Imagerie biomédicale – physique

Applications de la physique des particules au domaine de l'imagerie

Christian MOREL Centre de Physique des Particules de Marseille

1895: Rayons X (W. Roentgen, Würzburg)

Prix Nobel 1901

Wilhelm Roentgen (1845-1923)
Prix Nobel de Physique (1901)

22 Dec 1895 – publiée dans le New York Times le 16 Jan 1896

Développement de la radiologie (roentgenologie)

Hôpital Tenon (Paris, 1897) Antoine Béclère (1858–1939)

Radiological Renault «Petite Curie» (1916) Marie Curie (1867-1934)

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

Radiographie X et neutrons

Courtesy: Paul Scherre Institut (PSI)

Radiographie par transmission de muons cosmiques

- Au niveau de la mer, le taux de muons cosmiques est de 10,000 muons par mètre carré et par minute.
- Interaction des muons (positifs ou négatifs) dans la matière par capture ou par diffusion coulombienne.

Radiographie par transmission de muons cosmiques

Alvarez et al. Search for Hidden Chambers in the Pyramids. Science 167 (1970) 832

Radiographie par transmission de muons cosmiques

Les chambres à étincelles sont placées dans la chambre de Belzoni (B) de la pyramide de Chephren.

De la physique au détecteur – IN2P3 – Villa Clythia, Fréjus – 24-29 novembre 2024

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

Reconstruction d'images tomographiques

Espaces de projections

Espace des fréquences

Rétroprojection

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

Théorème de la coupe centrale

Rétroprojection filtrée en 2 dimensions 2D Filtered Back-Projection (2D FBP)

Projection parallèle à 1 dimension

$$p_{\theta}(s) = \int_{-\infty}^{\infty} dt \ f(x, y)$$

Transformée de Fourier

$$P_{\theta}(v_s) = \int_{-\infty}^{\infty} ds \ p_{\theta}(s) e^{-i2\pi s v_s}$$

$$f(x,y) = \int_{0}^{\pi} d\theta \left[\int_{-\infty}^{\infty} dv_{s} |v_{s}| P_{\theta}(v_{s}) e^{i2\pi v_{s}s} \right], \quad s = x \cos\theta + y \sin\theta$$

Reconstruction tomographique en 2D

1963: Alan McLeod Cormack

Redécouvre une solution mathématique publiée par Radon en 1917 permettant de reconstruire un objet en 2D à partir de ses projections

Computerized Tomography (CT)

Tomographie par rayons X (*vulgus scanner*)
Tomodensitométrie (TDM)

G. Hounsfield, J. Ambrose (Atkinson Morley Hospital, London, 1/10/1971)

TDM, CT ou CAT (Computed Assisted Tomography) scan

1979: Hounsfield et Cormack reçoivent le prix Nobel de médecine pour le développement de la tomographie assistée par ordinateur

Tomographie par transmission de rayons X

X-ray CT scanner

Diagnostic procedure	Typical effective dose (mSv)	Equiv. no. of CXR	Approx. equiv. period of background radiation
CXR	0.02	1	3 days
CT head	2.0	100	10 months
CT chest	8	400	3.6 years
CT abdomen/pelvis	10	500	4.5 years

UK average background radiation = 2.2 mSv per year; regional averages range from 1.5 to 7.5 mSv per year.

Tomographie par transmission de rayons X

Tomographie par transmission de rayons X

Cas polychromatique -> durcissement de faisceau

$$I_0 = \int_0^\infty I_0(E) \, dE$$

$$\ln\left(\frac{I_0(E)}{I(E)}\right) = \int_{t_{\min}}^{t_{\max}} \mu_E(t) dt \neq \ln\left(\frac{I_0}{I}\right)$$

$$I = \int_{0}^{\infty} I_0(E) \exp\left[-\int_{t_{\min}}^{t_{\max}} \mu_E(t) dt\right] dE$$

X-ray detection paradigm

Indirect detection

Scintillator or phosphor screen Radiation converted to light

Photodetector (e.g. PMT, photodiode, CCD camera or CMOS pixel)

Light converted to electric signal

Image

Direct detection

Gaz (e.g. Xe) or semiconductor (e.g. Si, CdTe, AsGa) radiation converted to electric signal Readout electronic circuit

Image

Courtesy: P. Russo and A. Del Guerra, INFN

Energy integration detectors

Converter

Gadolinium oxysulfide (GOS or Gadox, Gd₂O₂S)

Cesium iodide (CsI)

Photodetector

Charged Couple Device (CCD) camera

W.S. Boyle and G.E. Smith (Bell Labs, 1969) Nobel Prize in Physics (2009)

Complementary Metal-Oxyde Semiconductor (CMOS) pixel

Détecteurs à comptage de rayons X: une rupture technologique pour le développement du CT à comptage de

photons

- > Suppression du bruit
- Sélection de l'énergie
- Grande dynamique

- ✓ Réduction de la dose
- ✓ Amélioration du contraste
- ✓ Développement du CT spectral

Energy integrating versus photon counting detectors

Ballabriga et al., IEEE TRPMS 5 (2021) 422

Noise performance of low-dose-CT with EID and PCD

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

XPAD3: pixels hybrides de Si et CdTe pour la détection de rayons X

- XPIX: Développement des détecteurs à pixels hybrides XPAD.1 et XPAD3.2 avec des capteurs de Si et de CdTe
 - > 0,5 Mpixels 130 x 130 μ m²
 - 240 images/s
 - 5-35 keV (XPAD3.1/Si: D1-3)
 - 5-60 keV (XPAD3.2/Si: D4-6)

Détecteur XPAD3: 500,000 pixels de 130 µm

Angiographie de la souris

- Injection de 200 μL d'ioméron 400
- Tube à anode de tungstène
- 90 kVp, 70 W
- Filtre 200 μm Nb
- Temps d'exposition 10 ms/images
- Vitesse d'acquisition 69 images/s

PC-CT avec le prototype PIXSCAN II

Temps réel

Replay x10

PC-CT avec le prototype PIXSCAN-FLI/XPAD3

Protocole d'acquisition de données in vivo :

- Imagerie d'absorption standard
- Anesthésie gazeuse : 3% d'isoflurane
- Source: 50 kV/500 μA/0.6 mm Al
- Mode d'acquisition de données : continu
- Durée de pose : 575 ms + 50 ms DT
- Projections: 720 (pas de 0.5°)
- Dose délivrée : 177 mGy/acquisition

Coupes coronales d'une souris imagée avant, un jour après et trois semaines après l'injection de 100 µL/30g d'Exitron nano 12000

Choix d'un agent de contraste hépato spécifique à base de nanoparticules baryum pour rehausser x2 le contraste du foie par rapport aux tissus mous

→ Idéal pour des études longitudinales!

Premières études longitudinales de tumeurs du foie chez la souris

Suivi d'une souris avec un hépatocarcinome pendant trois mois

Suivi de la réponse au traitement par une thérapie hépato spécifique pendant 40 jours

*Y. Fan et *al.*, Hepatology 66 (2017)

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

Name 	Matrix	side (μm)	Energy thresholds	Реакіng time (ns)	Maximum count rates (Mcps/pixel)	Maximum count rates (Mcps/mm²)	Electronics Noise or energy resolution	Power per channel (μW)	CMOS node
Medipix3 (FPM-SPM) ¹	256x256	55	2	120	2.5	826.5	1.37keV FWHM @ 10KeV	7.5	0.13µm
Medipix3 (FPM-CSM) ²	256x256	55	1+1	120	5.0E-01	163.5	2.03keV FWHM @10KeV	9.3	0.13μm
Timepix3 (CERN) ³	256x256	55	10bits	30	1.6E-03	0.53	4.07kev FWHM at 59.5keV	15.2	0.13μm
Pixirad Pixie II ⁴	512x476	55.6	5 2	300	5.0E-01	161.5	1.45keV FWHM @ 20keV	12.5	0.18µm
Samsung PC ⁵	128x128	60	3	NS	NS	NS NS	68 e- r.m.s.	. 4.6	0.13μm
Pixirad Pixie III ⁶	512x402	62	. 2	125	1.0	260.1	6.6% FWHM @ 60keV	34	0.16µm
Eiger ⁷	256x256	75	1	30	4.2	711.1	121e- r.m.s. (low noise settings)	8.8	0.25μm
PXD23K (AGH) ⁸	128x184	75	5 2	48	8.5	1519.5	89e- r.m.s.	. 25	0.13µm
X-Counter PC (PDT25-							8.3keV FWHM @20keV	′	
DE) ⁹	256x256	100	2	-	1.2		10keV FWHM @60keV		NS
PXD18K (AGH) ⁸	96x192	100) 2	30	5.8	580	168e- r.m.s.	. 23	0.18μm
FPDR90 (AGH)8	40x32	100	2	28	8.5	854.7	106e- r.m.s.	. 42	90nm
AGH_Fermilab ¹⁰	18x24	100) 2	48	NS	NS NS	84e- (Single pixel), 168e- (Charge summing)	34	40nm
Medipix3 (SM-SPM) ¹¹	128x128	110	8	120	4.5	375.7	1.43keV FWHM @ 10keV	' 30	0.13μm
Medipix3 (SM-CSM) ¹²	128x128	110) 4+4	120	3.4E-01	. 28.1	2.2keV FWHM @10keV	37.2	0.13µm
XPAD3 ¹³	80x120	130	2	150	2.0	118.3	127e- r.m.s.	. 40	0.25μm
Pilatus 2 ¹⁴	60x97	172	. 1	110	6.0	202.8	1keV FWHM @ 8keV	20.2	0.25µm
Pilatus 3 ¹⁵	60x97	172	1	110	15.0	507.0	1keV FWHM @ 8keV	20.2	0.25μm
Telesystems 16	40x40	200	4	300-500	8.0E-01	. 20	5.36keV FWHM @ 122keV	94.4	0.25µm
Dosepix (CERN) ¹⁷	16x16	220	16	287	1.6	33.9	150 e- r.m.s.	. 14.6	0.13μm
Siemens PC ¹⁸	64x64	225			40.0		NS		NS
Hexitec ¹⁹	80x80	250	14bits	2000	1.0E-03	0.016	800eV FWHM @ 60keV, 1.1keV @ 141keV	220	0.35μm
Philips Chromaix 20	4x16	300) 4	20	38.0	422.2	4.7keV @60keV (1 channel)	3000	0.18μm
Ajat-0.35 (PC) ²¹	32x64	350		1000	2.2	18.0	4keV FWHM @122keV	390.6	0.35μm
Ajat-0.35 (ADC) ²²	32x64	350			4.9E-05		4keV FWHM @122keV	390.6	0.35µm
CIX 0.2 (Bonn) ²³	8x8	353.6	5 1	NS	12.0	96	330e- r.m.s. (counting channel)	3200	0.35μm
KTH_Lin_SPD ²⁴	160 ch.	447.2		10-20-40	272.0		1.09keV @ 15keV (measured at 40kcps)		0.18µm
DxRay-Interon ²⁵	16x16	500	4	10	13.3	53	7keV FWHM @60keV, Min TH20keV	' NS	NS
Ajat-0.5 ²⁶	44x22	500) 2	1000-2000	NS	NS NS	4.7keV @122keV (1 channel)	413.2	0.35μm
Hamamatsu ²⁷	64 ch.	632.5	5	NS	5.5	13.75	12keV FWHM @ 120keV	' NS	NS
IDEAS ²⁸	64 ch.	894.4	6	50	4.0	5	7keV FWHM @60keV	4200	0.35µm
							4.75% at 122keV, CZT, 5pF Cin (1 Channe		
GE-DxRay ²⁹	128 ch.	1000	2		11.6	11.6			0.25μm
BNL ³⁰	61 ch	1241.0) 5	40-80-160- 320	4.0	5.5	5.5keV at 40ns peaking time/2.15keV at 320ns peaking time		0.25µm
DINE	04 CH.	1241.	, 5	320	4.0	3.5	520115 peaking time	4700	υ.Ζυμπ

Pixels hybrides : de nombreuses spinoffs

2006

www.dectris.com

2011

Courtesy: NASA, photo ref. no. iss036e006175

kromek. detect image identify

www.kromek.com

2007

mars

Medipix All Resolution System

www.marsbioimaging.com

IMAGING THE UNSEEN

www.advacam.com

2011

2012

www.amscins.com

2011

Capteurs pour la détection directe de rayons X

Courtesy: E. Gros d'Aillon, CEA-LETI

CT spectral : du noir et blanc à la « couleur » grâce aux pixels hybrides

CT spectral : du noir & blanc à la couleur

De la physique au détecteur – IN2P3 – Villa Clythia, Fréjus – 22-26 novembre 2021

CT spectral : du noir & blanc à la couleur

CT standard

Imagerie au K-edge de l'iode et de l'argent

Cassol et al., IEEE Trans. Nucl. Sci. 60 (2013) 103

CT spectral: une nouvelle modalité intrinsèquement anatomo-fonctionnelle

LE Cole et al. Nanomedicine 10 (2015) 321

Imagerie au K-edge de l'iode utilisant des pixels composites avec le détecteur XPAD3

Source: thèse Carine Kronland-Martinet

mars

Courtesy: A Buttler, Medipix Collaboration, Mars Bio-Imaging

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

La PC-CT devient (pré-)clinique

Mars Bioimaging

- MARS Microlab 5X120 (pré-clinique)
- MARS Extremity 5X120 (recherche clinique seulement)
- > CZT/Medipix3
- > 110 µm pixel pitch
- > 8 fenêtres d'énergie/pixel

La PC-CT devient clinique

Siemens Healthineers

- > NAEOTON Alpha
- > CdTe
- > FDA clearance 30/09/21

- > Spectral-CT 7500
- > CZT
- > SPCCT EU project

GE Healthcare

Deep silicon detectors

Edge on Geometry²

Tomographie par émission de rayons gammas

Tomographie par émission mono-photonique (TEMP) Single Photons Emission Tomography (SPECT)

Tomographie par émission mono-photonique (TEMP) Single Photons Emission Tomography (SPECT)

Caméra gamma (H. Anger, Berkeley, 1952)

H. Anger, Scintillation camera with multichannel collimators.
J Nucl Med 65 (1964) 515-531

Tomographie par émission monophotonique (TEMP)

Single Photon Emission Computered Tomography (SPECT)

^{99m} Tc (6 h)	140 keV
²⁰¹ TI (73 h)	70 keV
¹²³ I (13 h)	159 keV
¹³³ Xe (5 min)	81 keV

Sensibilité absolue ~10⁻⁴ Résolution spatiale 6-8 mm Dose absorbée 5-30 mSv

Rayons X (W. Roentgen, Wuerzburg) 1895: Prix Nobel 1901 Radioactivité (H. Becquerel, Paris) 1896: Prix Nobel 1903 1897: Electron (J.J. Thomson, Cambridge) Prix Nobel 1906 Radium et Polonium (Pierre et Marie Curie, Paris) 1898: Prix Nobel 1903, 1911 Rayons alpha et bêta (E. Rutherford, Cambridge) 1899: Prix Nobel 1908 Noyau (E. Rutherford, Cambridge) 1911: Cyclotron (E. Lawrence, Berkeley) • 1931: Prix Nobel 1939 Neutron (Frédéric et Irène Joliot-Curie, Paris, 1932: J. Chadwick, Cambridge) Prix Nobel 1935 (Chadwick) Trous (P.A.M. Dirac, Cambridge) 1930: Prix Nobel 1933 1932: Positon (C.D. Anderson, Berkeley)

De la physique au détecteur – IN2P3 – Villa Clythia, Fréjus – 24-29 novembre 2024

Prix Nobel 1936

Diffusion Compton

$$e^- + \gamma \rightarrow e^- + \gamma$$

$$e^- + e^+ \rightarrow \gamma + \gamma$$

Annihilation matière anti-matière

Tomographie par émission de positons (TEP) *Positron Emission Tomography (PET)*

Tomographie par émission de positons (TEP) Positron Emission Tomography (PET)

Tomographie par émission de positons (TEP)

Positron Emission Tomography (PET)

Tomographie par émission de positons (TEP)

Sinogramme

Tomographie par émission de positons (TEP)

Image reconstruite

Sinogramme

$$P\{\gamma_1\} P\{\gamma_2\} = \varepsilon^2 e^{-\mu (L_1 + L_2)}$$

$$P\{\gamma_1\} P\{\gamma_2\} = \varepsilon^2 e^{-\mu (L_1 + L_2)}$$

$$P\{\gamma_2\} = \epsilon e^{-\mu} L_2$$

$$P\{\gamma_1\} = \epsilon e^{-\mu} L_1$$

Quantification

Instrumentation TEP

Aronov, Brownell, MGH, 1952

Robertson, BNL, 1960

Instrumentation TEP

Head shrinker, BNL, 1961 -> Positome I, Yamamoto, McGill, 1975

Tomographie par émission de positons: premiers pas au CERN

1978: High Density Avalanche Chamber (HiDAC) (A Jeavons, DW Townsend)

Progrès continus en instrumentation

PET III 1975

ECAT II 1977

NeuroECAT 1978

ECAT 931 1985

ECAT EXACT HR+ 1995

Caméra TEP avec septa

Courtesy: D. Townsend, UPMC

Localisation spatiale dans un bloc de détecteurs

$$X = \frac{(D + B) - (C + A)}{S}$$

$$Y = \frac{(A + B) - (C + D)}{S}$$

$$S = A + B + C + D$$
where LLD < S < ULD

Courtesy: D. Townsend, UPMC

Quadrant sharing panels

Courtesy: D. Townsend, UPMC

High Resolution Research Tomograph (HRRT)

- LSO/GSO phoswich
- 153600 cristaux
- 1120 PMTs

40 min FDG fusionnée avec IRM-T1

EXPLORER est construit!

Diamètre: 78.6 cm

FOV transverse: 68.6 cm

FOV axial: 194.8 cm

cristals: 564,480

blocs de cristaux : 13,440

SiPMs: 53,760

Rétroprojection

Tomographie et statistique de comptage

Courtesy: C. Comtat, CEA-SHFJ

SNR et statistique de comptage

$$SNR = \frac{A}{\Delta A} = \frac{N_{\beta^+}}{\sqrt{N_{\beta^+}}} = \sqrt{N_{\beta^+}}$$

$$\Rightarrow N_{\beta^+} = SNR^2$$

$$N_{\rm evt} = \left(\frac{L}{d}\right)^3 \times {\rm SNR}^2 \times \left(\frac{L}{d}\right)$$

Améliorer la résolution spatiale $x 2 \Rightarrow$ Augmenter la statistique de comptage x 16 pour obtenir le même SNR dans les voxels de l'image reconstruite

- Durée du scan
- Epaisseur du cristal (efficacité)
- Activité injectée
- Angle solide

Résolution radiale

$$R(s) = a\sqrt{\left(\frac{d}{2}\right)^2 + \frac{(w^2 - d^2)}{D^2}}s^2 + b^2 + r^2 + (0.0022 D)^2$$

- d Taille du pixel
- w Longueur du pixel
- Diamètre de l'anneau
- r Parcours du positon
- b Diaphonie
- a Algorithme de reconstructiond'image (1,1 1,3)

TEP à temps-de-vol (TOF-PET)

Impact de la TOF-TEP sur le SNR de l'image

$$N_{\text{evt}} = \left(\frac{L}{d}\right)^{3} \times \text{SNR}^{2} \times \left(\frac{L}{d}\right)$$

$$N_{\text{TOF}} = \left(\frac{L}{d}\right)^{3} \times \text{SNR}^{2} \times \left(\frac{\Delta L}{d}\right)$$

$$\Delta L = c \times \frac{\text{CTR}}{2}$$

Impact de la TOF-TEP sur le SNR de l'image

$$N_{\text{evt}} = \left(\frac{L}{d}\right)^{3} \times \text{SNR}_{\text{nonTOF}}^{2} \times \left(\frac{L}{d}\right)$$

$$N_{\text{evt}} = \left(\frac{L}{d}\right)^{3} \times \text{SNR}_{\text{TOF}}^{2} \times \left(\frac{\Delta L}{d}\right)$$

$$\left(\frac{\text{SNR}_{\text{TOF}}}{\text{SNR}_{\text{nonTOF}}}\right)^{2} = \frac{2L}{c \times \text{CTR}}$$

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

Time-Of-Flight (TOF)-TEP

Courtesy: J. Nuyts, Univ Leuven

Resolution in TOF-direction: ~1.5 mm Resolution in detector direction: 5 mm

true activity

nonTOF backproj

nonTOF OSEM

TOF backproj

TOF OSEM

- ➤ Détection des photons Cerenkov émis dans le PbWO₄:Y
- Dépôt d'une photocathode (n ~2,7) par évaporation directement sur la surface du cristal (n ~2,3)

➤ Encapsulation dans un tube multiplicateur à galette de micro-canaux (MCP-MT)

MCP-PMT

PbWO₄ crystal

Imagerie directe par émission de positons

- Utilisation de la lumière Tcherenkov pour l'étiquetage temporel
- > CTR 32.9 ps FWHM (4.93 mm)
- Direct positron emission imaging (dPEI)

Anatomie + Fonction

Anatomie

Image fusionnée

TEP

Fonction

Courtesy: DW Townsend, UPMC

Invention du TEP/CT : une révolution médicale doublée d'une évolution technique

1991: Concept du TEP/CT, DW Townsend (HUG)

courtesy: DW Townsend, UPMC

TEP/CT prototype design caméra Somatom AR.SP **ECAT ART** console TEP console CT **TEP** UPMC, 1995 Fused image viewer courtesy: DW Townsend, UPMC

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

CT: 160 mAs; 130 KV_p; pitch 1.6; 5 mm slices PET: 6.3 mCi FDG; 3 x 10 min; 3.4 mm slices 40 year-old woman with multiple endocrine syndrome

(MEN-1) and history of malignant pheochromocytoma

MIBG scan one year ago showed right adrenal lesion; adrenal resected but no tumor found. PET suggested a lesion in the adrenal resection bed but PET/CT showed lesion located in spine.

UPMC, 1998

courtesy: DW Townsend, UPMC

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

Design typique d'un scanner TEP/CT clinique

- > 2001: premier scanner TEP/CT commercial installé à Zurich par GE
- 2005: plus de 650 scanners TEP/CT installés, 95% des ventes de scanners TEP

TEP/CT simultané: preuve de concept

TEP/IRM

courtesy Pichler, Kolb, Schlemmer, UKT 2009

Imagerie hybride TEP/IRM: de quelques attentes non assouvies

L'amelioration de la résolution est négligeable pour la TEP!

- ⇒ Le parcours du positon limite la résolution spatiale de la TEP
- ⇒ Réduction du parcours du positon dans un champ magnétique élevé (*Iida et al. 1986*)
- ⇒ Cependant, la réduction est effective seulement dans le plan perpendiculaire au champ magnétique

De la physique au détecteur - IN2P3 - Villa Clythia, Fréjus - 24-29 novembre 2024

9.4 Tesla TEP/IRM hybride simultanée : une révolution technique doublée d'une évolution médicale ?

- Ouverture: 60 cm diamètre
- FOV axial: 50 cm
 - Poids aimant: 57 tonnes
- > 870 tonnes de fer doux
- Longueur: 3.70 m
- Energie stockée: 182.0 MJ
 - Longueur du câble: 750 km

En guise de conclusion...

TEP/CT a été une révolution médicale doublée d'une évolution technique TEP/IRM semble être une révolution technique doublée d'une évolution médicale

NJ Shah, Forschungszentrum-Juelich

TEP/IRM/CT 1+1+1 = ?

Still, the history [...] illustrates that predicting the effect of a hybrid system is difficult until it has been developed sufficiently to be applied to biomedical or clinical problems. When there is reasonable evidence of value to be gained, there is some truth to the saying "Build it and they will come." Therefore, it is important that research into the development and optimization of new hybrid imaging systems continue to be supported, as it offers one of the best opportunities for major technical innovation and impact in contemporary medical imaging science.

SR Cherry Semin. Nucl. Med. 39 (2009) 348

Association des anciens et amis du CNRS

https://www.a3cnrs.org/

Dossier : l'imagerie médicale

Imagerie moléculaire : l'érosion des frontières / David Brasse

Rayons X: des premiers clichés radiographiques au scanner spectral / Christian Morel

Tomographie par émission de positons (TEP) / David W. Townsend

Simulation Monte Carlo en imagerie médicale / Sébastien Jan

Imagerie vibrationnelle des systèmes vivants / Hervé Rigneault

Multimodalité et imagerie médicale / Luc Bidaut

Systèmes hybrides TEP/IRM / Claude Comtat

Enjeux Européens de la R&D en imagerie médicale / Paul Lecoq

NeuroSpin, voir le cerveau penser / Fabrice Bonardi

Rosetta, suite et... fin

AG de Rennes

N° 69- HIVER 2016/2017

