Supersymmetry breaking cascade flow ...

Supersymmetry Breaking Cascade Flow

from $\mathcal{N} = 2$ to adjoint QCD

Eric D'Hoker

Mani L. Bhaumik Institute for Theoretical Physics, UCLA

Conference in Honor of Costas Bachas

Ecole Normale Supérieure, Paris

26 June 2024

Supersymmetry breaking cascade flow ...

$\textbf{Costas} \, \cap \, \textbf{Eric}$

1978 start graduate school in Princeton

- graduate college, shared an office, working on QCD

1984

$\textbf{Costas} \, \cap \, \textbf{Eric}$

1978 start graduate school in Princeton

- graduate college, shared an office, working on QCD

1984 Costas and Pascale's wedding in Lille

1995 Eric's engagement party in Santa Barbara

- both working on supersymmetry breaking

1999 celebrate Costas and Pascale fifteenth wedding anniversary

- we collaborate on non-commutative QFT with Boris Pioline

2000's both working on holographic interfaces and defects

2013 we finally co-author one paper with John Estes and Darya Krym *"M-theory solutions invariant under* $D(2, 1; \gamma) \times D(2, 1; \gamma)$ "

2024 both retire !

Motivation

Seiberg-Witten solution for $\mathcal{N} = 2$ super Yang-Mills

* provides exact low energy effective action and BPS spectrum

Softly breaking supersymmetry

 \star exploit the enhanced control provided by the SW solution

Earlier investigations into softly breaking $\mathcal{N}=2$

* confinement via magnetic monopole condensation [Seiberg, Witten 1994] [Alvarez-Gaumé, Distler, Kounnas, Marino, 1996; Luty, Ratazzi 1999; Edelstein, Fuertes, Mas, Guilarte, 2000] * embedding SU(2) adjoint QCD into $\mathcal{N} = 2$ [Cordova, Dumitrescu 2018]

This talk

Pure $\mathcal{N} = 2$ super-Yang-Mills with gauge group SU(N) \star gauge multiplet $(\phi, \lambda^1, \lambda^2, v_{\mu})$ in adjoint representation

Add mass term $M^2 tr(\phi^{\dagger}\phi)$ for gauge scalars ϕ

- * softly breaks all supersymmetries
- * preserves all other symmetries and 't Hooft anomalies
- $\star \phi$ decouples as $M \to \infty$ to adjoint QCD $(\lambda^1, \lambda^2, v_\mu)$ with two flavors

Phase structure along the flow $0 < M < \infty$?

Proposal: a magnetic dual Abelian Higgs model

⇒ Cascade of phase transitions through partial Coulomb/Higgs phases with Thomas Dumitrescu, Efrat Gerchkovitz and Emily Nardoni 2012.11843; 2208.11502; 2408.xxxx

$\mathcal{N}=2$ super Yang-Mills with gauge group SU(N)

Coulomb branch vacua $[\phi^{\dagger}, \phi] = 0$ have unbroken $\mathcal{N} = 2$

 $SU(N) \longrightarrow U(1)^{N-1}$

Low energy $\mathcal{N} = 2$ gauge $U(1)_k$ multiplets for $k = 1, \dots, N-1$ \star in terms of $\mathcal{N} = 1$ chiral superfields A_k and gauge field strength W_k

$$\mathcal{L}_{SW} = \frac{\mathrm{Im}}{4\pi} \sum_{k=1}^{N-1} \int d^4\theta A_{Dk} \bar{A}_k + \frac{\mathrm{Im}}{8\pi} \sum_{k,\ell=1}^{n-1} \int d^2\theta \,\tau_{k\ell} \,W_k W_\ell$$

 \star specified by a locally holomorphic pre-potential $\mathcal{F}(A_1, \cdots, A_{N-1})$

$$A_{Dk} = \frac{\partial \mathcal{F}}{\partial A_k} \qquad \qquad \tau_{k\ell} = \frac{\partial^2 \mathcal{F}}{\partial A_k \partial A_\ell}$$

 \star subject to Im au > 0 for positive kinetic term of $U(1)_k$ gauge fields

The Seiberg-Witten solution

The Seiberg-Witten solution

 \star determines the pre-potential \mathcal{F} on the Coulomb branch

 \star as a function of the vevs $\langle A_k \rangle = a_k$ and $\langle A_{Dk} \rangle = a_{Dk}$

SW curve \mathcal{C} and differential λ for SU(N)

[Klemm, Lerche, Yankielowicz, Theisen; Argyres, Faraggi 1994]

 \star in terms of a degree N polynomial C(x)

$$\mathcal{C} = \left\{ (x, y), \ y^2 = C(x)^2 - \Lambda^{2N} \right\} \qquad \lambda = \frac{xC'dx}{2\pi i \, y}$$

 \star vevs a_k, a_{Dk} in terms of periods over canonical homology basis

$$a_k = \oint_{\mathfrak{A}_k} \lambda \qquad \qquad a_{Dk} = \oint_{\mathfrak{B}_k} \lambda$$

 \star masses of BPS dyons with electric/magnetic charges $\mathbf{q}, \mathbf{m} \in \mathbb{Z}^{N-1}$

$$M_{\text{BPS}} = |Z|$$
 $Z = \sum_{k=1}^{N-1} (q_k a_k + m_k a_{Dk})$

Multi-monopole points

- Near a multi-monopole point [Douglas, Shenker 1995]
 - $\star N 1$ mutually local magnetic monopoles become massless
 - \star magnetic periods $a_{Dk} \to 0$ so that $M_{\text{BPS}}(\mathbf{0}, \mathbf{m}) \to 0$
 - \star electric periods $a_k \not\rightarrow 0$ so that $M_{\text{BPS}}(\mathbf{q}, \mathbf{0})$ remains finite
- Massless states produce singularities in τ as $a_D \rightarrow 0$

$$-2\pi i\,\tau_{k\ell}\approx\delta_{k\ell}\ln\frac{\Lambda}{a_{Dk}}$$

- the SW low energy effective Lagrangian breaks down because it integrated out light magnetic monopoles
- Viable low energy effective theory
 - \star requires keeping the fields of massless states

Effective Abelian Higgs model

"Integrate in" magnetic monopole fields below RG scale μ

* hyper-multiplets \mathcal{H}_k for gauge group $U(1)_k$ for $k = 1, \cdots, N-1$ * in terms of $\mathcal{N} = 1$ chiral superfields \mathcal{H}_k^{\pm}

Effective Lagrangian including magnetic monopole fields

 \star dictated by $\mathcal{N}=2$ supersymmetry

 $\mathcal{L}_{\mathsf{SW}}^{\operatorname{eff}} \supset \bar{\mathcal{H}}_{k}^{\pm} e^{\mp 2V_{k}} \mathcal{H}_{k}^{\pm}, \qquad ar{A}_{k} A_{Dk}, \qquad A_{Dk} \mathcal{H}_{k}^{+} \mathcal{H}_{k}^{-}, \qquad au_{Dk\ell}^{\operatorname{eff}} W_{k} W_{\ell}$

 \star Gauge couplings $\tau_{k\ell}$ are now free of singularities as $a_{Dk} \to 0$

$$-2\pi i \,\tau_{k\ell}^{\text{eff}} = \delta_{k\ell} \ln \frac{\Lambda}{\mu} + \ln L_{k\ell} + \mathcal{O}(a_D)$$

 \star where $L_{k\ell}$ is given by [ED, Dumitrescu, Gerchkovitz, Nardoni 2020]

$$L_{kk} = 16Ns_k^3 \qquad L_{k\neq\ell} = \frac{1 - c_{k+\ell}}{1 - c_{k-\ell}} \qquad \begin{cases} c_k = \cos(k\pi/N) \\ s_k = \sin(k\pi/N) \end{cases}$$

Soft supersymmetry breaking operator

The operator $\mathcal{T} = M^2 tr(\phi^{\dagger}\phi)$ in the $\mathcal{N} = 2$ theory

- \star dimension protected since component of $\mathcal{N}=2$ stress tensor multiplet
- \star IR behavior of $\boldsymbol{\mathcal{T}}$ governed by SW theory
- * flows towards the Kähler potential

$$\mathcal{T} \to \frac{i}{4\pi} \sum_{k=1}^{N-1} \left(\bar{a}_{Dk} a_k - \bar{a}_k a_{Dk} \right)$$

 \star with magnetic monopole hyper-multiplet fields \mathcal{H}_k^{\pm} integrated in

$$\mathcal{T} \to \frac{i}{4\pi} \sum_{k=1}^{N-1} \left(\bar{a}_{Dk}^{\text{eff}} a_k^{\text{eff}} - \bar{a}_k^{\text{eff}} a_{Dk}^{\text{eff}} + 2\pi i \bar{h}_k h_k \right)$$

Flow from $\mathcal{N} = 2$ to adjoint QCD by the operator \mathcal{T}

- \star adding $\mathcal{N}=2$ to the Lagrangian breaks susy completely
- \star in practice: ignore back-reaction of \mathcal{T} on RG flow

The Abelian Higgs model with susy breaking

The operator $M^2 \mathcal{T}$ drives vacuum towards minimum of \mathcal{T}

 \star at the \mathbb{Z}_{2N} symmetric point [ED, Dumitrescu, Nardoni 2022]

- \star use self-consistent approximation for a_k linear in $a_{D\ell}$
- * treat higher order terms perturbatively [ED, Phong 1997]

Assembling effective potential for the Abelian Higgs model $+\mathcal{T}$

$$M^{4}V_{\text{red}} = \sum_{k=1}^{N-1} \left(\frac{M^{2}N\Lambda}{\pi^{2}} s_{k} \text{Im} (a_{Dk}) + \left\{ 2|a_{Dk}|^{2} - \frac{1}{2}M^{2} \right\} \bar{h}_{k} h_{k} \right) + \sum_{k,\ell=1}^{N-1} \left(M^{2} t_{k\ell} a_{Dk} \bar{a}_{D\ell} + (t^{-1})_{k\ell} \left\{ (\bar{h}_{k} h_{\ell})(\bar{h}_{\ell} h_{k}) - \frac{1}{2} (\bar{h}_{k} h_{k})(\bar{h}_{\ell} h_{\ell}) \right\} \right)$$

Proposal: Abelian Higgs model is dual to flow from $\mathcal{N} = 2$ to adjoint QCD \star for small M back-reaction of \mathcal{T} on flow can be ignored \star for larger M we present evidence for a coherent picture

Vacuum alignment

Minima of \mathcal{V} occur at $\operatorname{Re}(a_{Dk}) = 0$

The Higgs fields h_k align perfectly as $SU(2)_R$ doublets

* minimize \mathcal{V} for given values of $h_k^{\dagger} h_k$;

$$\mathcal{V}\Big|_{\bar{h}_k h_k} = \sum_{k,\ell} (t^{-1})_{k\ell} \mathbf{v}_k \cdot \mathbf{v}_\ell \qquad \mathbf{v}_k = h_k^{\dagger} \boldsymbol{\sigma} h_k \qquad h_k = \begin{pmatrix} h_k^1 \\ h_k^2 \end{pmatrix}$$

* ground state is ferromagnetic under the mild assumption

$$(t^{-1})_{k\ell} < 0 \qquad \qquad k \neq \ell$$

 \star holds automatically for sufficiently small μ/Λ

 $SU(2)_R$ is spontaneously broken as soon as any $h_k
eq 0$

* producing two Goldstone bosons $SU(2)_R \rightarrow U(1)_R$ i.e. CP^1 -phase

* matches expected chiral symmetry breaking in adjoint QCD

Organization of semi-classical analysis

Reduced field equations for Higgs VEVs

$$h_k \left(M^2 - 4|a_{Dk}|^2 - 2\sum_{\ell=1}^{N-1} (t^{-1})_{k\ell} |h_\ell|^2 \right) = 0$$

Solutions to Higgs eqs organized by partitions of $k \in \{1, \dots, N-1\}$

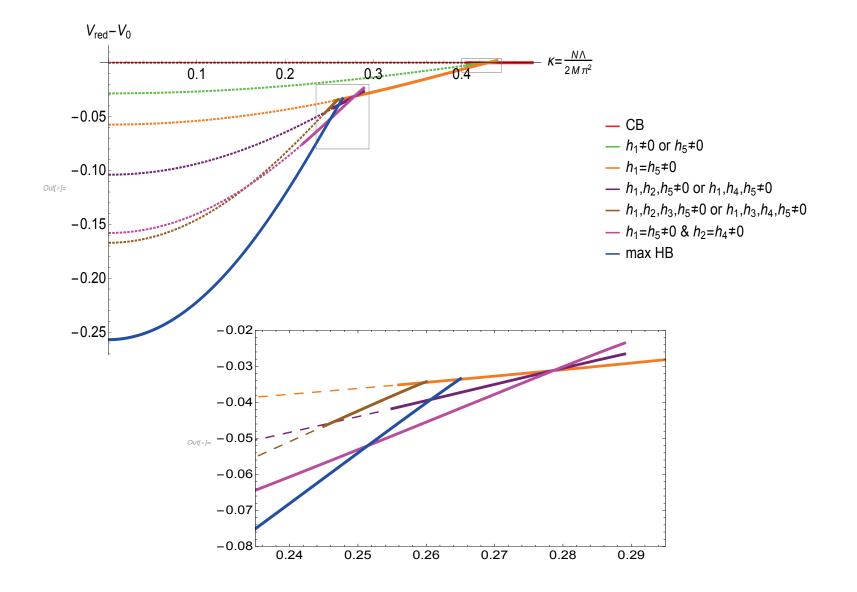
$$h_k = 0$$
 versus $M^2 - 4|a_{Dk}|^2 - 2\sum_{\ell=1}^{N-1} (t^{-1})_{k\ell} |h_\ell|^2 = 0$

- \star Solve for h_k within a given partition in terms of a_D
- \star Results in coupled cubics in a_{Dk} for $h_k \neq 0$

Steps in semi-classical analysis

- \star Existence of solutions for given $N, M/\Lambda$
- * Local stability of solutions: positive Hessian
- \star Global stability of solutions: global minimum of ${\cal V}$ for given $N,M/\Lambda$

The example of SU(6) gauge group



Summary

Magnetic Abelian Higgs model dual for flow from $\mathcal{N} = 2$ to adjoint QCD

- * Magnetic monopole fields have been "integrated in"
- * Soft susy breaking operator flows to Kähler potential of SW theory

Semi-classical Abelian Higgs model matches SU(N) theory

- \star Small M : Coulomb branch
- \star Large M : monopole condensation
 - matches confinement in adjoint QCD

Semi-classical analysis of Abelian Higgs model predicts

- * Cascade of phases transitions
 - through mixed Coulomb Higgs phases

Happy retirement Costas !

... boating on the Seine ...

16th-century detailed map of [□] Chios by Piri Reis

 \ldots on Chios with Pascale \ldots

... diving for octopus ...