Physique des ions lourds ultra-relativistes : étude du plasma de quarks et de gluons

De la Physique au Détecteur École thématique in2p3 24 novembre - 29 novembre 2024 Fréjus - France

> Cynthia Hadjidakis IJCLab (Orsay)

Récapitulatifs du 1^{er} cours

- Les hadrons sont des objets extrêmement complexes
 - hadrons = quarks et gluons
 - gluons = médiateurs de l'interaction forte
 - l'interaction forte est décrite par la chromodynamique quantique (QCD)
- Le plasma de quarks et de gluons (QGP) est un état de la matière nucléaire obtenu à haute densité / température
 - prédit par la QCD
 - important pour étudier les propriétés de l'interaction forte (confinement)
 - lien avec la cosmologie/astrophysique ullet
- Les collisions d'ions lourds ultra-relativistes permettent de produire le QGP
 - plusieurs signatures du QGP prédites par les approches théoriques

Quels instruments pour recréer et observer le QGP ? (deuxième cours)

Sommaire

- - 1. Notions fondamentales et interaction forte
 - 2. Les phases de la matière nucléaire et le QGP 3. Sonder le QGP en laboratoire
- II. De la physique au détecteur
 - 1. Les accélérateurs d'ions lourds ultra-relativistes
 - 2. Expériences passées et présentes
 - 3. L'expérience ALICE et le spectromètre à muons
 - 4. La vie d'un(e) physicien(ne) sur une expérience
- III. Résultats et expériences futures
 - Des données aux résultats
 - 2. Des résultats (une sélection) à la théorie
 - 3. Upgrade et expériences futures

I. Matière nucléaire et le plasma de quarks et de gluons (QGP)

SPS (cible fixe) :

- 6.3 km de circonférence, injecteur du LHC
- énergie du faisceau de Pb jusqu'à 158 A.GeV, de protons jusqu'à 450 GeV
- 2 sites expérimentaux, 7 expériences ions lourds, mise en service : 1976 LHC (collisionneur) :
- circonférence : 27 km, profondeur moyenne : 100 mètres, ~9300 aimants
- 4 expériences principales, mise en service : 2008

Le CERN

• énergie de faisceau : 2.76 A.TeV Pb (A = 208), Xe (A = 129) / 7 TeV proton (= 99.9999991 % de la vitesse de la lumière)

Brookhaven National Laboratory (BNL)

RHIC : collisionneur spécialement dédié à la mise en évidence et à l'étude du QGP • 1740 aimants supraconducteurs, 3.8 km de circonférence • accélère protons 30-250 GeV, Au 3-100 A.GeV mais aussi d, Al, Cu, U, Zr et Ru • 6 points d'interaction, 4 expériences ions lourds, mise en service : 2000

Du SPS au LHC : collisions d'ions lourds ultra-relativistes

SPS@CERN – Cible fixe – années 80-90 pp, pA, SU, OU, InIn, PbPb

 $\sqrt{s_{NN}} \approx 20 \text{ GeV}$

 $\sqrt{s_{NN}} = 7 \dots 200 \text{ GeV}$

x 10

LHC@CERN – Collisionneur – 2010-... pp, pPb, PbPb, XeXe

 $\sqrt{s_{NN}} = 2.76 \dots 5.36 \text{ TeV}$

Densité d'énergie

Cynthia Hadjidakis De la Physique au Détecteur 24 novembre - 29 novembre 2024

Densité d'énergie atteinte dans les collisions d'ions lourds ultra-relativistes : scénario d'expansion de Bjorken

Densité d'énergie

 E_T : energie transverse mesurée y = rapidité : équivalent de la vitesse longitudinale en régime non relativiste τ_0 : temps de formation du QGP

Modélisation simpliste qui dépend de τ_0

Densité d'énergie atteinte dans les collisions d'ions lourds ultra-relativistes : scénario d'expansion de Bjorken

$$\varepsilon = \frac{1}{\pi R^2 \tau_0} \frac{dE_T}{dy}$$

	SPS	RHIC	LHC
$\sqrt{s_{NN}}$ (GeV) (max)	19	200	5500 (design)
$dN_{ch}/d\eta \mid_{\eta=0}$	400	600	1600 (à 2.76 TeV)
V _f (fm ³)	1500	2000	5000 (à 2.76 TeV)
$\tau_f(fm/c)$: collision \rightarrow freeze-out	6	7	10 (à 2.76 TeV)
$\epsilon (GeV/fm^3)_{\tau_0=1fm/c}$	2.5	5	15
τ_0 (fm/c) : formation QGP	~1	~0.5	<0.2

Comparaison des accélérateurs

	SPS	RHIC	LHC
$\sqrt{s_{NN}}$ (GeV) (max)	19	200	5500 (design)
$dN_{ch}/d\eta \mid_{\eta=0}$	400	600	1600 (à 2.76 TeV)
V _f (fm ³)	1500	2000	5000 (à 2.76 TeV)
$\tau_f(fm/c)$: collision \rightarrow freeze-out	6	7	10 (à 2.76 TeV)
$\epsilon (GeV/fm^3)_{\tau_0=1fm/c}$	2.5	5	15
$\tau_0 (fm/c)$: formation QGP	~1	~0.5	<0.2

Conditions extrêmes au LHC :

- densité d'énergie, volume et temps de vie plus grand au LHC
- $\varepsilon > 15 \text{ GeV}/\text{fm}^3$
 - ~50 fois le cœur d'une étoile à neutrons
 - ~30 milliards de tonnes/cm³
 - ~10 protons confinés dans le volume d'un seul !

Comparaison des accélérateurs

Sommaire

- - 1. Notions fondamentales et interaction forte
 - 2. Les phases de la matière nucléaire et le QGP
 - 3. Sonder le QGP en laboratoire
- II. De la physique au détecteur
 - 2. Expériences passées et présentes
 - 3. L'expérience ALICE et le spectromètre à muons
 - 4. La vie d'un(e) physicien(ne) sur une expérience
- III. Résultats et expériences futures
 - Des données aux résultats
 - 2. Des résultats (une sélection) à la théorie
 - 3. Upgrade et expériences futures

I. Matière nucléaire et le plasma de quarks et de gluons (QGP)

1. Les accélérateurs d'ions lourds ultra-relativistes

Les expériences ions lourds au SPS

- 1986 1987 : Oxygène @ 60 & 200 GeV/nucléon
- 1987 1992 : Soufre @ 200 GeV/nucléon
- 1994 2000 : Plomb @ 40, 80 & 158 GeV/nucléon
- 2002 2003 : Indium et plomb @ 158 GeV/nucléon
- Et aussi faisceau de proton pour collisions de référence p-A

UNIVERSITE PARIS-SACLAY

				dimuons
		hadrons		NA60
ctrons				Î
		NA49	strangelets	NA50
45 es			NA52	
	dimuons		hadrons	
	NA34/3			
│ /2	Helios-3	NA35	NA36	NA38
s-2				

De la Physique au Détecteur 24 novembre - 29 novembre 2024

Les expériences ions lourds au SPS

- 1986 1987 : Oxygène @ 60 & 200 GeV/nucléon
- 1987 1992 : Soufre @ 200 GeV/nucléon
- 1994 2000 : Plomb @ 40, 80 & 158 GeV/nucléon
- 2002 2003 : Indium et plomb @ 158 GeV/nucléon
- Et aussi faisceau de proton pour collisions de référence p-A

CERN

10 FÉVRIER, 2000

Genève, le 10 février 2000. Lors d'un séminaire spécial qui s'est tenu le 10 février, les porte-parole des expériences constituant le programme des ions lourds du CERN¹ ont présenté des preuves décisives de l'existence d'un nouvel état de la matière dans lequel les quarks, au lieu d'être confinés dans des particules plus complexes, comme les protons et les neutrons, sont déliés et se déplacent librement.

Un nouvel état de la matière créé au

 $(\tau_0=1 \text{fm}/\text{c})$

De la Physique au Détecteur 24 novembre - 29 novembre 2024

Les expériences ions lourds au SPS

- 1986 1987 : Oxygène @ 60 & 200 GeV/nucléon
- 1987 1992 : Soufre @ 200 GeV/nucléon
- 1994 2000 : Plomb @ 40, 80 & 158 GeV/nucléon
- 2002 2003 : Indium et plomb @ 158 GeV/nucléon
- Et aussi faisceau de proton pour collisions de référence p-A

CERN

10 FÉVRIER, 2000

Genève, le 10 février 2000. Lors d'un séminaire spécial qui s'est tenu le 10 février, les porte-pa expériences constituant le programme des ions lourds du CERN¹ ont présenté des preuves d2008-ongoing: $\underline{NA61/SHINE}$ l'existence d'un nouvel état de la matière dans lequel les quarks, au lieu d'être confinés dans 120 collaborateurs complexes, comme les protons et les neutrons, sont déliés et se déplacent librement.

Un nouvel état de la matière créé au

 $(\tau_0=1 \text{fm}/\text{c})$

De la Physique au Détecteur 24 novembre - 29 novembre 2024

Run	Année	Système	√S _{NN} (GeV)	Run	Année	Système	$\sqrt{S_{NN}}$ (GeV)
01	2000	Au+Au	130				
02	2001-2002	Au-Au p+p	19 / 200 200	18	2018	Zr+Zr $B_{11}+B_{11}$	200 200
03	2002-2003	d+Au p+p	200 200			Au+Au Au+Au fixed target	27 2.98 / 7.15
04	2003-2004	Au+Au	62.4 / 200				
05	2005	Cu+Cu p+p	22.4 / 62.4 / 200 200				
06	2006	p+p	62.4 / 200				
07	2007	Au+Au	200				
08	2007-2008	d+Au p+p	200 200	19	2019	Au-Au Au-Au fixed target	7.3 / 9.18 /9.8/19.6/200 3 / 3.22 / 3.93 / 7.77
09	2008-2009	p+p	200 / 500				
10	2009-2010	Au+Au	200 / 62 / 39 / 11.5 / 7.7				
11	2011	Au+Au p+p	200 / 27 / 20 500	20	2020	Au-Au Au-Au fixed target	9.18 / 11.5 3.54 / 3.93 / 4.49 / 6.19 / 7.18 / 7.77
12	2012	Cu+Au U+U p+p	200 193 500 / 200				
13	2013	p+p	500	21	2021	Au+Au	7.7 / 17.4 / 200
14	2014	Au+Au h+Au	200/15 ~ 200			Au+Au fixed target O+O d+Au	3.85 / 7.15 / 11.54 / 44.5 200 200
15	2015	p+p (polarisé) p+Au, p+Al (polarisé)	~200 200			u + 7 Xu	200
16	2016	Au+Au d+Au	200 ~200, 62, 20, 40				
17	2017	p+p (polarisé) Au+Au	500 54	-			

UNIVERSITE PARIS-SACLAY

	Run	Année	Système	√S _{NN} (GeV)
o 22)	18	2018	Zr+Zr Ru+Ru Au+Au Au+Au fixed target	200 200 27 2.98 / 7.15
Species combini	19	2019	Au-Au Au-Au fixed target	7.3 / 9.18 /9.8/19.6/200 3 / 3.22 / 3.93 / 7.77
u Ru Au U	20	2020	Au-Au Au-Au fixed target	9.18 / 11.5 3.54 / 3.93 / 4.49 / 6.19 / 7.18 / 7.77
	21	2021	Au+Au fixed target O+O d+Au	7.7 / 17.4 / 200 3.85 / 7.15 / 11.54 / 44.5 200 200
-	-			

De la Physique au Détecteur 24 novembre - 29 novembre 2024

Les expériences de RHIC

Deux expériences généralistes sur collisioneur

PHENIX 430 collaborateurs, leptons, photons

Les expériences de RHIC

Deux expériences généralistes sur collisioneur

PHENIX 430 collaborateurs, leptons, photons

2003 : confirmation du QGP et bien plus au RHIC

Les expériences de RHIC

Deux expériences généralistes sur collisioneur

PHENIX 430 collaborateurs, leptons, photons

2003 : confirmation du QGP et bien plus au RHIC

UNIVERSITE PARIS-SACLAY

Les expériences de RHIC

Deux expériences généralistes sur collisioneur

PHENIX 430 collaborateurs, leptons, photons

2003 : confirmation du QGP et bien plus au RHIC Arrêt prévu : 2026 (2027...?) puis Electron Ion Collider (EIC)

Les expériences ions lourds du LHC

Le LHC n'est pas dédié aux ions lourds: 9 mois en collisions pp et 1 mois en collisions pA/AA

Quelques chiffres :

- Démarrage du LHC fin 2009 avec des collisions pp
- Premiers faisceaux d'ions lourds Pb-Pb fin 2010 à $\sqrt{s_{NN}} = 2.76$ TeV
- Augmentation de l'énergie :
 - collisions pp jusque $\sqrt{s} = 13.6 \text{ TeV}$
 - collisions Pb-Pb jusque $\sqrt{s_{NN}} = 5.36 \text{ TeV}$

Collisions 2009-2024 :

LHCb

SPS

Les expériences ions lourds du LHC

ALICE : expérience dédiée ions lourds, 2000 membres, 1000 signataires, 40 pays

CMS : solide programme ions lourds, 4000 membres, 3000 signataires, 57 pays

Cynthia Hadjidakis

Les expériences ions lourds du LHC

ATLAS : lettre d'intention ions lourds (2004), 6000 membres, 3000 signataires, 42 pays

LHCb : programme ions lourds depuis 2013, 1400 membres, 1100 signataires, 17 pays

Sommaire

- I. Matière nucléaire et le plasma de quarks et de gluons (QGP) 1. Notions fondamentales et interaction forte 2. Les phases de la matière nucléaire et le QGP

 - 3. Sonder le QGP en laboratoire
- II. De la physique au détecteur
 - 1. Les accélérateurs d'ions lourds ultra-relativistes 2. Expériences passées et présentes

 - 3. L'expérience ALICE et le spectromètre à muons
- 4. La vie d'un(e) physicien(ne) sur une expérience III. Résultats et expériences futures
 - - Des données aux résultats
 - 2. Des résultats (une sélection) à la théorie
 - 3. Upgrade et expériences futures

Hard scattering

- hard photons
- \Rightarrow pQCD
- heavy flavors
- \Rightarrow pQCD
- jets
- ⇒ pQCD

p_T (particules produites)

Hard scattering

- hard photons \Rightarrow pQCD
- heavy flavors
- \Rightarrow pQCD
- jets
- ⇒ pQCD

Deconfinement

- thermal photons
- \Rightarrow QGP temperature
- heavy flavors
- \Rightarrow QGP properties
- jet quenching \Rightarrow QGP density

p_T (particules produites)

De la Physique au Détecteur 24 novembre - 29 novembre 2024

Hard scattering

- hard photons ⇒ pQCD
- heavy flavors
- ⇒ pQCD
- jets
- ⇒ pQCD

Deconfinement

- thermal photons
- \Rightarrow QGP temperature
- heavy flavors
- \Rightarrow QGP properties
- jet quenching \Rightarrow QGP density

p_T (particules produites)

Temps (collision)

Hadronization

- EbyE fluctuations \Rightarrow Critical behavior
- e.l.m.dilepton, DCC
- \Rightarrow Chiral symmetry
- exotica
- \Rightarrow QGP condens.

Hard scattering

- hard photons \Rightarrow pQCD
- heavy flavors
- ⇒ pQCD
- jets
- \Rightarrow pQCD

Deconfinement

- thermal photons
- \Rightarrow QGP temperature
- heavy flavors
- \Rightarrow QGP properties
- jet quenching \Rightarrow QGP density

p_T (particules produites)

Hadronization

- EbyE fluctuations
 ⇒ Critical behavior
- e.l.m.dilepton, DCC
- \Rightarrow Chiral symmetry
- exotica
- \Rightarrow QGP condens.

Freeze-out

particle yields,
spectra, flow & HBT
⇒ thermal &
chemical conditions
⇒ dynamical evol.
⇒ indirect info from
the early stage

Hard scattering

- hard photons ⇒ pQCD
- heavy flavors
- ⇒ pQCD
- jets \Rightarrow pQCD

Deconfinement

- thermal photons
- \Rightarrow QGP temperature
- heavy flavors
- \Rightarrow QGP properties
- jet quenching \Rightarrow QGP density

p_T (particules produites)

ALICE est conçu pour explorer un grand domaine en p_T (~0.1-1 < p_T < 100 GeV) et pour corréler la plupart des signaux : grandes acceptances et granularité fine, triggers sélectifs, bonne efficacité de tracking, grande couverture en impulsion, reconstruction des vertex secondaires, identification des hadrons, leptons & photons.

Hadronization

Freeze-out

- EbyE fluctuations \Rightarrow Critical behavior
- e.l.m.dilepton, DCC
- \Rightarrow Chiral symmetry
- exotica
- \Rightarrow QGP condens.

• particle yields, spectra, flow & HBT \Rightarrow thermal & chemical conditions \Rightarrow dynamical evol. \Rightarrow indirect info from the early stage

Cynthia Hadjidakis

1	ACORDE ALICE Cosmic Ra
2	AD ALICE Diffractive Detector
3	DCal Di-jet Calorimeter
4	EMCal Electromagnetic Cal
5	HMPID High Momentum P Identification Detec
6	ITS-IB Inner Tracking System
7	ITS-OB Inner Tracking System
8	MCH Muon Tracking Cham
9	MFT Muon Forward Tracker
10	MID Muon Identifier
11	PHOS / CPV Photon Spec
12	TOF Time Of Flight
13	T0+A Tzero + A
14	T0+C Tzero + C
15	TPC Time Projection Chamb
16	TRD Transition Radiation De
17	V0+ Vzero + Detector
18	ZDC Zero Degree Calorimete

ctrometer

ber

etector

ter

Tonneau central: $|\eta| < 0.9, 44^{\circ} < \theta < 136^{\circ}$ Aimant solenoide de 0.5 T

Vertex: ITS Reconstruction de traces: ITS,TPC Identification de particules: ITS, TPC, TRD, TOF, HMPID, EMCAL, PHOS

1

1	ACORDE ALICE Cosmic Ra
2	AD ALICE Diffractive Detector
3	DCal Di-jet Calorimeter
4	EMCal Electromagnetic Cal
5	HMPID High Momentum P Identification Detec
6	ITS-IB Inner Tracking System
7	ITS-OB Inner Tracking System
8	MCH Muon Tracking Cham
9	MFT Muon Forward Tracker
10	MID Muon Identifier
11	PHOS / CPV Photon Spec
12	TOF Time Of Flight
13	T0+A Tzero + A
14	T0+C Tzero + C
15	TPC Time Projection Chamb
16	TRD Transition Radiation De
17	V0+ Vzero + Detector
18	ZDC Zero Degree Calorimete

ctrometer

ber

etector

ter

Tonneau central: $|\eta| < 0.9, 44^{\circ} < \theta < 136^{\circ}$ Aimant solenoide de 0.5 T

Vertex: ITS Reconstruction de traces: ITS, TPC Identification de particules: ITS, TPC, TRD, TOF, HMPID, EMCAL, PHOS

Détecteurs vers l'avant Trigger, détermination de la centralité, du temps: FIT, ZDC, AD

Cynthia Hadjidakis

1	ACORDE ALICE Cosmic Ra
2	AD ALICE Diffractive Detector
3	DCal Di-jet Calorimeter
4	EMCal Electromagnetic Cal
5	HMPID High Momentum P Identification Detec
6	ITS-IB Inner Tracking System
7	ITS-OB Inner Tracking System
8	MCH Muon Tracking Cham
9	MFT Muon Forward Tracker
10	MID Muon Identifier
11	PHOS / CPV Photon Spec
12	TOF Time Of Flight
13	T0+A Tzero + A
14	T0+C Tzero + C
15	TPC Time Projection Chamb
16	TRD Transition Radiation De
17	V0+ Vzero + Detector
18	ZDC Zero Degree Calorimete

ctrometer

ber

etector

ter

Tonneau central: $|\eta| < 0.9, 44^{\circ} < \theta < 136^{\circ}$ Aimant solenoide de 0.5 T

Vertex: ITS Reconstruction de traces: ITS, TPC Identification de particules: ITS, TPC, TRD, TOF, HMPID, EMCAL, PHOS

Détecteurs vers l'avant Trigger, détermination de la centralité, du temps: FIT, ZDC, AD

Cynthia Hadjidakis

Spectromètre à muons: $2.5 < \eta < 4$ $2^{\circ} < \theta < 9^{\circ}$

- ACORDE | ALICE Cosmic Rays Detector
- **AD** ALICE Diffractive Detector
- DCal Di-jet Calorimeter
- **EMCal** Electromagnetic Calorimeter
- HMPID High Momentum Particle Identification Detector
- **ITS-IB** Inner Tracking System Inner Barrel
- ITS-OB Inner Tracking System Outer Barrel
- MCH Muon Tracking Chambers
- MFT | Muon Forward Tracker
- MID Muon Identifier
- PHOS / CPV | Photon Spectrometer
- **TOF** Time Of Flight
- T0+A | Tzero + A
- T0+C | Tzero + C
- **TPC** Time Projection Chamber
- **TRD** | Transition Radiation Detector
- V0+ Vzero + Detector
- **ZDC** Zero Degree Calorimeter

Tonneau central: $|\eta| < 0.9, 44^{\circ} < \theta < 136^{\circ}$ Aimant solenoide de 0.5 T

Vertex: ITS Reconstruction de traces: ITS, TPC Identification de particules: ITS, TPC, TRD, TOF, HMPID, EMCAL, PHOS

Détecteurs vers l'avant Trigger, détermination de la centralité, du temps: FIT, ZDC, AD

Cynthia Hadjidakis

Spectromètre à muons: $2.5 < \eta < 4$ $2^{\circ} < \theta < 9^{\circ}$

ACORDE ALICE Cosmic R
AD ALICE Diffractive Detect
DCal Di-jet Calorimeter
EMCal Electromagnetic Ca
HMPID High Momentum I Identification Detection
ITS-IB Inner Tracking System
ITS-OB Inner Tracking Syste
MCH Muon Tracking Cham
MFT Muon Forward Tracke
MID Muon Identifier
PHOS / CPV Photon Spe
TOF Time Of Flight
T0+A Tzero + A
T0+C Tzero + C
TPC Time Projection Chamb
TRD Transition Radiation De
V0+ Vzero + Detector
ZDC Zero Degree Calorimet

۱r

ectrometer

ber

etector

ter
A Large Ion Collider Experiment: ALICE

Tonneau central: $|\eta| < 0.9, 44^{\circ} < \theta < 136^{\circ}$ Aimant solenoide de 0.5 T

Vertex: ITS Reconstruction de traces: ITS, TPC Identification de particules: ITS, TPC, TRD, TOF, HMPID, EMCAL, PHOS

Détecteurs vers l'avant Trigger, détermination de la centralité, du temps: FIT, ZDC, AD

Cynthia Hadjidakis

Spectromètre à muons: $2.5 < \eta < 4$ $2^{\circ} < \theta < 9^{\circ}$

- **AD** ALICE Diffractive Detector
- **DCal** Di-jet Calorimeter
- **EMCal** Electromagnetic Calorimeter
- HMPID High Momentum Particle Identification Detector
- **ITS-IB** Inner Tracking System Inner Barrel

ITS-OB Inner Tracking System - Outer Barrel

Hardware trigger (Run1-2)→ lecture continue (Run3-4) :

- 50 kHz en Pb-Pb, 1 MHz en pp, x10-100 stat. entre Run 1-2 et 3-4)
- nouvelles électroniques de lecture
- reconstruction online (3 TB/s \rightarrow 100 **GB**/s en Pb-Pb)

15 sous-détecteurs

Taille: 16 x 26 mètres

Poids: 10,000 tonnes

- **TPC** | Time Projection Chamber
- **TRD** | Transition Radiation Detector
- V0+ Vzero + Detector
- **ZDC** Zero Degree Calorimeter

Identification des particules : TPC

ALICE

Laboratoire de Physique des 2 Infinis

UNIVERSITE PARIS-SACLAY

Identification des particules : TPC

OUTER FIELD CO₂ GAP CACE

Time Projection Chamber (TPC)

But slow detector Drift time ~ 90 μs

Cynthia Hadjidakis De la Physique au Détecteur

Alice in Run 3

Record large minimum bias sample.

- All collisions stored for main detectors \rightarrow no trigger.
- 50x more events, 50x more data.
- Cannot store all raw data \rightarrow online compression.
- \rightarrow Use GPUs to speed up online processing.

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 20 ms in production).
- Tracks of different collisions shown in different colors.

9.12.2021

Les particules chargées sont déviées par le champ magnétique, B, généré par l'aimant dipolaire (force de Lorentz : $\vec{F} = q \vec{v} \times \vec{B}$)

Les particules chargées sont déviées par le champ magnétique, B, généré par l'aimant dipolaire (force de Lorentz : $\vec{F} = q \vec{v} \times \vec{B}$)

Les particules chargées sont déviées par le champ magnétique, B, généré par l'aimant dipolaire (force de Lorentz : $\vec{F} = q \vec{v} \times \vec{B}$)

Les particules chargées sont déviées par le champ magnétique, B, généré par l'aimant dipolaire (force de Lorentz : $\vec{F} = q \vec{v} \times \vec{B}$)

Les stations de trajectographie reconstruisent le parcours des particules chargées (10 points) et avec la valeur de B, on peut en déduire la quantité de mouvement, p, des particules

Les particules chargées sont déviées par le champ magnétique, B, généré par l'aimant dipolaire (force de Lorentz : $\vec{F} = q \vec{v} \times \vec{B}$)

Les stations de trajectographie reconstruisent le parcours des particules chargées (10 points) et avec la valeur de B, on peut en déduire la quantité de mouvement, p, des particules

Les stations de Muon Identification (MID) permettent d'identifier les muons (filtre à muons)

Le spectromètre à muons : nouveauté Run3/4

Cynthia Hadjidakis

Upgrade Run3/4 (2021-2033) :

-Nouveau tracker silicium : Muon Forward Tracker (MFT) pour reconstruire le vertex secondaire pour des mesures de $B \rightarrow J/\psi$

Le spectromètre à muons : nouveauté Run3/4

Cynthia Hadjidakis

Upgrade Run3/4 (2021-2033) :

-Nouveau tracker silicium : Muon Forward Tracker (MFT) pour reconstruire le vertex secondaire pour des mesures de $B \rightarrow J/\psi$

Le spectromètre à muons

Objectif : mesurer la production de charmonia (J/ ψ , ψ (2S)) et de bottomonia (Y(1S), Y(2S) et Y(3S)) dans le canal de désintégration en dimuons ($\mu^+\mu^-$)

$$J/\psi \to \mu^+\mu^-$$
$$M_{\mu\mu} = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

Besoins :

- acquisition rapide (faibles sections efficaces)
- reconstruction à haute multiplicité de particules produites lors de collisions Pb-Pb
- séparer les trois Y(nS)

Le spectromètre à muons

Objectif : mesurer la production de charmonia (J/ ψ , ψ (2S)) et de bottomonia (Y(1S), Y(2S) et Y(3S)) dans le canal de désintégration en dimuons ($\mu^+\mu^-$)

$$J/\psi \to \mu^+\mu^-$$
$$M_{\mu\mu} = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

Besoins :

- acquisition rapide (faibles sections efficaces)
- reconstruction à haute multiplicité de particules produites lors de collisions Pb-Pb
- séparer les trois Y(nS)

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{µµ} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- → ce qui va affecter la mesure de l'impulsion des muons :
- la connaissance du champ magnétique → cartographie précise de B

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- → ce qui va affecter la mesure de l'impulsion des muons :
- la connaissance du champ magnétique → cartographie précise de B

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)
- la résolution intrinsèque des chambres de trajectographie

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)
- la résolution intrinsèque des chambres de trajectographie

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)
- la résolution intrinsèque des chambres de trajectographie
- la connaissance précise du positionnement des détecteurs

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)
- la résolution intrinsèque des chambres de trajectographie
- la connaissance précise du positionnement des détecteurs
- la qualité de l'électronique de lecture des chambres

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)
- la résolution intrinsèque des chambres de trajectographie
- la connaissance précise du positionnement des détecteurs
- la qualité de l'électronique de lecture des chambres
- le software de reconstruction avec la cartographie de l'électronique

Pour simplifier, on se limitera ici uniquement à l'aspect trajectographie.

Objectif : obtenir une résolution en masse M_{\mu\mu} de 100 MeV à la masse des Y(nS)

Qu'est-ce qui va jouer sur la résolution en masse ?

- la connaissance du champ magnétique → cartographie précise de B
- la composition de l'absorbeur frontal (et le budget de matière global du détecteur)
- la résolution intrinsèque des chambres de trajectographie
- la connaissance précise du positionnement des détecteurs
- la qualité de l'électronique de lecture des chambres
- le software de reconstruction avec la cartographie de l'électronique

Dialogue permanent entre simulations et expérience

Modélisation des détecteurs \rightarrow définition des caractéristiques et validation des options

Cynthia Hadjidakis

Validation et vérification des performances par des tests expérimentaux

Construction et installation du détecteur

Cynthia Hadjidakis De la Physique au Détecteur 24 novembre - 29 novembre 2024

Cynthia Hadjidakis De la Physique au Détecteur 24 novembre - 29 novembre 2024

Cynthia Hadjidakis

Cynthia Hadjidakis

Cynthia Hadjidakis

Cynthia Hadjidakis

Contraintes : réduire le flux hadronique en dégradant le moins possible la résolution en masse $\rightarrow \sim 10 \lambda_{\rm I}$ et $\sim 60 X_0$

Estimation : jusqu'à 8000 particules chargées par unité de y

Cynthia Hadjidakis

Contraintes : réduire le flux hadronique en dégradant le moins possible la résolution en masse $\rightarrow \sim 10 \lambda_{\rm I}$ et $\sim 60 X_0$

Estimation : jusqu'à 8000 particules chargées par unité de y

Mesure : 2000 particules chargées par unité de y...

 \rightarrow absorbeur frontal surdimensionné !

Absorbeur frontal

Polyéthylène : Italie

de hadrons (~30 t) Structure interne complexe

Cynthia Hadjidakis De la Physique au Détecteur 24 novembre - 29 novembre 2024

Aimant dipolaire

Cynthia Hadjidakis De la Physiq

Chambre à fil à cathodes segmentées

- Gaz: Ar (80%)/CO₂(20%)
- Plan d'anode : plan de fils à 1650 V
- Plan de cathode: mince couche d'or

Chambre à fil à cathodes segmentées

- Gaz: Ar (80%)/CO₂(20%)
- Plan d'anode : plan de fils à 1650 V
- Plan de cathode: mince couche d'or

Chambre à fil à cathodes segmentées

• Gaz: Ar (80%)/CO₂(20%)

ALICE

- Plan d'anode : plan de fils à 1650 V
- Plan de cathode: mince couche d'or

Tests en cosmique de chaque quadrant équipé de son électronique avant installation en caverne

Les chambres de trajectographie

Tests en faisceau au CERN du prototype final de quadrant et de l'électronique

Augmentation du taux d'interaction et du flux de particules entre 2008 et 2018 → nombreux claquages haute tension à haut taux de particules

Augmentation du taux d'interaction et du flux de particules entre 2008 et 2018 → nombreux claquages haute tension à haut taux de particules

Chambres ouvertes et nettoyées, et beaucoup de fils changés. Ex : traces de colle sur les pads des cathodes qui provoquent une accumulation de charge (effet Malter) et des claquages HT.

Augmentation du taux d'interaction et du flux de particules entre 2008 et 2018 → nombreux claquages haute tension à haut taux de particules

Chambres ouvertes et nettoyées, et beaucoup de fils changés. Ex : traces de colle sur les pads des cathodes qui provoquent une accumulation de charge (effet Malter) et des claquages HT.

Augmentation du taux d'interaction et du flux de particules entre 2008 et 2018 → nombreux claquages haute tension à haut taux de particules

Chambres ouvertes et nettoyées, et beaucoup de fils changés. Ex : traces de colle sur les pads des cathodes qui provoquent une accumulation de charge (effet Malter) et des claquages HT.

De l'humidité (vapeur H₂O à 0.1%) a aussi été ajoutée au mélange de gaz Ar/CO2

Électronique de lecture

Cynthia Hadjidakis De la Physique au Détecteur 24 novembre - 29 novembre 2024

Electronique de lecture

Position reconstruite

Modélisation

Intégration des détecteurs

Modélisation

NB

Réalisation d'une maquette à l'échelle 1

Cynthia Hadjidakis

Intégration des détecteurs

Modélisation

NB

NB

Réalisation d'une maquette à l'échelle 1

Cynthia Hadjidakis

Intégration des détecteurs

Etude thermique

Installation

Installation

Installation

Sommaire

- - 1. Notions fondamentales et interaction forte
 - 2. Les phases de la matière nucléaire et le QGP
 - 3. Sonder le QGP en laboratoire

II. De la physique au détecteur

- 1. Les accélérateurs d'ions lourds ultra-relativistes
- 2. Expériences passées et présentes
- 3. L'expérience ALICE et le spectromètre à muons

4. La vie d'un(e) physicien(ne) sur une expérience

- III. Résultats et expériences futures
 - Des données aux résultats
 - 2. Des résultats (une sélection) à la théorie
 - 3. Upgrade et expériences futures

I. Matière nucléaire et le plasma de quarks et de gluons (QGP)

Lancement de projets, R&D

Construction, mise en service Suivi et prise de données

Analyse, discussion et publications des résultats

Lancement de projets, R&D

Construction, mise en service Suivi et prise de données

Analyse, discussion et publications des résultats

Lancement de projets, R&D

Construction, mise en service Suivi et prise de données

Analyse, discussion et publications des résultats

Lancement de projets, R&D

Construction, mise en service Suivi et prise de données

Analyse, discussion et publications des résultats

Lancement de projets, R&D

Construction, mise en service Suivi et prise de données

Analyse, discussion et publications des résultats

Cynthia Hadjidakis

Dans la caverne ALICE, pendant les arrêts techniques

La salle de contrôle d'ALICE

5 central shifters in ALICE : Shift leader, DAQ, DCS, Data flow, Data quality

Extrait du Film "Anges et Démons" à 1min40

Cynthia Hadjidakis

L'année du CERN pour la sensibilisation à l'environnement PRINCIPAUX OBJECTIFS ENVIRONNEMENTAUX DU CERN

Un mot sur l'environnement

Objectifs environnementaux du CERN

Ex: recirculation, récupération et réparation des fuites pour les gaz fluorés (~80% des émissions de gaz à effet de serre du CERN), et utilisation future de CO₂ comme réfrigérant lorsque possible.

Objectif : bilan gaz effet de serre (BGES scope1) : -28% pour la fin du Run 3 (base 2018)

L'année du CERN pour la sensibilisation à l'environnement

Un mot sur l'environnement

Objectifs environnementaux du CERN

Ex: recirculation, récupération et réparation des fuites pour les gaz fluorés (~80% des émissions de gaz à effet de serre du CERN), et utilisation future de CO₂ comme réfrigérant lorsque possible.

Objectif : bilan gaz effet de serre (BGES scope1) : -28% pour la fin du Run 3 (base 2018)

L'année du CERN pour la sensibilisation à l'environnement

Un mot sur l'environnement

Objectifs environnementaux du CERN

Ex: recirculation, récupération et réparation des fuites pour les gaz fluorés (~80% des émissions de gaz à effet de serre du CERN), et utilisation future de CO₂ comme réfrigérant lorsque

APPLICATIONS GES 🗸 NOS ENQUÊTES NOUS REJOINDRE LE COLLECTIF 🗸 LES RESSOURCES 🗸

RÉDUIRE L'EMPREINTE DE NOS ACTIVITÉS DE **RECHERCHE SUR L'ENVIRONNEMENT**

En France : <u>GDR Labo1p5</u> pour l'ESR

- Estimer l'empreinte de la recherche sur l'environnement - La réduire (transition 1p5)

Des chercheurs/ITA de l'in2p3/CEA en font partie

- Objectifs ESR : BGES de -4.7% / an (-50% en 2030, base 1990) à -2% / an

Résumé du cours

- - expériences passées du SPS.
- L'expérience ALICE au LHC est dédiée à l'étude du QGP :
 - produisant jusque 8000 particules chargées
 - PbPb
 - famille de Y(nS)

• Les expériences d'ions lourds ultra-relativistes ont principalement lieu au SPS, RHIC et LHC : • Au LHC le milieu formé est plus dense, plus grand et a un temps de vie plus long. • Les expériences actuelles au RHIC et LHC sont des expériences plus généralistes que les

• ALICE est composée d'un ensemble de détecteurs permettant de reconstruire des collisions

• Le spectromètre à muons a pour objectif de mesurer les quarkonia en collisions pp, pPb et

• Les chambres de trajectographie du spectromètre à muons ont été conçues pour obtenir une résolution de la masse invariante des dimuons de 100 MeV afin de pouvoir séparer la

Backup

Etude de l'effet de l'absorbeur frontal sur la TPC

Test de l'effet de l'absorbeur frontal sur la TPC de NA49/SPS

punch-through latéral de l'absorbeur à petit angle

... et comparaison des résultats expérimentaux avec les simulations GEANT et FLUKA

