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ABSTRACT: We study conformal field theories in two dimensions separated by do-
main walls, which preserve at least one Virasoro algebra. We develop tools to study
such domain walls, extending and clarifying the concept of ‘folding’ discussed in the
condensed-matter literature. We analyze the conditions for unbroken supersymime-
try, and discuss the holographic duals in AdS3 when they exist. One of the interesting
observables is the Casimir energy between a wall and an anti-wall. When these sep-
arate free scalar field theories with different target-space radii, the Casimir energy is
given by the dilogarithm function of the reflection probability. The walls with holo-
graphic duals in AdS3 separate two sigma models, whose target spaces are moduli
spaces of Yang-Mills instantons on T4 or K3. In the supergravity limit, the Casimir
energy is computable as classical energy of a brane that connects the walls through
AdS3. We compare this result with expectations from the sigma-model point of view.

2/32



Strings 2003
In Kyoto

0310017

3/32




Two tales about 2d CFTs:

1. A=exp(—at+0(1)),

2. Cir < Cefr < min(cy, cr).



1. Universal Bounds on CFT Distance Conjecture

Wang + H.0.: 2405.00674

For any unitary 2d CFT, if there is a primary operator whose conformal
dimension A vanishes in some limit on the conformal manifold,

* The Zamolodchikov distance t to the limit is infinite.
* The approach to this limit is exponential A = exp(— at + 0(1)).
 The decay rate obeys the universal bounds c=1/? < o < 1.

In the limit, an infinite tower of primary operators emerges without
a gap above the vacuum and that the conformal field theory
becomes locally a tensor product of a sigma-model in the large
radius limit and a compact theory.
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This work was motivated by the Distance Conjecture
Vafa + H.0.: 0605264

Conjecture 0: Every parameter in quantum gravity is an
expectation value of a dynamical field and can be varied by
changing its expectation value.

Conjecture 1: Choose any point p, in the moduli space M.
For any positive t, there is another point p € M such that

d(p,po) > t.

Conjecture 2: Compared to the theory at py, € M, the theory
at p with d(p, pg) > t has an infinite tower of light particles
starting with mass of the order of e "%t for some a > 0.
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Examples

Sigma model on T? ¢ Complexified Kdhler moduli p
 Complex structure moduli T

dpdp  dvd
p3 75

Zamolodchikov metric: ds? =

Z.5 orbifold point at finite distance

Agap= % is saturated by SU(3)4 primary fields

* Large volume limit at infinite distance p, —

1 _
Apon = ~e > 0anda = 1.
54p 2027;
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N = (2,2) sigma-model on the quintic Calabi-Yau manifold

Zs orbifold point at finite distance

It is a Gepner point described by (SU(2)5/U(1))®5 /Z:®3.

Agap= % is saturated by a non-BPS primary with zero U(1)y charge.

Conifold point at finite distance

Continuous spectrum above Ag,,= % described by SL(2),/U(1).

* Large volume limit at infinite distance p, —

] :
) 1 & Marginal operators tl."nat
ds*=—dpdp and a=—=<1 are not exactly marginal.

- p3 NG
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Proof of:
A=exp(—at+ 0(1))

a < 1



Start with the simple case when there is only one marginal
operator M and when it is exact.

Suppose there is a primary field O, whose conformal dimension
A vanishes at some point on the conformal manifold. Choose a
geodesic coordinate t so that A(t) monotonically decreases

toward the point.
dA(t) _ ¢

The distance t diverges if Cypp Vanishes at least linearly in A.

We can show the stronger statement Cppy = A (1 + 0(A)).
Therefore, A(t) = exp(—t + 0(1)) with o = 1.
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In view of time, | will present a simple but not rigorous proof.

Since [L{,L_1] = 2L, there is an operator ] of weights
(A/2+1, A/2) such that 00 = iVA].

Therefore, Coopy = A Cjjy. Need to show Cjjy = 1+ 0(A).

1
|lz—w|28"’

From (O(z)0O(w)) =

J@W)) = 5=z + 0(D), (]’(z‘)f(v‘v)) on T 0)
U@ (W) = =5+ 0(4%)

|Z— WI2
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J@JW)) = =z + 0(0), (f(Z')f(W)) o T O0Q),

J@](W)) = =+ 0(8%)
(1(w)1(z>1<u)/(v) )
= v)z(v_v = + .-+ 0(4) in the t-channel
— Zx;z ((31271V1):2 cee 1
TTT— + oo (W) + -+ 0(A) inthe s-channel
I} I} i}
1 exchange M exchange exchange of other operators

By the crossing symmetry, C;y = 1 + 0(4).
Therefore, A(t) = exp(—t + 0(1)) with a = 1.
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With several marginal operators M;, the crossing symmetry gives

For exactly marginal operators M,, define a, = lim C;jp_.

t—oo
o A(t) = exp(—ay t* + 0(1)).
e Jla|| =JG®aua, < 1.
* |lall=1ifand onlyif C;jy, = O for all non-exact operators.

Parametrizing t¢ = e® t by the geodesic distance t and a unit
vector e® = cos 0 G*a, + sinfef, where 0 < 8 < /2 and
e is a unit vector satisfying efc, = 0, A in the limit is,

A(t? = e?t) = exp(—at+ 0(1)) witha = cos@ ||a]|| < 1.
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Proof of:

A=exp(—at+ 0(1))

! <
— < a
N



01,05, 05, : primary fields whose conformal
weights vanish A,, — 0 toward t — oo.

Define J,, by 00,, = i@]n.
J..'s may not be linearly independent in the limit.
Consider operator product expansion:
0n(2)0p (W) = Ty Chlz — w|*K 5 70m0, (w)
+ 0(|Z — W|Afinite)

O(IZ — WIAfinite) represents contributions of operators
whose conformal weights remain above Agpite-
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Ap—Apn—Am

* Acting (0, + 9,,) on both sides and using 00,, = i /A, |,
= Linear relations among J,,’s in the limit.

\m]n T mlm = Lk Crll{mm]k

* Acting (@, X d,,) on both sides and using 00,, = i\/A,, ],
= Quadratic relations among J,,’s in the limit.

Jn(2) I (W) = T Gl Mmoo B (1)) 4

AnAm (z—-w)?2 z
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In linearly independent basis:

5HY

(z—w)?

J*(z) JH(w) = - 0(1).

Bosonization: J4(z) = ioX*

Since 30 (2) < J(z), 0(z) = ePuX" (@)

p, becomes continuous the t — oo limit.

e CFTin the limit contains a subalgebra of local
operators described by the sigma-model on RV

e N < c:the central charge of the original CFT.
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The limiting CFT is locally the R" sigma-model ® compact CFT.

Examples with nontrivial global structures

. S}%/Zz . Consider 0,, = V2 cos(nX/R).
], = i0X - 0,, with O0,, = V2sin(nX/R).

In the R — oo limit, O,, becomes a topological operator
at the end-point of the topological defect line that
implements the quantum Z, symmetry of the orbifold.

* The k — oo limit of the A, -type Virasoro minimal model
is the ¢ = 1 sigma-model with a pair of walls infinitely

distant from each other. Runkel, Watts: 0107118

Mazel, Sandor, Wang, Yin: 2403.14544 18/32



Marginal operators that couple of the light operators

O(z) = ePrX" inthe t » o limit are of the form 0X*3X".

Since the light sector in the limit is parity invariant, the
perturbation t [ KwaX’“‘gX" should be positive and parity
preserving. Therefore, k,,, is symmetric with non-negative
eigenvalues.

For O = ePuX® A= g=at+0(1) with ¢ = 2 K‘”’p“pv.
Z(pu)

We can choose p, so that « is the largest eigenvalue of
K., Which is bounded below by N~1/2 Thus, there is
always a light operator for which c=1/?2 < N~1/2 < q.
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To summarize:

A can vanish only in infinite distant limits on the
conformal manifold, where

1
Agap=exp(—at+ 0(1)) and % < a < 1.
( zic < a < 1 with superconformalsymmetry.)

The large volume limit of the quintic Calabi-Yau
saturates the lower bound at a = 1//6.
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If CFT, has a holographic dual in AdS;

A = exp(— apqs ¢ + 0(1))

(EL )1/2 < apgs < (8mLpgg)t/?
3 Planck — UAdS = AdS



If CFT, has a holographic dual in AdS;
A = exp(— apgs ¢ + 0(1))

(EL )1/2 < apgqs < (BmLpgs)/?
3 Planck — UAdS = AdS

 The tower of light particles must emerge
5 ~1/2
when ¢ = (5 LPlaan) .

 The tower of light particles can emerge
when ¢ = (87TLAdS)_1/2-
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With supersymmetry

A = exp(— apqs ¢ + 0(1))

(LPIaan)l/2 < Apgs < (SHLAdS)l/Z

The lower bound agrees with
the Sharpened Distance Conjecture.

Lee, Lerche, Weigand: 1910.01135
Etheredge, Heidenreich, Kaya, Qiu, Rudelius: 2206.04063

23/32



From my Strings 2024
closing remarks

Discrete Families of CFTs

Eric Perlmutter

66. Can we quantitatively describe large scale structures in
the space of unitary, generic CFTs?

For example, how CFTs are distributed as a function of c.

H.O.

56. Can we define a distance between any pair of conformal
field theories that are not necessarily related by marginal
perturbations?

Hint: Can we use a domain wall between such a pair? 24/32



2. Universal Bound on Effective Central Charge

Karch, Kusuki, Sun, Wang + H.0O.: 2308.05436 and 2404.01515

The effective central charge c.¢s measures the entanglement
across a CFT interface, while the transmission coefficient

encoded in ¢; p measures the energy transmission through the
interface.

We prove the upper bound on cg¢f
and give evidence for the lower bound.

CLr < Cefr < min(cy, cg)
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CFTy CFTq

° w
Z
Interface
(T, (@) Tr (W) = 5
2(z — w)*
C C
Energy transmission coefficients: J; = _LR , Jp= “LR
CL CR

This requires ¢ g < min(c;, cg).
Quella, Runkel, Watts: 0611296
Meineri, Penedones, Rousset: 1904.10974
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The effective central charge is defined in terms of the entanglement entropy.

3 e

L/2 ; L/2 ¢; + cp L
With interfaces: *H S = log| —
6 TE

. _ L c L
Without an interface:  —— o S =—log

We proved that c.¢ defined by the last two equations are the same.

Karch, Kusuki, Sun, Wang + H.0O.: 2308.05436 27/32



Proof of c.¢f < min(c;, cg)
Karch, Kusuki, Sun, Wang + H.0O.: 2308.05436

Add the interface to the proof of the ¢ theorem
by Casini, Huerta: 0610375.

Interface
4 lalld| = [b]|c|

d

The strong subadditivity S(b) + S(c) = S(a) + S(d) implies

CR — Ceff |b|
>
; log(lal) >0
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Evidence forc,p <
LR eff Karch, Kusuki, Sun, Wang + H.0.: 2404.01515

AdS,
—dt? + dx*
ds? = a?(9) ( > + d92>
CFT,
4 1 1 -1 Bachas, Chapman, Ge,
Crp = + —+ 81ntGrno Policastro: 2006.11333
LR L, + Ly <LL Le N )
3 min[a(8)] The inequality also holds

= 2Gy — Ceff in free theories and in the

defect perturbation theory.
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CLr < Ceff < min(cy, cg)

The upper bound is proven.

The lower bound holds in holographic CFTs, free CFTs,
and the defect perturbation theory.

The lower bound means that the amount of energy
transmitted across the interface cannot exceed the
amount of information transmitted.

The inequalities are sharp and can be saturated.

Cip = Ceff ONlY if Cogg = 0 or min(cy, cr), i.e., the
interface is either a boundary or topological.
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Two tales about 2d CFTs:

1. A=exp(—at+ 0(1)),
- < a <
— N a N
NG

2. CIR < min(CL, CR)

1

= Cip < Corr < min(cy, cg).



Congratulations, Costas!

1

<
N

CLr < Ceff < min(cy, cg)
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