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Abstract

We discuss relations between QFT and probability theory, with an
eye towards defining spaces of QFTs.
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Introduction

Costas and I wrote several papers together, on Dirichlet branes and on
conformal interfaces. We also co-organized the Les Houches schools
in 2001 and 2007. It will be a pleasure to revisit the topics we
discussed and worked on over the years.

But these days I am working more on machine learning. Fortunately
there is a highly developed interface between ML and field theory:

Statistical physics and machine learning: Parisi, Mézard,
Zecchina, Montanari, Monasson, Krzakala, Zdeborova, ...
ML techniques for lattice FT: Cranmer, Shanahan, Urban, ...
Exact RG and relations to information theory: Berman and
Klinger, Cotler and Rezchikov, ...
QFT-NN relations: Halverson, Maiti, Demertas, Schwartz, ...

So I will revisit topics discussed in “Calabi’s diastasis as interface
entropy” 1311.2202 (also with Ilka Brunner and Leonardo Rastelli) in
the light of what I have since learned about ML and statistics.
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Introduction

The main result of 1311.2202 was the following:
Consider a family of d = 2 (2,2) SCFTs, with a moduli spaceM
of theories connected by (c, c) (complex structure) or (a, c)
(Kähler) deformations.
Consider theories T and T ′ in this family, associated to points in
M with coordinates t and t ′.
Then there is a superconformal interface between T and T ′ with
boundary entropy g given by

2 log g = K (t , t̄) + K (t ′, t̄ ′)− K (t , t̄ ′)− K (t ′, t̄) (1)

where K (t , t̄) is the Kähler potential onM analytically continued
to general t , t̄ .

The combination on the r.h.s. is the Calabi diastatic function (Calabi
1953). It is a function onM×M (the dependence on Kähler-Weyl
transformations K → K + F (t) + F̄ (̄t) cancels out), zero if t = t ′.
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Introduction

While interesting in its own right, our initial motivation for studying this
was the idea that one could use such a conformal interface to define a
natural distance between a pair of CFTs. Recall that there is a natural
Riemannian metric on a moduli spaceM of CFTs, the Zamolodchikov
metric

g(Zam)
ij = 〈φi(0)φj(1)〉 (2)

where 〈. . .〉 is the normalized correlation function and φi(z) are the
marginal operators corresponding to tangent vectors inM. Given a
pair of points T ,T ′ in the same connected component ofM, the length
of the shortest path between them defines a distance d(T ,T ′).

But what ifM is not connected? Say T , T ′ are obtained from two
distinct CY sigma models, not connected by varying moduli. Is there a
natural definition of distance between T and T ′ (asked in 1005.2779) ?

Our idea was that a conformal interface between T and T ′ could be
used to define

d(T ,T ′) = min
√

log g. (3)
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Introduction

2 log g = K (t , t̄) + K (t ′, t̄ ′)− K (t , t̄ ′)− K (t ′, t̄) (4)

This works infinitesimally – one can show that the diastasis agrees
with the Zamolodchikov metric to second order. But it does not work in
general. A sensible distance must satisfy the triangle inequality,

d(x , y) ≤ d(x , z) + d(z, y) ∀x , y , z, (5)

but the square root of the diastasis does not in general.

OK. There are other definitions given in 1005.2779, such as the
following “quantum Gromov-Hausdorff distance.” Given theories T1,
T2, look at quantities like

d(T1,T2)2 = min
U

Tr (Ue−tH1U† − e−tH2)2 (6)

where U is a unitary implementing duality equivalences. This can be
generalized to higher genus diagrams with a reflection symmetry and
U a topological interface.
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Introduction

But, we can also regard a QFT or CFT as a Euclidean path integral,

Z =

∫
[dφ]e−S[φ]; 〈φ1 . . . φk〉 =

1
Z

∫
[dφ]e−S[φ]φ1 . . . φk. (7)

The integrand is a probability measure over fields (for statistical field
theories; more generally it can be complex). And there are many
definitions of distances and related quantities for such measures.
Why not use one of these?
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Introduction

Some families of probability distributions

The “categorical” distributions C(P(1), . . . ,P(k)) with k− 1
parameters. Draw x ∈ S from a finite set 1,2, . . . , k, and require
P(x) ≥ 0 ∀x and

∑
x∈S P(x) = 1.

The multivariate normal (Gaussian) distribution N (~µ,Σ) on ~x ∈ Rk,

Pµ,Σ(~x) =
1√

(2π)k det Σ
exp−1

2
(~x− ~µ) · Σ · (~x− ~µ), (8)

normalized so that
∫

d~x P(x) = 1. This is a family with parameters
µ ∈ Rk and symmetric positive definite Σ ∈ Rk(k+1)/2.

What are natural distances between pairs of such distributions?
For example, is there a natural distance between a C and a N ?
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Introduction

Statistical and quantum systems

Canonical ensemble: P(φ) = (1/Z) exp−E(φ), Z for normalization.

For example, the generalized Ising or scalar field theory.
Given two metric spaces Σ and K, the random variable is a map
φ : Σ→ K, and we use the Boltzmann weight

E = −J
∑

i6=j∈Σ

d2(φ(i), φ(j))

d2(i, j)
+
∑
i∈Σ

V(φ(i)). (9)

Here J > 0 (attractive/ferromagnetic) or J < 0
(repulsive/antiferromagnetic).

For quantum systems, P→ ρ (the density matrix) and
∫
→ Tr .

Spin glass: J(i, j) can depend on i and j and can have both signs.
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Introduction

Distances and information theory

Kullback-Leibler divergence (KL divergence or relative entropy)

DKL(P||Q) =

∫
dx P(x) log

P(x)

Q(x)
. (10)

Like a distance, DKL ≥ 0 with equality only if P = Q, but it is not
symmetric between P and Q. It is the extra information required to
encode a sample from P given a code optimized for Q.
Fisher information metric – given a family Pt with parameters t, this
is a Riemannian metric whose value at an (arbitrary) point t = 0 is

gij(P0) = ∂i∂jDKL(P0||Pt)

∣∣∣∣
t=0
. (11)

Wasserstein distances (more later).
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Introduction

Exponential families

These definitions make sense for general families Pt(x), but in stat
mech and QFT we usually use the parameterization

Pt(x) = P0(x) eF(t)−
∑

tiOi (12)

with F(t) = − log Z = − log
∫

dx P0(x) exp−
∑

tiOi.

This is the maximal entropy distribution with the set of expectation
values 〈Oi〉. So this parameterization is much used by everyone.

For example, in the categorical distribution, taking Oi = δ(i, x) then
P(i) = 〈Oi〉 = e−ti/

∑
j e−tj . This is the “softmax” function of ML.

In general, the relation ti ↔ mi ≡ 〈Oi〉 is a duality (involution) given by
Legendre transform Γ(mi) = inf t

∑
i timi − F(t).

KL divergence DKL(P(0)||P(t)) = 〈e−S(t)〉P(0) = 〈
∑

tiOi〉P(0).
Fisher information metric gij(t) = −∂i∂jF = 〈Oi Oj〉c.
In this sense Fisher ∼ Zamolodchikov.

Michael R. Douglas (CMSA) Interpolating between QFT and ML June 26, 2024 10 / 21
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Introduction

In field theory one often uses the generating functional of connected
correlation functions

F(J) = − log

∫
dφ exp−S0(φ) + i

∫
dx J(x)φ(x). (13)

This is also an exponential family.

The exponential family is defined in terms of coordinates ti. How does
one say this geometrically?
One can add couplings, it makes sense to say ti1 + ti2. The space of
couplings has an affine structure which can be described by an affine
connection ∇. It is flat and its simplest description is Γi

jk = 0 in the t
coordinates.

There is more structure: information geometry. For example, there is
also an affine connection on the space of vevs (moments) mi. In the t
coordinates its components are Γi

jk = gil〈Ol Oj Ok〉c. The dual
generating function is the 1PI effective action Γ(m).
See for example Floerchinger 2303.04081.
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Introduction

Optimal transport

Consider two distributions p1(~x)
and p2(~y) of matter in space.
Suppose the cost of moving one
“molecule” of matter from x to y is
the distance d(x, y) = |x− y|. The
“earth mover’s distance” (Monge
1781) between them is the min-
imal cost to turn p1 into p2 by
movement of molecules of matter.
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Introduction

Monge-Kantorovich-Wasserstein distances

This problem was generalized by (1) considering the p’th power of
distances and (2) instead of transporting all matter at a point x to y,
allow splitting it up. This can be expressed in terms of a “coupling”
π(x, y) such that p1 =

∫
dyπ and p2 =

∫
dxπ. Then the p-Wasserstein

distance between p1 and p2 is

Wp(p1, p2) =

(
inf
π

∫
dxdyπ(x, y)d(x, y)p

)1/p

. (14)

This makes sense even if p1 and p2 are distributions over different
spaces, so we could use it to define a distance between (for example)
the C and N distributions. But it depends on postulating a distance
d(x, y), so it does not give a unique definition.
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Introduction

Probability distributions are not universal unless we take a limit:
Sum of independent variables x =

∑
i xi – normal distribution

(central limit theorem).
Sum of noncommuting (free) independent variables – semicircle
distribution (as in RMT; free probability of Voiculescu).
IR limit under renormalization group – conformal field theories.
Continuum limit – more general statistical/quantum field theories;
flows from UV to IR fixed point.

Renormalization and the RG are (of course) unavoidable elements of
the questions we began the talk with. This often spoils positivity, e.g.
: (x− y)2 : requires subtractions.
Interesting recent progress on treating these in frameworks of
probability theory and information theory:

RG flow as optimal transport (Cotler and Rezchikov 2202.11737).
RG flow as inverse Bayesian inference (Berman et al)
Rigorous stochastic quantization (Hairer et al, Gubinelli and
Hofmanova, ...).

Michael R. Douglas (CMSA) Interpolating between QFT and ML June 26, 2024 14 / 21



Introduction

Probability distributions are not universal unless we take a limit:
Sum of independent variables x =

∑
i xi – normal distribution

(central limit theorem).
Sum of noncommuting (free) independent variables – semicircle
distribution (as in RMT; free probability of Voiculescu).
IR limit under renormalization group – conformal field theories.
Continuum limit – more general statistical/quantum field theories;
flows from UV to IR fixed point.

Renormalization and the RG are (of course) unavoidable elements of
the questions we began the talk with. This often spoils positivity, e.g.
: (x− y)2 : requires subtractions.
Interesting recent progress on treating these in frameworks of
probability theory and information theory:

RG flow as optimal transport (Cotler and Rezchikov 2202.11737).
RG flow as inverse Bayesian inference (Berman et al)
Rigorous stochastic quantization (Hairer et al, Gubinelli and
Hofmanova, ...).

Michael R. Douglas (CMSA) Interpolating between QFT and ML June 26, 2024 14 / 21



Introduction

Exact RG and diffusion in theory space

Polchinski equation: define a cutoff theory by cutting off the quadratic
part of the action,

ZΛ[J] =

∫
dφ exp−1

2

∫
dDp

φ(p)φ(−p)

KΛ(p2)(p2 + m2)
− Sint[φ]−

∫
Jφ, (15)

then varying Λ can be compensated by varying the interaction Sint[φ] as

−Λ
∂

∂Λ
e−Sint[φ] =

1
2

∫
dDp

Λ

p2 + m2
∂KΛ(p2)

∂Λ

δ2

δφ(p)δφ(−p)
e−Sint[φ]. (16)

This is a diffusion equation on the (unnormalized) probability
distribution. It becomes a diffusion-convection equation on the
normalized distribution e−Sint/Z.
It can be generalized to the Wegner-Morris exact RG

−Λ
∂

∂Λ
PΛ[φ] =

∫
dDx

δ

δφ(x)
(Ψ[φ, x]PΛ[φ]) . (17)
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2
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∫
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RG and optimal transport (Cotler and Rezchikov)

The Wegner-Morris RG flow can be thought of as a field
reparameterization

φ→ φ+
δΛ

Λ
Ψ[φ, x] (18)

and the special case of varying the cutoff is

Ψ[φ, x] = −1
2

∫
ddy ĊΛ(x− y)

δΣΛ[φ]

δφ(y)
(19)

with Ċ the variation of the propagator and ΣΛ = S[φ]− 2Ŝ[φ] depends
on a “seed” or reference action. Recall P(φ) = e−S[φ]/Z and define
Pref(φ) = e−2Ŝ[φ]/Ẑ analogously. Then Cotler and Rezchikov show that

−Λ
∂

∂Λ
PΛ[φ] = −∇W2DKL

(
PΛ[φ] ||Pref

Λ [φ]
)
. (20)

whereW2 (the metric in the gradient) is a Wasserstein metric defined
using Ċ as the measure of distance. Intuitively the flow measures how
much the reference action must be modified to become P[φ].
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Introduction

Statistics and theory of machine learning

A primary task in statistics is to, given a dataset and a family of
probability distributions, find the distribution in the family which best fits
the data. This is called model estimation or “training” in ML.

A very common procedure is stochastic gradient descent (SGD). In
each step, one takes a sample from the dataset and varies the model
parameters by the gradient of an objective function which measures
the fit. For function fitting this could be least squares, while for a
probability distribution one often takes relative entropy. For a dataset
{xi} this looks like

ṫi = −Gij∂j

∑
i

log Pt(xi) (21)

Ideally Gij is the Fisher metric at Pt, though this is not usual in practice.
One would like to know, for a given class of models and dataset, how
many samples are needed to learn the distribution. This is known as
sample complexity.
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Introduction

The purely theoretical problem of this type is model recovery, also
called the teacher-student problem. One generates data using model
Mtrue, usually chosen randomly from some parameterized set P(t). One
then starts with a second randomly initialized model M0 and, by
training on data generated by Mtrue, tries to reproduce it.

One can show that the gradient descent rule approximates the flow

∂tP(t) = −∇DKL(Mtrue||P(t)); i .e. ṫi = −Gij∂jDKL(Mtrue||P(t)). (22)

This can also be thought of as a continuous form of the Bayesian
inference rule

Ppost(t|x) =
P(x|t)
P(x)

Pprior(t). (23)

Berman et al 2305.10491 suggest thinking of this as an inverse of the
RG. The RG takes a theory and produces a simpler theory which does
not describe the high energy observables. As we saw earlier it is
mathematically a diffusion (or convection-diffusion) equation. By
contrast Bayesian inference incorporates measurements and in
examples looks like an inverse convection-diffusion equation.
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This can also be thought of as a continuous form of the Bayesian
inference rule

Ppost(t|x) =
P(x|t)
P(x)

Pprior(t). (23)

Berman et al 2305.10491 suggest thinking of this as an inverse of the
RG. The RG takes a theory and produces a simpler theory which does
not describe the high energy observables. As we saw earlier it is
mathematically a diffusion (or convection-diffusion) equation. By
contrast Bayesian inference incorporates measurements and in
examples looks like an inverse convection-diffusion equation.

Michael R. Douglas (CMSA) Interpolating between QFT and ML June 26, 2024 18 / 21



Introduction

The purely theoretical problem of this type is model recovery, also
called the teacher-student problem. One generates data using model
Mtrue, usually chosen randomly from some parameterized set P(t). One
then starts with a second randomly initialized model M0 and, by
training on data generated by Mtrue, tries to reproduce it.

One can show that the gradient descent rule approximates the flow

∂tP(t) = −∇DKL(Mtrue||P(t)); i .e. ṫi = −Gij∂jDKL(Mtrue||P(t)). (22)
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Introduction

So what can we say about distances or divergences defined by
integrating these flows? When are they finite or infinite?

For the learning problem, the distance corresponds to learning time
(sample complexity). If P(t) is close enough to the target model, then
learning is fast: If DKL(M||P(t)) = |t|2 then ṫi = −2ti and time
T = log dinit/dfinal.
Potential infinities come from local minima and/or saddle points. But in
practice one does a noisy gradient flow (by randomly sampling the
dataset) and this often fixes the problem.

Does RG flow go finite distance or infinite distance? The argument we
just gave seems to say finite distance.

But in the Cotler-Rezchikov RG equation, the structure seems to lie in
theW2 metric, which is not even universal. It is not obvious (to me)
why there are fixed points.
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Introduction

Can we find a field theory version of the Wasserstein distance?

W2(p1, p2)2 = inf
π

∫
dφ1dφ2 (φ1 − φ2)2 π(φ1, φ2) (24)

where π(φ1, φ2) is such that e−S1[φ1]/Z1 =
∫

dφ2π and
e−S2[φ2]/Z2 =

∫
dφ1π.

The coupling π is a field theory depending on both fields φ1,2. Simplest
example is the direct product FT. We could perturb around this to get
others. The normalization condition is the standard one.
If T1

∼= T2 then π should be the identity δ(φ1 − φ2)e−S1 . More generally
replace δ by an interface.
Then we face the problem of defining (φ1 − φ2)2 for operators whose
coincidence limit is singular. Maybe better to look at a simpler
observable about π, such as its central charge if it is a CFT, or
boundary entropy for an interface. This would bring us back to the
definition that Bachas, Brunner, Rastelli and I studied.
Put a boundary operator on the interface to represent (φ1 − φ2)2 ?
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Best wishes, Costas !!!
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