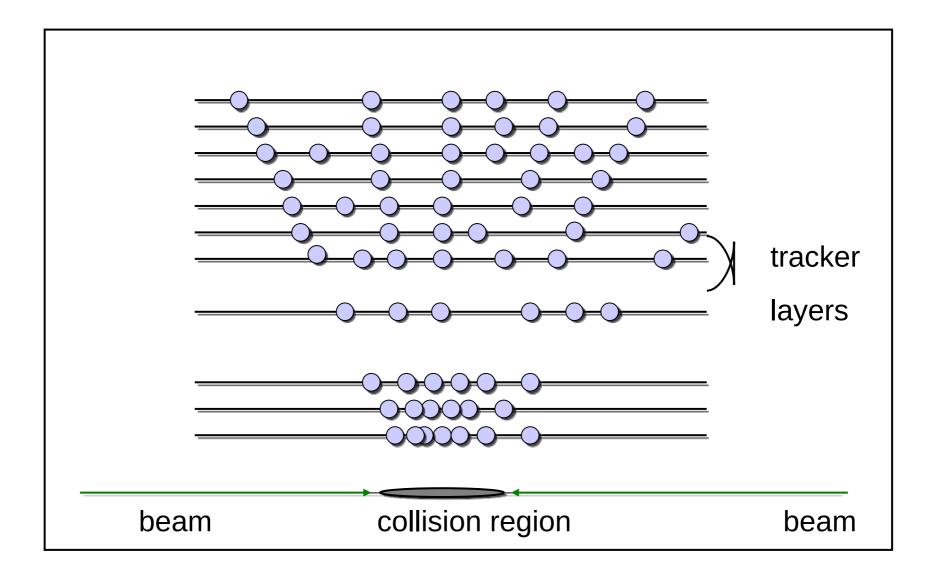
2000

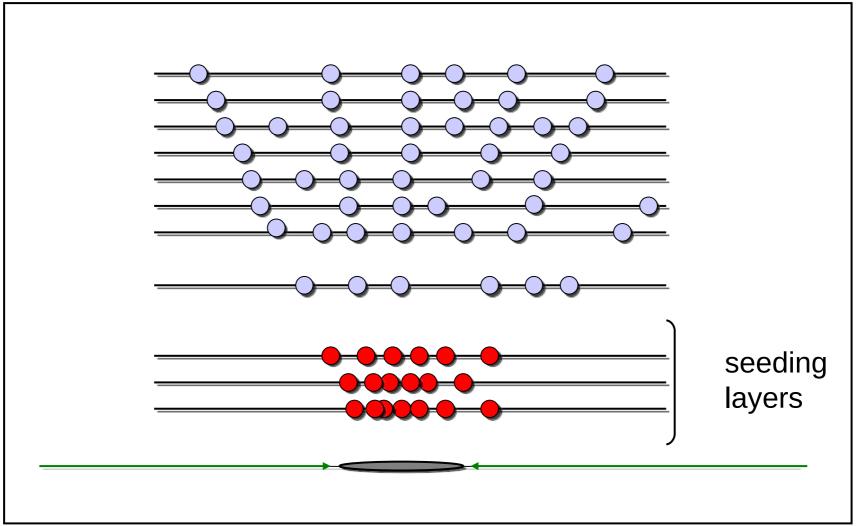
1000

0

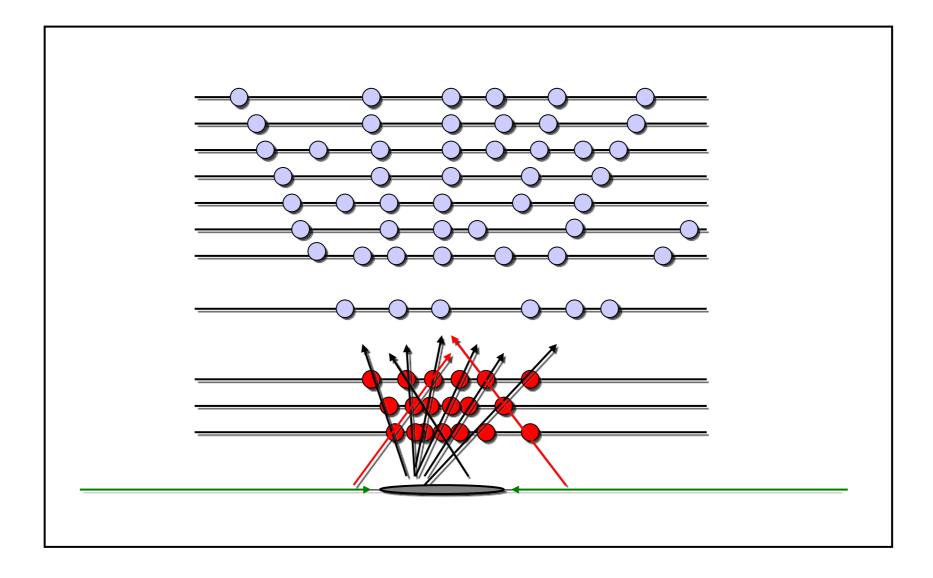
Run II: <*µ*> = 34

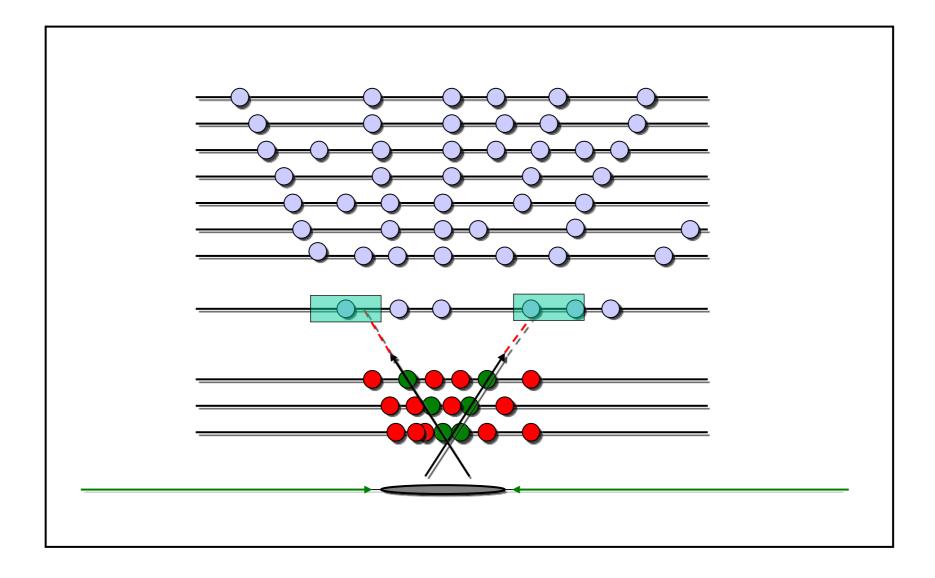
2018: <µ> = 37

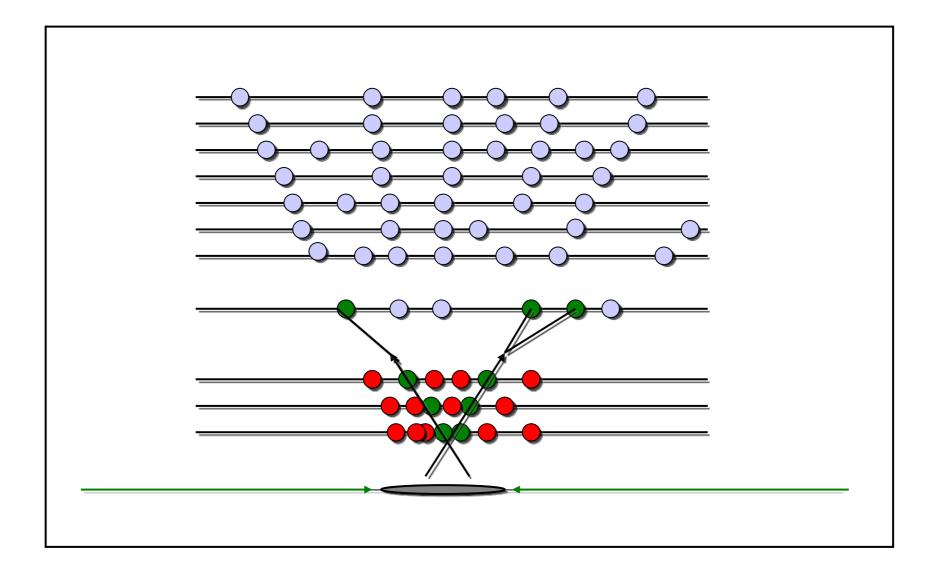


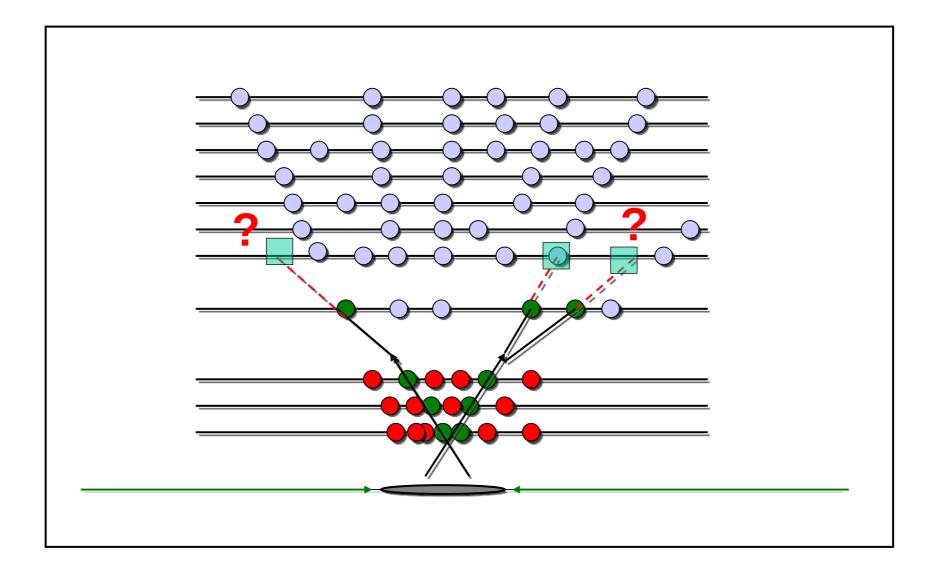


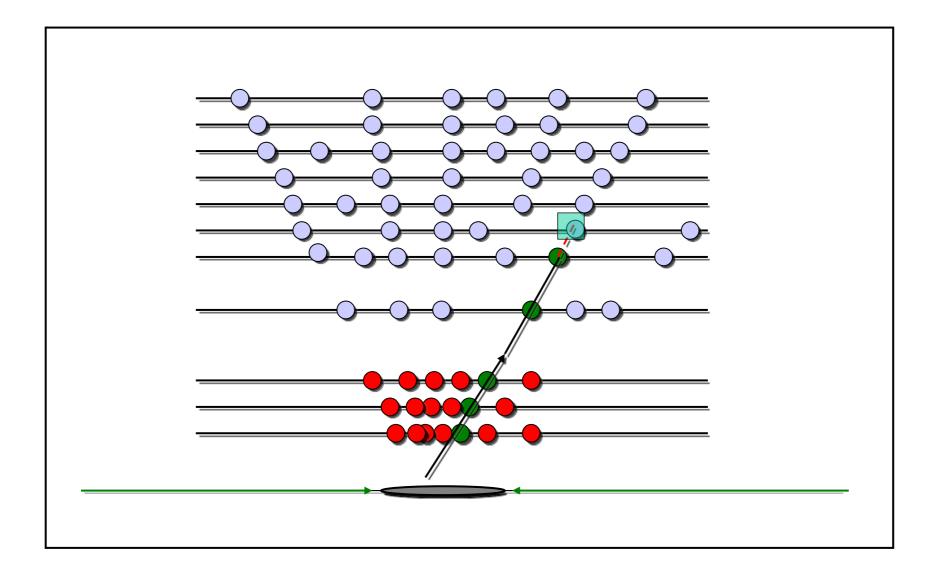
Only a subset of layers is used for (experimental) LHthe construction of trajectory seeds 27

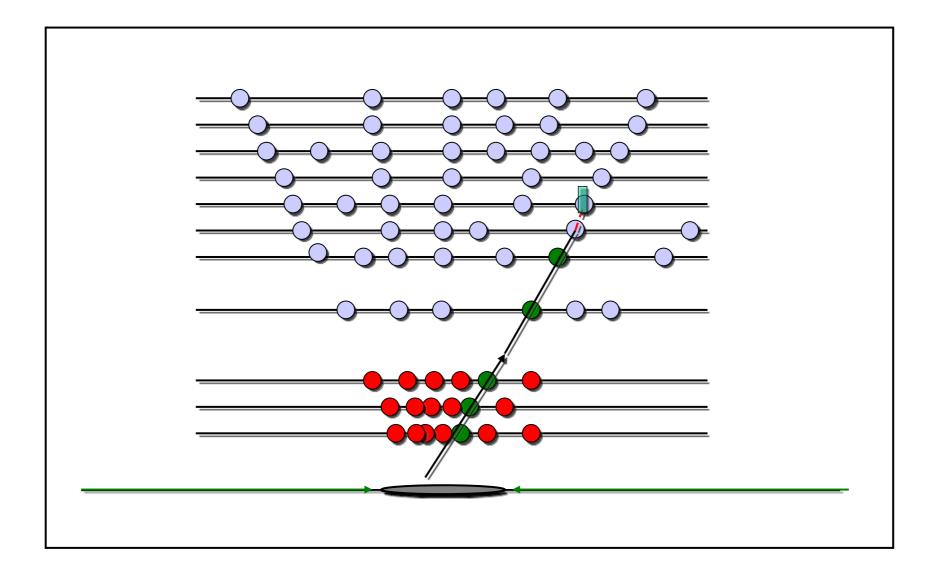


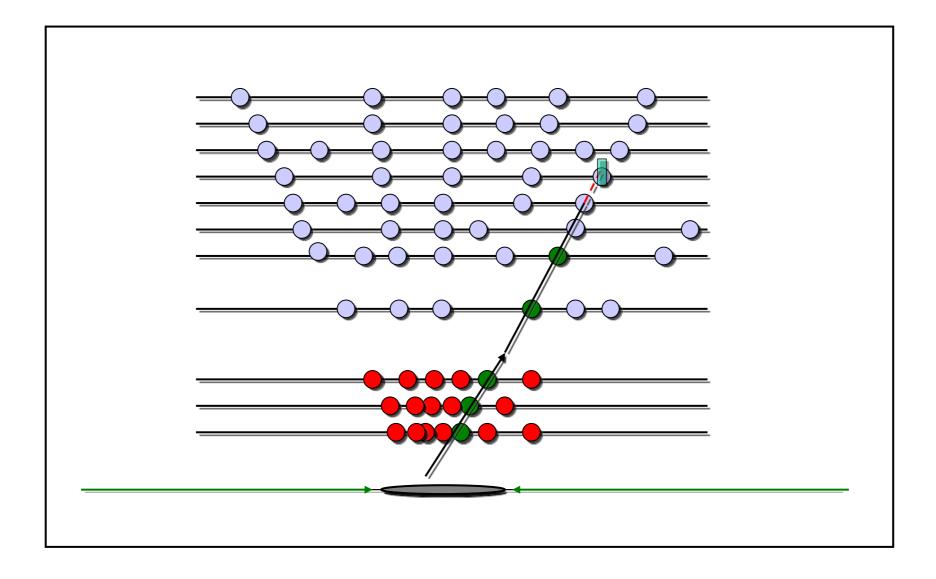


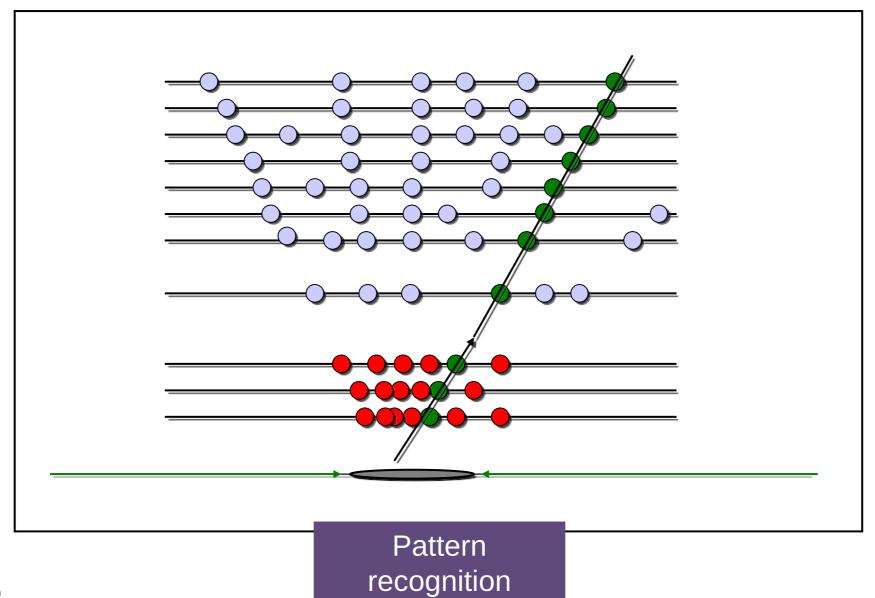




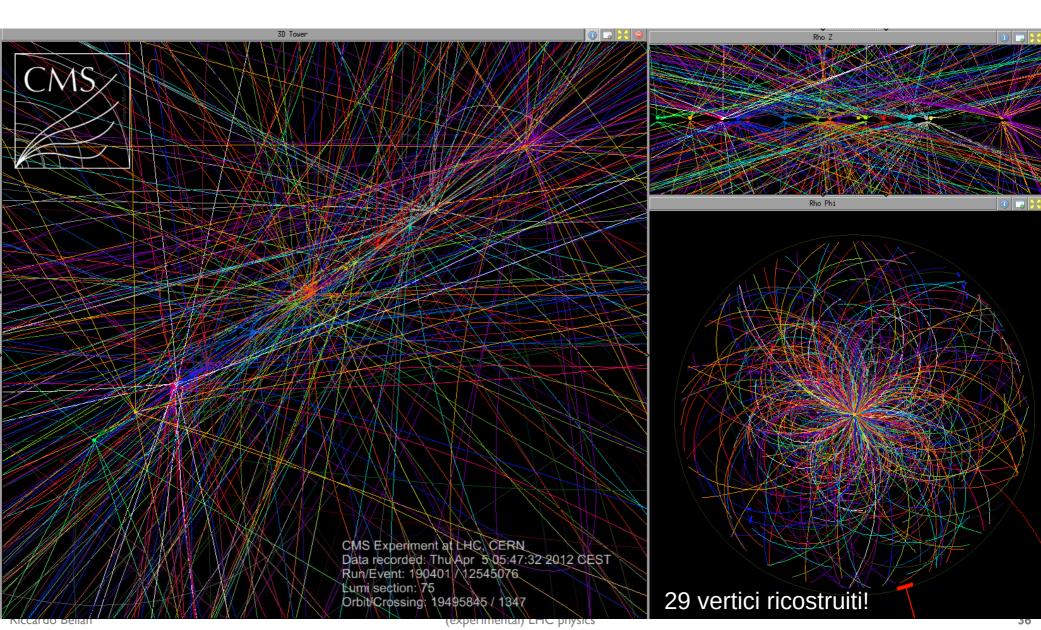




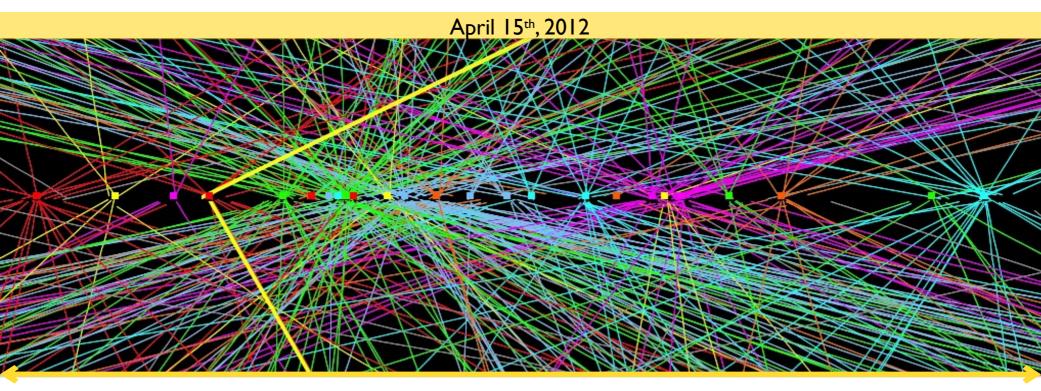




Tracking in dense environment



$Z \rightarrow \mu\mu$ event with 25 reconstructed vertices

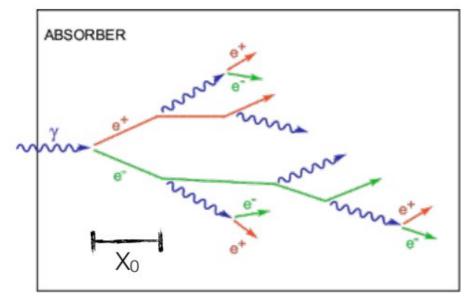


~5 cm

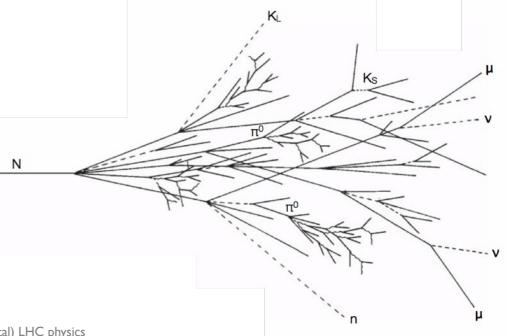
Calorimeters for showering particles

- Electromagnetic shower
 - Photons: pair production
 - stops below e⁺e⁻ threshold
 - **Electrons:** bremsstrahlung
 - Dominates, till brem cross section become smaller than ionization

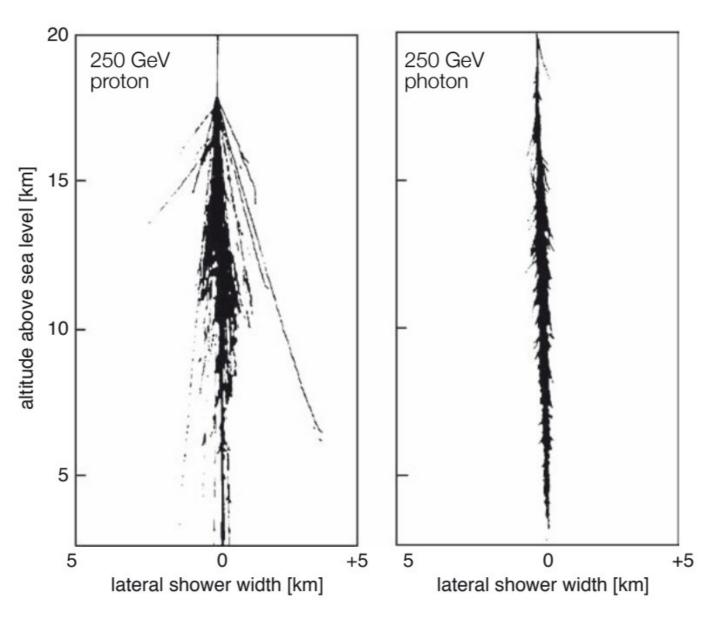
$$\left. \frac{dE}{dx}(E_c) \right|_{\text{Brems}} = \left. \frac{dE}{dx}(E_c) \right|_{\text{Ion}}$$



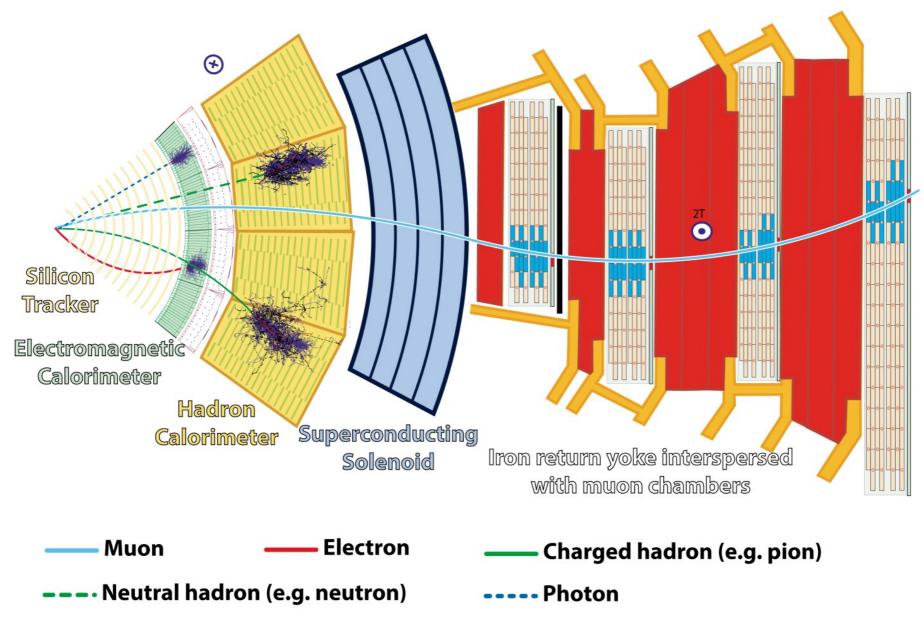
- Hadronic showers
 - Inelastic scattering w/ nuclei
 - Further inelastic scattering until below pion production threshold
 - Sequential decays
 - $\pi^0 \rightarrow \gamma \gamma$
 - Fission fragment: β -decay, γ -decay
 - Neutron capture, spallation, ...



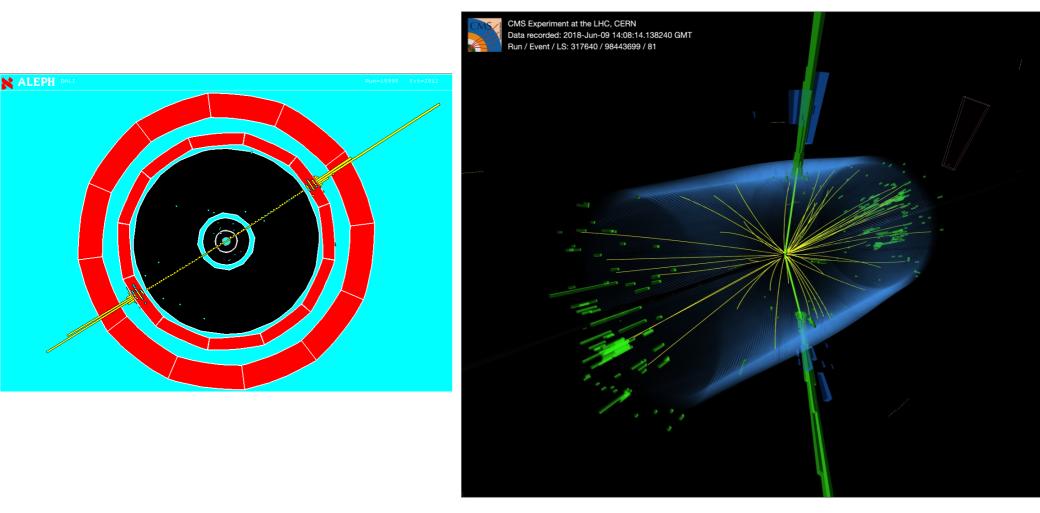
Hadronic vs. EM showers



Particle identification with CMS@LHC



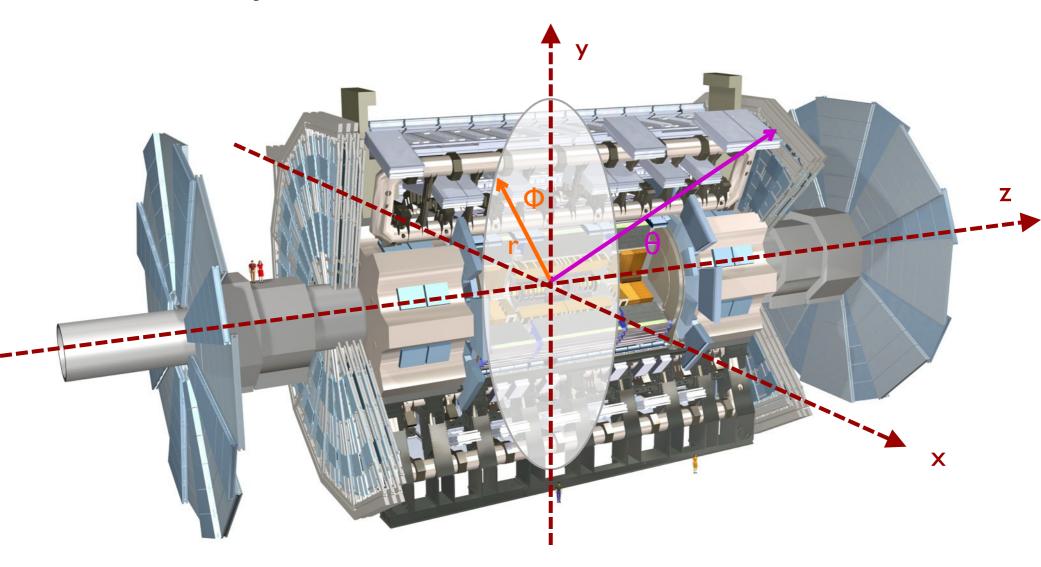
A Z \rightarrow e⁺e⁻ event at LEP and ad LHC



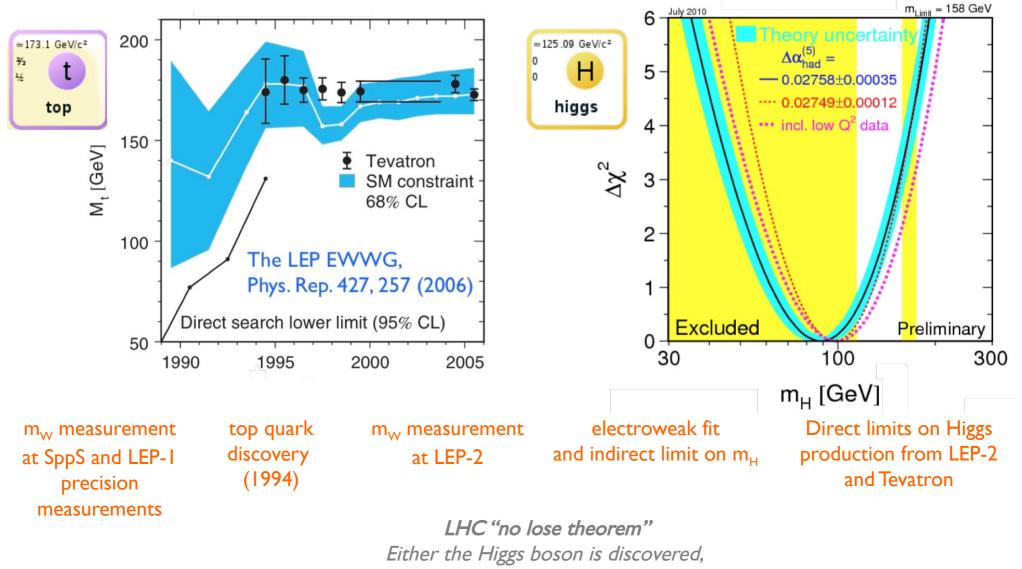
Riccardo Bellan

Additional information

Collider experiment coordinates

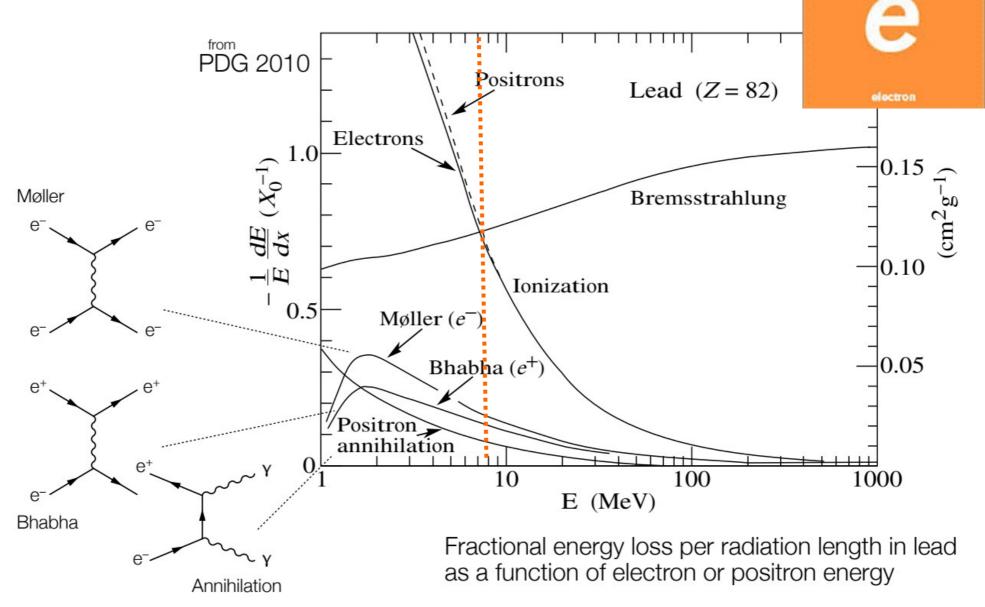


Before the LHC startup



or New Physics should manifest to avoid unitarity violation in WW scattering at TeV scale

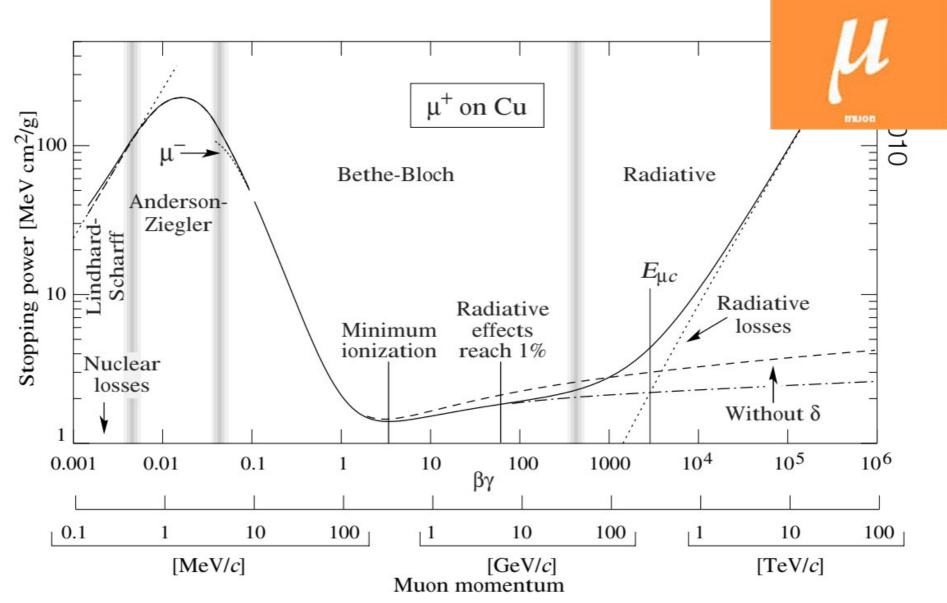
Electron energy loss



(experimental) LHC physics

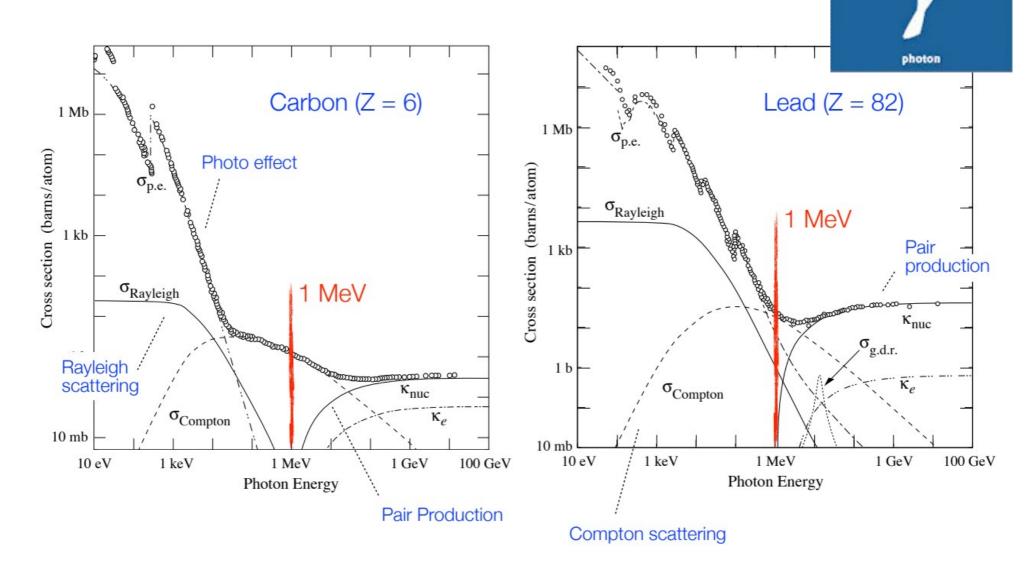
1897: Cavendish Laboratory

Muon energy loss



1937 : Caltech and Harvard

Interaction of photons with matter



HEP, SI and "natural" units

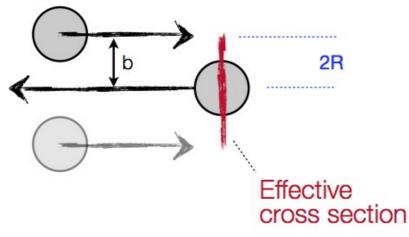
Quantity	HEP units	SI units
length	l fm	10 ⁻¹⁵ m
charge	e	1.602·10 ⁻¹⁹ C
energy	I GeV	1.602 x 10 ⁻¹⁰ J
mass	I GeV/c ²	1.78 x 10 ⁻²⁷ kg
ћ = h/2рі	6.588 x 10 ⁻²⁵ GeV s	1.055 x 10 ⁻³⁴ Js
C	2.988 x 10 ²³ fm/s	2.988 x 10 ⁸ m/s
ћс	197 MeV fm	•••
	"natural" units (ħ = c =	I)
mass	I GeV	
length	I GeV ⁻¹ = 0.1973 fm	
time	I GeV ⁻¹ = 6.59 x 10 ⁻²⁵ s	

Relativistic kinematics in a nutshell

 $E^2 = \vec{p}^2 + m^2$ $\ell = \frac{\ell_0}{\ell}$ $E = m\gamma$ $\vec{p} = m\gamma\vec{\beta}$ $t = t_0 \gamma$ $\vec{\beta} = \frac{\vec{p}}{E}$

Cross section: magnitude and units

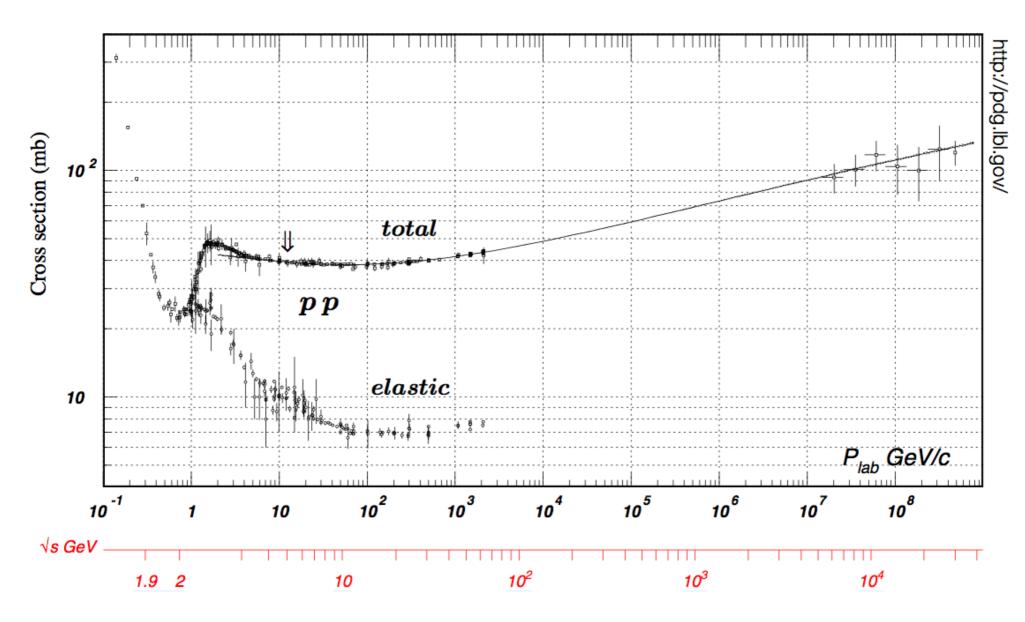
[σ] = mb	with	1 mb = 10	0 ⁻²⁷ cm ²
[σ] = GeV ⁻²	with		= 0.389 mb .57 GeV ⁻²
Estimating the proton-proton cross section:			= 0.1973 GeV fm = 0.389 GeV ² mb
	[σ] = GeV ⁻²	[σ] = GeV ⁻² with using:	$[\sigma] = \text{GeV}^{-2}$ with $1 \text{ GeV}^{-2} =$ 1 mb = 2 using: $\frac{1}{(\text{bc})^2}$



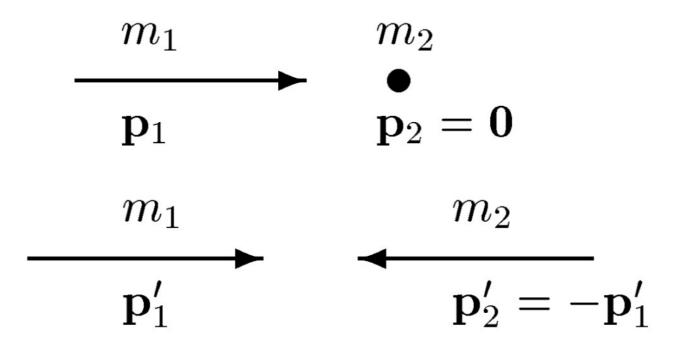
Proton radius: R = 0.8 fmStrong interactions happens up to b = 2R

 $\sigma = \pi (2R)^2 = \pi \cdot 1.6^2 \text{ fm}^2$ = $\pi \cdot 1.6^2 \ 10^{-26} \text{ cm}^2$ = $\pi \cdot 1.6^2 \ 10 \text{ mb}$ = 80 mb

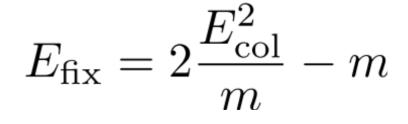
Proton-proton scattering cross-section



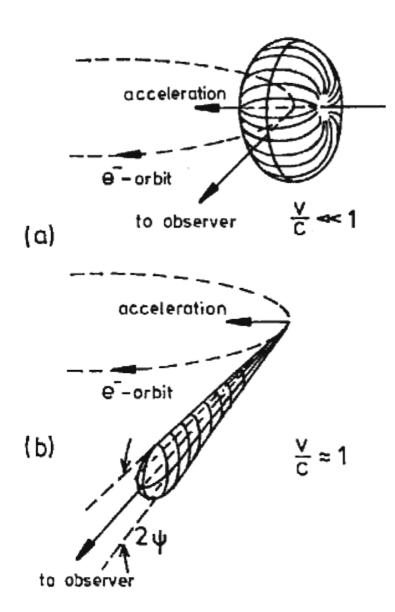
Fixed target vs. collider



How much energy should a fixed target experiment have to equal the center of mass energy of two colliding beam?



Syncrotron radiation



energy lost per revolution

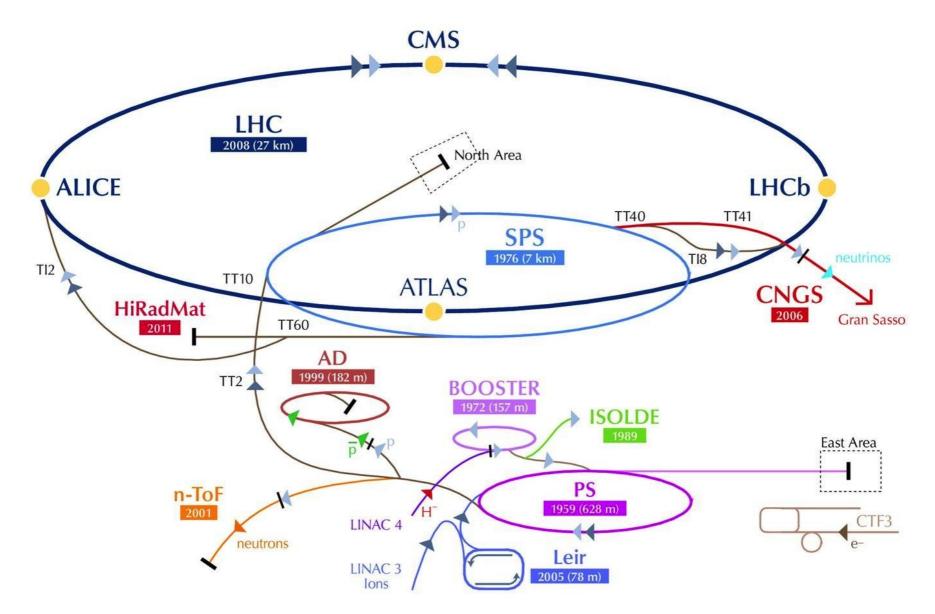
$$\Delta E = \frac{4\pi}{3} \frac{1}{4\pi\epsilon_0} \left(\frac{e^3\beta^3\gamma^4}{R}\right)$$

electrons vs. protons

$$\frac{\Delta E_e}{\Delta E_p} \simeq \left(\frac{m_p}{m_e}\right)^4$$

It's easier to accelerate protons to higher energies, but protons are fundamentals...

CERN accelerator complex



Magnetic spectrometer

Charged particle in magnetic field

 $\frac{d\vec{p}}{dt} = q\vec{\beta} \times \vec{B}$

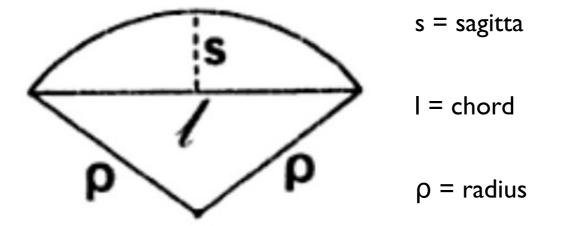
If the field is constant and we neglect presence of matter, momentum magnitude is constant with time, trajectory is helical

$$p[\text{GeV}] = 0.3B[\text{T}]\rho[\text{m}]$$

Actual trajectory differ from exact helix because of:

- magnetic field inhomogeneity
- particle energy loss (ionization, multiple scattering)

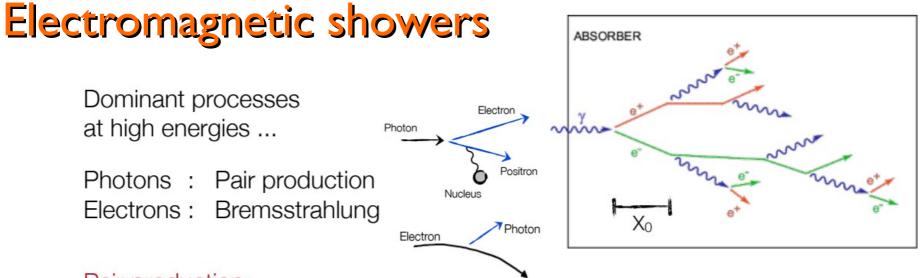
Momentum measurement



$$\rho \simeq \frac{l^2}{8s} \quad p = 0.3 \frac{Bl^2}{8s}$$
$$\left|\frac{\delta p}{p}\right| = \left|\frac{\delta s}{s}\right|$$

smaller for larger number of measurement error points Momentum resolution due to measurement error $\left|\frac{\delta p}{p}\right| = A_N \frac{\epsilon}{L^2} \frac{p}{0.3B}$

Momentum resolution gets worse for larger momenta projected track length resolution is improved in magnetic field faster by increasing L then B



Pair production:

$$\begin{split} \sigma_{\text{pair}} &\approx \frac{7}{9} \left(4 \,\alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right) \\ &= \frac{7}{9} \frac{A}{N_A X_0} \quad \text{[Xo: radiation length]}_{\text{[in cm or g/cm2]}} \end{split}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \, \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

Bremsstrahlung:

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{Z^2}{A} r_e^2 \cdot E \ \ln \frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

 $\bullet E = E_0 e^{-x/X_0}$

After passage of one X₀ electron has only (1/e)th of its primary energy ... [i.e. 37%]

Critical energy:
$$\frac{dE}{dx}(E_c)\Big|_{\text{Brems}} = \left.\frac{dE}{dx}(E_c)\right|_{\text{Ion}}$$

Hadronic showers

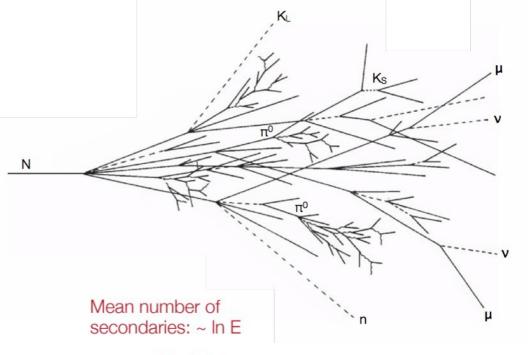
Shower development:

- 1. p + Nucleus \rightarrow Pions + N^{*} + ...
- 2. Secondary particles ...

undergo further inelastic collisions until they fall below pion production threshold

3. Sequential decays ...

 $\pi_0 \rightarrow \gamma \gamma$: yields electromagnetic shower Fission fragments $\rightarrow \beta$ -decay, γ -decay Neutron capture \rightarrow fission Spallation ...



Typical transverse momentum: $p_t \sim 350 \text{ MeV/c}$

Substantial	Cascade energy distribution: [Example: 5 GeV proton in lead-scintillator calorimeter]	1000 MoV/[400/]
Substantial electromagnetic fraction	lonization energy of charged particles (p,π,μ) Electromagnetic shower (π ⁰ ,η ⁰ ,e) Neutrons Photons from nuclear de-excitation Non-detectable energy (nuclear binding, neutrinos)	1980 MeV [40%] 760 MeV [15%] 520 MeV [10%] 310 MeV [6%] 1430 MeV [29%]
		5000 MeV [29%]

Homogeneous calorimeters

★ In a homogeneous calorimeter the whole detector volume is filled by a high-density material which simultaneously serves as absorber as well as as active medium ...

Signal	Material
Scintillation light	BGO, BaF ₂ , CeF ₃ ,
Cherenkov light	Lead Glass
Ionization signal	Liquid nobel gases (Ar, Kr, Xe)

- ★ Advantage: homogenous calorimeters provide optimal energy resolution
- ★ Disadvantage: very expensive
- ★ Homogenous calorimeters are exclusively used for electromagnetic calorimeter, i.e. energy measurement of electrons and photons

Sampling calorimeters

Scheme of a sandwich calorimeter

Principle:

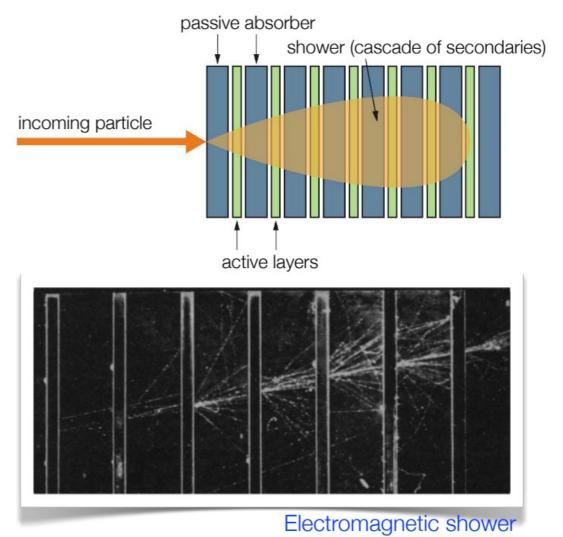
Alternating layers of absorber and active material [sandwich calorimeter]

Absorber materials: [high density]

> Iron (Fe) Lead (Pb) Uranium (U) [For compensation ...]

Active materials:

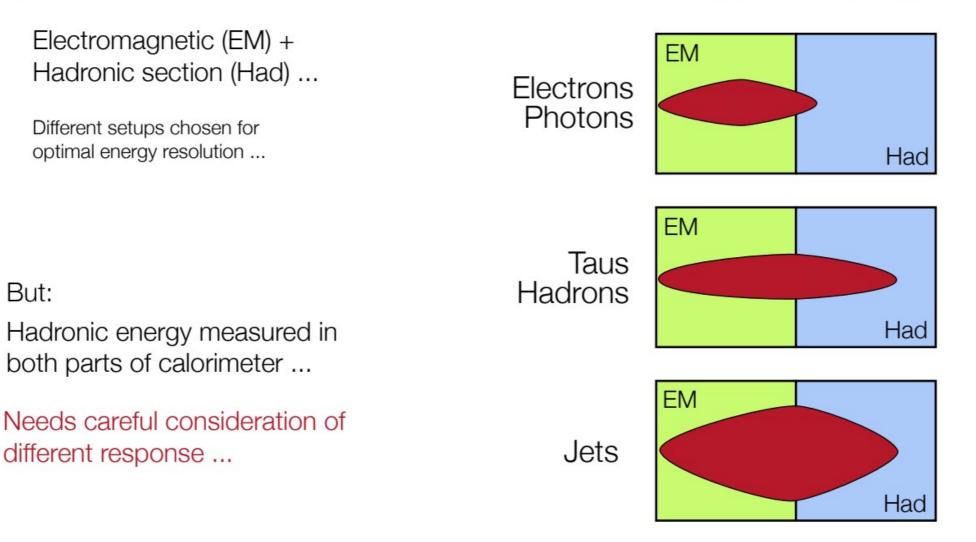
Plastic scintillator Silicon detectors Liquid ionization chamber Gas detectors



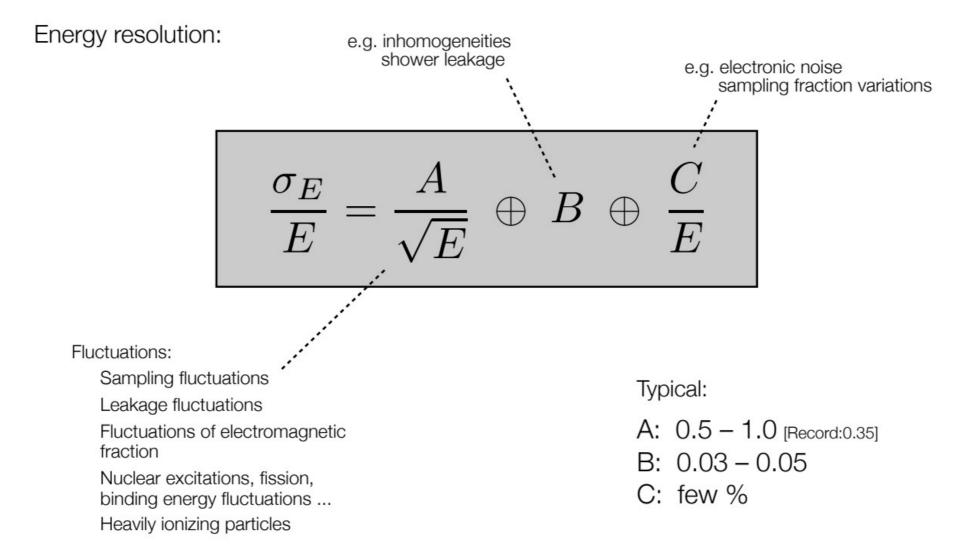
A typical HEP calorimetry system

Typical Calorimeter: two components ...

Schematic of a typical HEP calorimeter

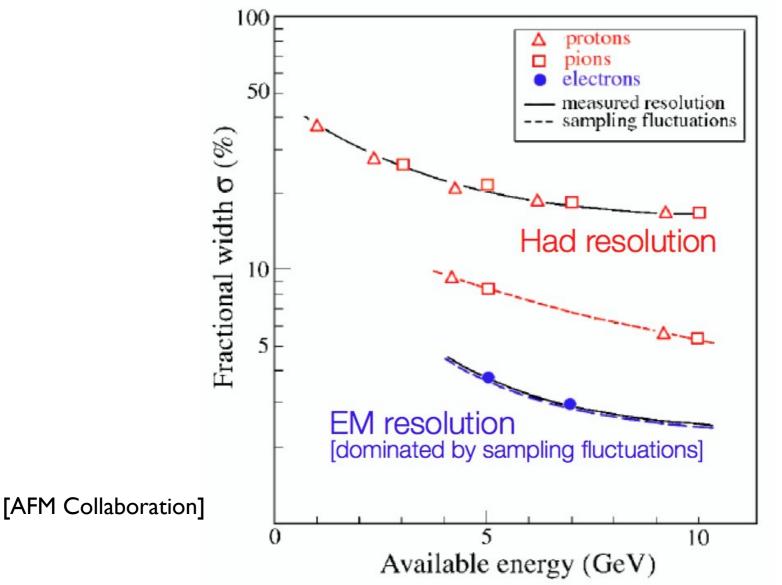


Energy resolution in calorimeters



Riccardo Bellan

Resolution: EM vs. HAD



Sampling fluctuations only minor contribution to hadronic energy resolution