Symplectic classical mechanics Making life harder to make it easier

Alessandro Cerati

Student presentation for GraSpa 2024, Annecy

July 16, 2024

Lagrangian of a physical system, coordinates q, kinetic energy K, potential energy V:

 $\mathcal{L} = K(\dot{q}) - V(q)$

Euler-Lagrange equations:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\dot{q}} - \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}q} = 0$$

Solutions are (q, \dot{q}, t) paths of the system!

Legendre-transforming \mathcal{L} from velocities \dot{q} to momenta $p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$ gives the **Hamiltonian**

$$\mathcal{H}(q,p) = p \cdot \dot{q}(p) - \mathcal{L}(q,\dot{q}(p),t)$$

and paths obey the canonical equations

$$rac{\partial \mathcal{H}}{\partial p} = \dot{q} \qquad rac{\partial \mathcal{H}}{\partial q} = -\dot{p}$$

(q, p) are coordinates of 2n-D phase space.

Smooth manifold: set X and atlas (U_i, ϕ_i) . Charts ϕ_i let us locally treat manifolds as \mathbb{R}^n .

- **Tangent vectors** *v*: paths through *x*.
- Vector fields: smooth maps $x \mapsto v$.
- Cotangent vectors α : duals of paths.
- 1-forms: smooth maps $x \mapsto \alpha$.
- **Differential**: $dH : v \mapsto \frac{d}{dt}\Big|_{t=0} H(x + tv)$.
- 2-form: signed area between 1-forms.
- **Exterior derivative** $d\alpha$: 1-form \mapsto 2-form.

Cotangent bundle $\{(x, \alpha)\}$ is phase space!

Symplectic form: 2-form ω which is closed and non-degenerate.

For cotangent bundles: **canonical form** is $\omega = -d\lambda$, where λ is α applied to the first *n* tangent coordinates to the bundle.

Hamiltonian vector field: V_H such that

 $\omega(V_H,\cdot)=\mathsf{d} H$

Solutions to $\frac{d}{dt}((x,\alpha)) = V_H((x,\alpha))$ are phase space paths of the system!

Some applications: why do all this?

- Coordinate-independent formulation
 - Liouville's theorem
 - Poincaré recurrence
- Non-cotangent bundle manifolds: symplectic reduction of symmetries
- Lie algebra and geometric quantization
 - Lagrangian submanifolds and states

Thank you!

Now for question time :)