Class 1: Introduction | Observable universe & Dark energy

Class 2: Details on Type Ia Supernova cosmology

Class 3: The Hubble Constant tension

The Hubble Constant H₀: How fast the Universe is currently expanding

Distance from us

Ø

Ø

Distance

Speed

TO

Modern Cosmology | *H*₀*Direct vs. Indirect Measurements*

$$H_0 = d_l / v_h$$

Careful with peculiar velocities

 $H(\underline{z}) = H_0 \times \sqrt{\Omega_r (1 + \underline{z})^4 + \Omega_m (1 + \underline{z})^3 + \Omega_\Lambda (1 + \underline{z})^{3(1+w)}}$

Model dependent

 \mathbf{Z}

Direct Distance Ladder | SH0ES

Get independent distances for SNe Ia

EDE 2022 | RIGAULT

Parallaxes (Milky Way)

Detached Eclipsing Binaries (LMC & M31)

Mega Maser (NGC4258)

Parallaxes (Milky Way)

Detached Eclipsing Binaries (LMC & M31)

Mega Maser (NGC4258)

Parallaxes (Milky Way)

Detached Eclipsing Binaries (LMC & M31)

Mega Maser (NGC4258)

$$a_r = \sqrt{\frac{GM}{\theta_r D}} \qquad a_r = \frac{v_r^2}{\theta_r D} = \frac{GM}{\theta_r^2 D^2}$$

 \bigcirc = measured

O = fit

Parallaxes (Milky Way)

Detached Eclipsing Binaries (LMC & M31)

Mega Maser (NGC4258)

SH0ES collaboration

cf. Supernova Cosmology Class

Direct Distance Ladder | SH0ES

Modern Cosmology | H₀ Direct vs. Indirect Measurements

$$H_0 = d_l / v_h$$

Geometry → *Cepheids* → *SNe Ia*

 $H_0 = 73.0 \pm 1.0 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Model dependent

EDE 2022 | RIGAULT

Indirect determination of *H*₀

60

2.0

0.810

0.795

0.780

55

0.0

Illustrative plots from Planck 2015

0.4

0.8

 $\Sigma m_{\nu} [eV]$

1.2

1.6

 $H_0 = 67.4 \pm 0.5 \ km \ s^{-1} \ Mpc^{-1}$ - based on ΛCDM -

2.5

3.5

Neff

4.0

4.5

3.0

Ho Tension | SHOES vs. Planck

EDE 2022 | RIGAULT

Are Supernovae & CMB in tension ? No!

EDE 2022 | RIGAULT

Inverse Distance Ladder

Ho Tension | Early vs. Late physics

RIGAULT

Multiple images of the background quasar

Background quasar

Looking further into the past

Ho from Strong Lensing

Ho Tension | At least 2 independent systematics

RIGAULT

Standard Sirens

0°

EDE 2022 | RIGAULT

Gravitational Waves & ElectroMagnetism | H₀

Mega Maser cosmology project

Ho Tension | alternative probes are still quite far

RIGAULT

Ho Tension | At least 2 independent systematics

RIGAULT

Tensions In Cosmology | Changing the model

H₀ Tension | At least 2 independent systematics

H₀ tension or r_s tension ?

SHOES 2019 (Cepheids & SNe Ia) (No assumption of ACDM)

BAO + SNe Ia (*No assumption of ACDM* | 5d spline)

Planck (Assumes ACDM)

EDE 2022 | RIGAULT

Then what about New Fundamental Physics ?

... or it's systematics

Ho Tension | At least 2 independent systematics

RIGAULT

No CMB Data | *Big Band Nucleosynthesis*

EDE 2022 | RIGAULT

eBOSS collab. 2020

RIGAULT

Strong Lensing | systematics in density profile

The mass-sheet degeneracy:

from the observed image positions and flux ratios, one cannot distinguish between the original κ and any κ_{λ}

RXJ1131–1231 | HST | Shajib et al. 2023

EDE 2022 | RIGAULT

But: $H_0 \Delta t \rightarrow \lambda H_0 \Delta t$

Good news: The mass sheet degeneracy can be broken by spatially resolved velocity dispersion measurements

Strong Lensing | systematics in density profile

EDE 2022 | RIGAULT

Birrer et al. 2020

H_0 measurements in flat Λ CDM - performed blindly 73.3^{+1.7} Wong et al. 2020 6 time-delay lenses HOLiCOW (average of PL and NFW + stars/constant M/L) Millon et al. 2020 $74.0^{+1.7}_{-1.8}$ 6 time-delay lenses (5 H0LiCOW + 1 STRIDES) TDCOSMO (NFW + stars/constant M/L) TDCOSMO (power-law) kinematics-only constraints on mass profile this work 7 time-delay lenses (+ 33 SLACS lenses in different combinations) 74.5^{+5.6} TDCOSMO-only 73.3^{+5.8} TDCOSMO+SLACS_{IFU} (anisotropy constraints from 9 SLACS lenses) $67.4^{+4.3}_{-4.7}$ TDCOSMO+SLACS_{SDSS} (profile constraints from 33 SLACS lenses) TDCOSMO+SLACS_{SDSS + IFU} (anisotropy and profile constraints from SLACS) 80 60 65 70 75 $H_0 \,[\rm km\,s^{-1}\,Mpc^{-1}]$

Direct Distance Ladder | TRGB

Get independent distances for SNe Ia

RIGAULT

Ho Tension | TRGB vs. Cepheid

Test the cosmological model

Strong Lensing is a "new" probe systematics ongoing

> Sensitive to peculiar velocity correction

SNeIa's $\langle L_{SN} \rangle$ calibrated by:

BAO (z~1) | r_s \leftarrow

TRGB (z~0) | geometry

Cepheids (z~0) | geometry

The Progenitor issue | Astrophysical biases

Direct Distance Ladder | SH0ES

RIGAULT

High fraction of young stars

 $lsSFR \propto \frac{\# Young Stars}{\#}$ # Old Stars

Rigault et al. 2020 Nicolas et al. 2021 Briday et al. 2022

The Age Step & H₀

Mickael RIGAULT

Impact on H0 of difference in SN Population

Magnitude offset between the two SNe Ia populations

 $\log(H_0^{\text{corr}}) = \log(H_0) - \frac{1}{5}\Delta f_y \times$

Relative fraction of Young SNeIa between / the Cepheid and HubbleFlow samples

<u>Ginolin et al. 2024 (a)</u>

Astrophysical Bias affecting H₀

RIGAULT

Rigault et al. 2015

$3\% bias \ on \ H_0$

So a 2 km s⁻¹ Mpc⁻¹ shift

Total current SH0ES error budget **1.04 km s⁻¹ Mpc⁻¹**

SH0ES "corrected" ~71 ± 1.5 km s⁻¹ Mpc⁻¹

Rigault et al. in prep. | Rigault et al. 2015, 2020

SH0ES rebuttal

"If we mimic the Cepheids selection function and only take Hubble flow SNe Ia from *Spiral* hosts, H_0 reduces by 0.5%"

Riess et al. 2022 | Riess et al. 2016, 2019

What's next?

Zwicky Transient Facility (ZTF) is acquiring ~1000 SNeIa per year at z<0.1 since 2018

ZTF H₀

Pure ZTF Pure Volume limited

Get an independent measurement of L_{SN}

No selection effect

Self-consistent calibration

Mickael RIGAULT

Measure L_{SN}

Volume limited ZTF SNeIa < 60 Mpc

Tip Red Giant Branch (doable in any galaxy)

~40 ZTF SNe Ia | *need JWST*

Get H₀

Volume limited ZTF SNeIa z < 0.06

O(1000) ZTF SNe Ia | ready

Gravitational Waves & ElectroMagnetism | H₀

Gravitational Waves & ElectroMagnetism | H₀

EDE 2022 | RIGAULT

Works with any Merger

Direct measurement of H₀ | *without counterpart*

EDE 2022 | RIGAULT

Abbott et al. 2019 | 1901.01540

Direct measurement of H₀ | *without counterpart*

EDE 2022 | RIGAULT

iPTF16geu | Goobar et al. 2017

Conclusion | Hubble-Lemaître Constant

H₀ Tension

— New fundamental Physics

No simple solutions so far These solving H_0 break σ_8

— Type Ia Supernovae a key for H_0

Understanding their systematics is of paramount importance for cosmology

ZTF is about to change the game

— Systematic Uncertainties

Must be multiple sources e.g. : age-bias for SNe Ia & lensing modeling for strong lensing

RIGAULT