Introduction to detectors

For particle physics and astroparticles

NAREI LORENZO MARTINEZ - LAPP/CNRS - JULY 16TH 2024

1

What do we want to detect?

• + unknown particles !

W

CERN

Forces

What do we want to detect?

• Not just random particles, we want high-energy (HE) particles

Content of the Universe

How are HE particles produced?

• Cosmic accelerators

How are HE particles produced? LHC = Large Hadron Collider • Human accelerators

CERN

LHCb

CMS

$E = mc^2$

How can we detect particles?

• Thanks to their INTERACTION with matter ! Examples:

- cosmic particles can interact with **atmosphere** (hydrogen, oxygen, azote,)
- accelerator particles interact with **detectors** (lead, tungsten, copper, silicium, ...)

Interaction : Electromagnetic

7

Interaction of charged particles with matter

Ionisation -> primary mechanism of energy loss

remove one or more electrons from an atom near the charged particle's trajectory

Excitation

 promote one of atom's electrons to a higher energy state. Excited atom de-excite and emit low energy ultraviolet photon

• Bremstrallung

electromagnetic radiation produced when charged particles are deflected

Cerenkov radiation

• blue light emitted by charged particles that travel through a transparent medium (e.g., water) faster than speed of light in that medium. Essentially limited to electrons.

Charged particle in a magnetic field

• Curvature gives access to mass, charge and momentum of particule

Interaction of photon with matter

 W^{-}

Strong force and color charge

3 colors 3 anti-colors

8 gluons

-> THERE ARE THEN 36 QUARKS IN THE THEORY

Color confinement

• Not possible to find a colored particle alone ! Only « white » particles allowed

Mésons

- Detection
- When a single quark or gluon is emitted, process of fragmentation and hadronisation occurs to « whiten » the particle
- Results in a hadronic «jet»

Weak interaction

Unique force to which neutrinos are sentitive to !

ACCELERATING SCIENCE

Interaction of neutrinos with matter

	Electrons	Protons		
	Elastic scattering	Inverse beta decay		
Chargod	$\nu + e^- \rightarrow \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$		
current		γ e ⁺ γ		
	v~e⁻	ν _e n γ		
	e ⁻	Elastic		
Neutral	v	p		
current		v		
	Useful for pointing	very low energy recoils		

• Very rare interactions and tiny effects

How can we recognize particles?

- Thanks to their specific properties!
- And the way they interact with matter

RÉPUBLIQUE FRANÇAISE CARTE NATIONALE D'IDENTITÉ / IDENTITY CARD

First name: W Family Name: Boson Birth date : January 25 1983 Birth place : CERN Mass : $80.4 \text{ GeV}/c^2$ Charge: +1 or -1 Lifetime: 10⁻²⁵ *s*, *decays to quarks* or leptons

How were particles detected in the past?

Some examples

Ballons flight and cosmic rays - 1912

- In 1909, Theodor Wulf was looking for origin of ionizing radiation registered on an electroscope -> tested on Eiffel tower (300 m) -> no much decrease compared to ground
- In 1912, several ascents, one of which at 5300m by Victor Hess -> increase of radiation level ! -> Discovery of cosmic rays

nage:Wikimedia commons)

First neutrino detection and scintillators - 1956

- In 1956, Fred Reines and Clyde Cowan conducted an experiment (project Poltergeist) close to a reactor in USA : two tanks with 200 liters of water with ~40 kg of dissolved cadmium (great absorber of neutrons).
- Water tanks sandwiched between two layers of organic liquid scintillators (just) invented !) containing 110 photomultiplier tubes —> observation of neutrino

Bubble chamber and neutral current - 1973

- Bubble chamber (Donald Glaser): closed cavity filled with liquid (hydrogen) in metastable state, at precise limit of boiling. When external particle interacts with atoms of the liquid -> small rise in local temperature -> small bubbles form, trajectory curved thanks to magnetic field -> photos
 - need to examine thousands of photographs !
- **Discovery of neutral currents**, Gargamelle (CERN), 1973

Le 19 juillet 1973, le CERN (European Laboratory for Particle Physics) annonçait sa première découverte majeure : les "courants neutres faibles". - 1973-2024 CERN (License: CC-BY-4.0)

Wire chamber - W, Z bosons, gluon - 1968

- 1968: invention by Georges Charpak of multiwire **proportional chamber** -> new detector technique that could record millions of particle tracks each second, instead of examining photograph one by one
- Electrical voltage applied to a gas-filled tube with a wire running through its centre.
- Thanks to this technique, discovery of charm quark (BNL, SLAC - 1975), of gluon (TASSO in PETRA- DESY, 1979), and of W and Z bosons (UA1/UA2 -CERN, 1983)

Georges Charpak's 'multiwire proportional chamber' particle detector consisted of many parallel wires, each connected to individual amplifiers. Linked to a computer, it could achieve a counting rate a thousand times better than before (Image: CERN)

Current detection techniques

Some examples

24

Neutrinos detection

- Very rare interactions -> very large detectors volumes + underground to protect against background
- Super-Kamiokande (Japan, 1000 m underground): 50 000 tons of water with ~10000 PMTs to detect Cerenkov light, 40m x 40 m. Electron-neutrino interacts to create an electron. Electron produces a 'ring' due to radiation of subsidiary photons that turn into electron-positron pairs. -> electromagnetic cascade
 - only 90 candidates in a decade !
- Extension (Hyper-Kamiokande) expected in ~2027 (258 ktons of pure water)

red indicates the earliest light to arrive

Neutrinos detection

- - argon used because does not reabsorb ionisation electrons (noble element) + scintillations
- ProtoDune currently taking data at CERN, to prove feasibility (20 times smaller than DUNE) -> LAPP team !

• Dune (2032): 70 ktons of of liquid argon (LAr), 1.5 km underground, when neutrinos enter in detector, they collide with Argon atoms -> charged particules created -> ionisation of the argon detected with time projection chambers (TPC) -> 3D images.

Cosmic rays

- Cosmic particules entering in atmosphere -> cascade -> Cerenkov light cone of ~250 m for a few nanoseconds close to ground
- CTA (~2025) : 118 telescopes with 3 different sizes on two sites (Palma, Chili). Large mirrors to converge light + camera with PMTs with short exposure time to record the signal -> LAPP team!

Identifying particule

Trackers

- 3 main technologies
 - **gaseous**: ionization in gaz (electron-ion pair). Amplification needed
 - **silicon** : ionisation in solid material (electron-hole pair). No amplification needed
 - scintillating fibers : light detected with photodetectors
- Need very low density to avoid shower development
- Measurement of particle momentum and decay vertices

Transition Radiation Tracker of ATLAS (gas)

Semiconductor Tracker of ATLAS (silicon)

Decay vertices

Calorimeters

- Particules initiates a shower due to dense material (bremstrallung and pair production)
 - electromagnetic (electron/photon) or hadronic (particule sensitive to strong force -> denser material to develop completely)
- Shower is either contained entirely or sampled (dense material and active material)
 - Shape of shower helps to identify the particule
- Shower development scales with radiation length
 - distance in which the energy of the particle is reduced by 1/ e (≈63.2%) due to bremsstrahlung

	Air	Eau	AI	LAr	Fe	Pb	PbWO ₄
Z	-	-	13	18	26	82	-
X ₀ (cm)	30420	36	8,9	14	1,76	0.56	0.89

Approximation: $X_0 \approx \frac{(716 \text{ g cm}^2) \text{ A}}{Z(Z+1) \ln (287 \sqrt{Z})}$

32

Calorimeters : energy resolution

- Intrinsic resolution ~1/sqrt(E)
- Electronic noise : 1/E
- Non-uniformities : constant term -> dominant at high energy

$$\frac{\sigma(E)}{E} \approx \sqrt{\left(\frac{c_1}{\sqrt{E}}\right)^2 + \left(\frac{c_2}{E}\right)^2 + c_3^2}$$

Charge amplifier Absorber and electrodes High voltage

scintillators plates

Homogen calorimete

Sampling calorimeter

neous ers:	Experiment	Material	Energy resolution (E in GeV)	
	NA48	Liquid Kr	4.8%/√E ⊕ 0.22%	<u>reference</u>
	BELLE	CsI(TI)	0.8%/√E ⊕ 1.3%	
	CMS	PbWO ₄	2.7%/√E ⊕ 0.55%*	

'S:	Experiment	Detector	Detector thickness [mm]	Absorber material	Absorber thickness [mm]	Energy resol (E in GeV
	UA1	Scintillator	1.5	Pb	1.2	15%/√E
	SLD	liquid Ar	2.75	Pb	2.0	8%/√E
	DELPHI	Ar + 20% CH ₄	8	Pb	3.2	16%/√E
	ALEPH	Si	0.2	W	7.0	25%/√E
	ATLAS	liquid Ar		Pb		10%/√E ⊕ 0.
	LHCb	Scintillator		Fe		10%/√E ⊕ 1.

* Design values

Photomultiplier

33

Photons and electrons in ATLAS

Reconstructed from electronic signals recorded by readout system

Jets of hadrons

 The hadronisation seen as a «jet » in detector (several hadrons developing hadronic showers at the same time)

35

Nuon spectrometers

- Identify and measures momentum of muons
- Thousands of chambers, big magnetic field to curve high-energy muons
- Biggest sub-detector
- Main technologies (in ATLAS) : Monitored Drift Tubes (0.1 mm precision, aluminium tube filled with gas mixture + wire at the center), **Resistive Plate Chambers** (tracking within 2.5us), **Small-Strip Thin-**Gap Chambers and Micromegas (taking in high-intensity collisions

Resistive Plate Chambers

Monitored Drift Tubes

Muons in ATLAS

 Escape calorimeters, track recorded in spectrometer

Particule identification

How to read the signal?

• Example with ATLAS calorimeter :

IN DETECTOR :

- AMPLIFICATION AND SHAPING OF SIGNAL
- **DIGITIZATION (SAMPLING)**
- **OFF-DETECTOR**
- COMPUTATION OF ENERGY, QUALITY, TIMING

-> THOUSANDS OF ELECTRONIC BOARDS !

Building the future detectors - HL-LHC

Summary

- Detection of particles essentially based on how they interact with matter
- With time, detectors technics have improved : more precision, faster detection, better recording of signals
- Technologies will continue to improve, allowing us to see even deeper in fundamental laws

Thank you !

Comment retrouver la particule de départ ?

 $M > m_1 + m_2$

énergie totale

masse

mouvement

Pour reconstruire la masse des particules désintégrées, il faut mesurer <u>l'énergie</u> et la <u>masse</u> de toutes les particules produites lors4 de la collision

Histogrammes et mesures

- Une mesure est toujours entachée d'incertitude :
 - Précision de l'instrument de mesure
 - Calibration de l'instrument
 - Erreur de manipulation
 - Fluctuations statistiques

•

Pour limiter ces erreurs, il faut :

Faire un grand nombre de mesures

Utiliser des objets connus pour calibrer notre instrument

Si possible, réaliser la même mesure plusieurs fois avec des instruments différents

Médiateur = gluon

L= q MV t iFDY th.c. $\begin{array}{c} \begin{array}{c} & \downarrow_{i} & \downarrow_{j} & \downarrow_{j} & \downarrow_{i} \\ & + \left| D \right| & \left| \mathcal{A} \right|^{2} \\ & - \left| \int \left(\mathcal{A} \right) \right| \end{array}$

Prédit en 1962 (Gell-Mann) Découvert en 1979 (PETRA,Hambourg) d'après une idée de J. Ellis

45