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Two tales about 2d CFTs:

∆ = exp(− 𝛼𝛼 𝑡𝑡 + 𝑂𝑂(1)),  1.

1
𝑐𝑐

 ≤  𝛼𝛼 ≤  1 .

2. 𝑐𝑐𝐿𝐿𝐿𝐿 ≤ 𝑐𝑐eff ≤ min 𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑅𝑅 .  
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1.  Universal Bounds on CFT Distance Conjecture

Wang + H.O.: 2405.00674

For any unitary 2d CFT, if there is a primary operator whose conformal 
dimension Δ vanishes in some limit on the conformal manifold, 

In the limit, an infinite tower of primary operators emerges without 
a gap above the vacuum and that the conformal field theory 
becomes locally a tensor product of a sigma-model in the large 
radius limit and a compact theory. 

• The Zamolodchikov distance 𝒕𝒕 to the limit is infinite.
• The approach to this limit is exponential ∆ = 𝐞𝐞𝐞𝐞𝐞𝐞 − 𝜶𝜶 𝒕𝒕 + 𝑶𝑶 𝟏𝟏 . 
• The decay rate obeys the universal bounds 𝒄𝒄−𝟏𝟏/𝟐𝟐 ≤ 𝜶𝜶 ≤ 𝟏𝟏.
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This work was motivated by the Distance Conjecture
Vafa + H.O.: 0605264

Conjecture 0: Every parameter in quantum gravity is an 
expectation value of a dynamical field and can be varied by 
changing its expectation value.

Conjecture 1: Choose any point 𝑝𝑝0 in the moduli space ℳ. 
For any positive 𝑡𝑡, there is another point 𝑝𝑝 ∈ ℳ such that 
𝑑𝑑 𝑝𝑝, 𝑝𝑝0 > 𝑡𝑡.

Conjecture 2: Compared to the theory at 𝑝𝑝0 ∈ ℳ, the theory 
at 𝑝𝑝 with 𝑑𝑑 𝑝𝑝,𝑝𝑝0 > 𝑡𝑡 has an infinite tower of light particles 
starting with mass of the order of 𝑒𝑒−𝛼𝛼𝑡𝑡 for some 𝛼𝛼 > 0. 
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Examples

Sigma model on 𝑇𝑇2   • Complexified Kähler moduli 𝜌𝜌
• Complex structure moduli 𝜏𝜏

Zamolodchikov metric:

∆gap = 1
2𝜌𝜌2𝜏𝜏2

 ~ 𝑒𝑒−𝑡𝑡 → 0 and 𝛼𝛼 = 1.  

• Large volume limit at infinite distance 𝜌𝜌2 → ∞ 

• ℤ3 orbifold point at finite distance

∆gap= 2
3

is saturated by 𝑆𝑆𝑆𝑆(3)1 primary fields

𝑑𝑑𝑠𝑠2 =
𝑑𝑑𝜌𝜌𝑑𝑑𝜌̅𝜌
𝜌𝜌22

+
𝑑𝑑𝜏𝜏𝑑𝑑 ̅𝜏𝜏
𝜏𝜏22
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𝒩𝒩 = 2,2  sigma-model on the quintic Calabi-Yau manifold                   

• ℤ5 orbifold point at finite distance

It is a Gepner point described by 𝑆𝑆𝑆𝑆 2 3/𝑈𝑈(1) ⨂5/ℤ5⨂3.  

∆gap= 2
5

is saturated by a non-BPS primary with zero 𝑈𝑈(1)𝑅𝑅  charge.  

• Conifold point at finite distance

Continuous spectrum above ∆gap= 1
2

described by 𝑆𝑆𝑆𝑆 2 1/𝑈𝑈(1). 

• Large volume limit at infinite distance 𝜌𝜌2 → ∞ 

𝑑𝑑𝑠𝑠2 =
6
𝜌𝜌22
𝑑𝑑𝜌𝜌𝑑𝑑𝜌̅𝜌 and 𝛼𝛼 =

1
6

< 1

∃Marginal operators that 
      are not exactly marginal.
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Proof of:
∆ = exp(− 𝛼𝛼 𝑡𝑡 + 𝑂𝑂(1))  

𝛼𝛼 ≤  1
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Start with the simple case when there is only one marginal 
operator 𝑴𝑴 and when it is exact. 

Suppose there is a primary field 𝒪𝒪, whose conformal dimension 
Δ vanishes at some point on the conformal manifold. Choose a 
geodesic coordinate 𝑡𝑡 so that Δ(𝑡𝑡) monotonically decreases 
toward the point. 

𝑑𝑑Δ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝐶𝐶𝒪𝒪𝒪𝒪𝑴𝑴

The distance 𝑡𝑡 diverges if 𝐶𝐶𝒪𝒪𝒪𝒪𝑀𝑀 vanishes at least linearly in Δ.

We can show the stronger statement 𝐶𝐶𝒪𝒪𝒪𝒪𝑀𝑀 = Δ (1 + 𝑂𝑂 Δ ).
Therefore, Δ 𝑡𝑡 = exp −𝑡𝑡 + 𝑂𝑂 1  with 𝛼𝛼 = 1. 
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Since 𝐿𝐿1, 𝐿𝐿−1 = 2𝐿𝐿0, there is an operator 𝐽𝐽 of weights 
(Δ/2+1, Δ/2) such that 𝜕𝜕𝜕𝜕 = 𝑖𝑖 Δ 𝐽𝐽.

Therefore, 𝐶𝐶𝒪𝒪𝒪𝒪𝑀𝑀 = Δ 𝐶𝐶𝐽𝐽 ̅𝐽𝐽𝑀𝑀.   Need to show 𝐶𝐶𝐽𝐽 ̅𝐽𝐽𝑀𝑀 = 1 + 𝑂𝑂 Δ .

𝐽𝐽 𝑧𝑧 𝐽𝐽 𝑤𝑤 = 1
(𝑧𝑧−𝑤𝑤)2

+ 𝑂𝑂(Δ),   ̅𝐽𝐽 ̅𝑧𝑧 ̅𝐽𝐽(�𝑤𝑤) = 1
(𝑧̅𝑧−�𝑤𝑤)2

+ 𝑂𝑂(Δ),

𝐽𝐽 𝑧𝑧 ̅𝐽𝐽(�𝑤𝑤) = Δ
|𝑧𝑧−𝑤𝑤|2

+ 𝑂𝑂(Δ2). 

From 𝒪𝒪 𝑧𝑧 𝒪𝒪 𝑤𝑤 = 1
|𝑧𝑧−𝑤𝑤|2Δ

,

In view of time, I will present a simple but not rigorous proof.
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𝐽𝐽 𝑧𝑧 𝐽𝐽 𝑤𝑤 = 1
(𝑧𝑧−𝑤𝑤)2

+ 𝑂𝑂(Δ),   ̅𝐽𝐽 ̅𝑧𝑧 ̅𝐽𝐽(�𝑤𝑤) = 1
(𝑧̅𝑧−�𝑤𝑤)2

+ 𝑂𝑂(Δ),

𝐽𝐽 𝑧𝑧 ̅𝐽𝐽(�𝑤𝑤) = Δ
|𝑧𝑧−𝑤𝑤|2

+ 𝑂𝑂(Δ2). 

 ̅𝐽𝐽 𝑤𝑤  𝐽𝐽 𝑧𝑧  ̅𝐽𝐽 𝑢𝑢  𝐽𝐽 𝑣𝑣  
 = 𝟏𝟏

(𝑧𝑧−𝑣𝑣)2(�𝑤𝑤−�𝑢𝑢)2
 +⋯+ 𝑂𝑂(Δ)  in the t-channel

 = Δ2

|𝑧𝑧−𝑤𝑤|2|𝑢𝑢−𝑣𝑣|2
+

(𝐶𝐶𝐽𝐽�𝐽𝐽𝑀𝑀)2

(𝑧𝑧−𝑣𝑣)2(�𝑤𝑤−�𝑢𝑢)2
+ ⋯ + 𝑂𝑂(Δ) in the s-channel

𝟏𝟏 exchange 𝑴𝑴 exchange exchange of other operators

By the crossing symmetry, 𝐶𝐶𝐽𝐽 ̅𝐽𝐽𝑀𝑀 = 𝟏𝟏 + 𝑂𝑂 Δ .
Therefore, Δ 𝑡𝑡 = exp −𝑡𝑡 + 𝑂𝑂 1  with 𝜶𝜶 = 𝟏𝟏. 
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With several marginal operators 𝑀𝑀𝑖𝑖, the crossing symmetry gives

𝐺𝐺𝑖𝑖𝑖𝑖𝐶𝐶𝐽𝐽 ̅𝐽𝐽𝑀𝑀𝑖𝑖𝐶𝐶𝐽𝐽 ̅𝐽𝐽𝑀𝑀𝑗𝑗  = 1 + 𝑂𝑂 Δ .

For exactly marginal operators 𝑀𝑀𝑎𝑎, define 𝛼𝛼𝑎𝑎 = lim
𝑡𝑡→∞

𝐶𝐶𝐽𝐽 ̅𝐽𝐽𝑀𝑀𝑎𝑎.

• ∆ 𝑡𝑡 = exp −𝛼𝛼𝑎𝑎𝑡𝑡𝑎𝑎 + 𝑂𝑂(1) . 
• 𝛼𝛼  = 𝐺𝐺𝑎𝑎𝑎𝑎𝛼𝛼𝑎𝑎𝛼𝛼𝑏𝑏 ≤ 1.
• 𝛼𝛼  = 1 if and only if 𝐶𝐶𝐽𝐽 ̅𝐽𝐽𝑀𝑀𝑖𝑖 = 0 for all non-exact operators.

Parametrizing 𝑡𝑡𝑎𝑎 = 𝑒𝑒𝑎𝑎 𝑡𝑡 by the geodesic distance 𝑡𝑡 and a unit 
vector 𝑒𝑒𝑎𝑎 = cos𝜃𝜃  𝐺𝐺𝑎𝑎𝑎𝑎𝛼𝛼𝑏𝑏 + sin𝜃𝜃 𝑒𝑒⊥𝑎𝑎, where 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋/2 and 
𝑒𝑒⊥𝑎𝑎 is a unit vector satisfying 𝑒𝑒⊥𝑎𝑎𝑐𝑐𝑎𝑎 = 0, ∆ in the limit is,

∆ 𝑡𝑡𝑎𝑎 = 𝑒𝑒𝑎𝑎𝑡𝑡 = exp −𝛼𝛼 𝑡𝑡 + 𝑂𝑂(1) with 𝛼𝛼 = cos𝜃𝜃 𝛼𝛼 ≤ 1. 
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Proof of:
∆ = exp(− 𝛼𝛼 𝑡𝑡 + 𝑂𝑂(1))  

1
𝑐𝑐

 ≤ 𝛼𝛼
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𝒪𝒪1,𝒪𝒪2,𝒪𝒪3,⋯ : primary fields whose conformal 
weights vanish Δ𝑛𝑛 → 0 toward 𝑡𝑡 → ∞. 

𝑱𝑱𝒏𝒏’s may not be linearly independent in the limit.

Consider operator product expansion: 

𝒪𝒪𝑛𝑛 𝑧𝑧 𝒪𝒪𝑚𝑚 𝑤𝑤 = ∑𝑘𝑘 𝐶𝐶𝑛𝑛𝑛𝑛𝑘𝑘 |𝑧𝑧 − 𝑤𝑤|Δ𝑘𝑘−Δ𝑛𝑛−Δ𝑚𝑚𝒪𝒪𝑘𝑘 𝑤𝑤  

𝑂𝑂 𝑧𝑧 − 𝑤𝑤 ∆finite  represents contributions of operators 
whose conformal weights remain above ∆finite.  

Define 𝐽𝐽𝑛𝑛 by 𝜕𝜕𝒪𝒪𝑛𝑛 = 𝑖𝑖 Δ𝑛𝑛 𝐽𝐽𝑛𝑛. 

+ 𝑂𝑂 𝑧𝑧 − 𝑤𝑤 ∆finite
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𝒪𝒪𝑛𝑛 𝑧𝑧 𝒪𝒪𝑚𝑚 𝑤𝑤 = ∑𝑘𝑘 𝐶𝐶𝑛𝑛𝑛𝑛𝑘𝑘 |𝑧𝑧 − 𝑤𝑤|Δ𝑘𝑘−Δ𝑛𝑛−Δ𝑚𝑚𝒪𝒪𝑘𝑘 𝑤𝑤 + ⋯ 

• Acting 𝝏𝝏𝒛𝒛 + 𝝏𝝏𝒘𝒘 on both sides and using 𝜕𝜕𝒪𝒪𝑛𝑛 = 𝑖𝑖 Δ𝑛𝑛 𝐽𝐽𝑛𝑛
⇒ Linear relations among 𝑱𝑱𝒏𝒏’s in the limit. 

• Acting 𝝏𝝏𝒛𝒛 × 𝝏𝝏𝒘𝒘  on both sides and using 𝜕𝜕𝒪𝒪𝑛𝑛 = 𝑖𝑖 Δ𝑛𝑛 𝐽𝐽𝑛𝑛           
⇒ Quadratic relations among 𝑱𝑱𝒏𝒏’s in the limit. 

Δ𝑛𝑛 𝐽𝐽𝑛𝑛 + Δ𝑚𝑚 𝐽𝐽𝑚𝑚 = ∑𝑘𝑘 𝐶𝐶𝑛𝑛𝑛𝑛𝑘𝑘 Δ𝑘𝑘 𝐽𝐽𝑘𝑘  

𝐽𝐽𝑛𝑛(𝑧𝑧) 𝐽𝐽𝑚𝑚(𝑤𝑤) = ∑𝑘𝑘 𝐶𝐶𝑛𝑛𝑛𝑛𝑘𝑘
Δ𝑘𝑘−Δ𝑛𝑛−Δ𝑚𝑚

Δ𝑛𝑛Δ𝑚𝑚

1
𝑧𝑧−𝑤𝑤 2 −

𝑖𝑖 Δ𝑘𝑘
𝑧𝑧−𝑤𝑤

𝐽𝐽𝑘𝑘(𝑤𝑤) + ⋯ 
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𝒥𝒥𝜇𝜇(𝑧𝑧) 𝒥𝒥𝜇𝜇 𝑤𝑤 = 𝛿𝛿𝜇𝜇𝜇𝜇

(𝑧𝑧−𝑤𝑤)2
+ 𝑂𝑂 1 .

Bosonization:   𝒥𝒥𝜇𝜇 𝑧𝑧 = 𝑖𝑖𝜕𝜕𝑋𝑋𝜇𝜇

• CFT in the limit contains a subalgebra of local 
operators described by the sigma-model on ℝ𝑁𝑁. 

𝑝𝑝𝜇𝜇 becomes continuous the 𝑡𝑡 → ∞ limit.

Since 𝜕𝜕𝜕𝜕 𝑧𝑧 ∝ 𝒥𝒥(𝑧𝑧), 𝒪𝒪 𝑧𝑧 = 𝑒𝑒𝑖𝑖𝑝𝑝𝜇𝜇𝑋𝑋𝜇𝜇(𝑧𝑧).

• 𝑁𝑁 ≤ 𝑐𝑐: the central charge of the original CFT.

In linearly independent basis:
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The limiting CFT is locally the ℝ𝑁𝑁 sigma-model ⨂ compact CFT.  

Examples with nontrivial global structures

• 𝑆𝑆𝑅𝑅1/ℤ2 :  Consider 𝒪𝒪𝑛𝑛 = 2 cos 𝑛𝑛𝑛𝑛/𝑅𝑅 . 

𝐽𝐽𝑛𝑛 = 𝑖𝑖𝜕𝜕𝑋𝑋 � �𝒪𝒪𝑛𝑛 with �𝒪𝒪𝑛𝑛 = 2 sin 𝑛𝑛𝑛𝑛/𝑅𝑅 .

In the 𝑅𝑅 → ∞ limit, �𝒪𝒪𝑛𝑛 becomes a topological operator 
at the end-point of the topological defect line that 
implements the quantum ℤ2 symmetry of the orbifold.

• The 𝑘𝑘 → ∞ limit of the 𝐴𝐴𝑘𝑘-type Virasoro minimal model 
is the 𝑐𝑐 = 1 sigma-model with a pair of walls infinitely 
distant from each other.

Runkel, Watts: 0107118
Mazel, Sandor, Wang, Yin: 2403.14544
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Marginal operators that couple of the light operators 
𝒪𝒪 𝑧𝑧 = 𝑒𝑒𝑖𝑖𝑝𝑝𝜇𝜇𝑋𝑋𝜇𝜇  in the 𝑡𝑡 → ∞ limit are of the form 𝜕𝜕𝑋𝑋𝜇𝜇𝜕̅𝜕𝑋𝑋𝜈𝜈.

For 𝒪𝒪 = 𝑒𝑒𝑖𝑖𝑝𝑝𝜇𝜇𝑋𝑋𝜇𝜇, ∆= 𝑒𝑒−𝛼𝛼𝑡𝑡+𝑂𝑂(1) with 𝛼𝛼 =
∑ 𝜅𝜅𝜇𝜇𝜇𝜇𝑝𝑝𝜇𝜇𝑝𝑝𝜈𝜈
∑ 𝑝𝑝𝜇𝜇

2 . 

Since the light sector in the limit is parity invariant, the 
perturbation 𝑡𝑡 ∫ 𝜅𝜅𝜇𝜇𝜇𝜇𝜕𝜕𝑋𝑋𝜇𝜇𝜕̅𝜕𝑋𝑋𝜈𝜈 should be positive and parity 
preserving. Therefore, 𝜅𝜅𝜈𝜈𝜈𝜈 is symmetric with non-negative 
eigenvalues.

We can choose 𝑝𝑝𝜇𝜇 so that 𝛼𝛼 is the largest eigenvalue of 
𝜅𝜅𝜇𝜇𝜇𝜇, which is bounded below by 𝑁𝑁−1/2. Thus, there is 
always a light operator for which 𝑐𝑐−1/2 ≤ 𝑁𝑁−1/2 ≤ 𝛼𝛼.  
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∆ can vanish only in infinite distant limits on the 
conformal manifold, where 

and                             .∆gap= exp(− 𝛼𝛼 𝑡𝑡 + 𝑂𝑂(1)) 

To summarize:

1
𝑐𝑐

 ≤  𝛼𝛼 ≤  1

3
2𝑐𝑐

 ≤  𝛼𝛼 ≤  1 with superconformal symmetry.

The large volume limit of the quintic Calabi-Yau 
saturates the lower bound at 𝛼𝛼 = 1/ 6. 
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If CFT2 has a holographic dual in AdS3

∆ = exp(− 𝛼𝛼AdS 𝜙𝜙 + 𝑂𝑂(1)) 

2
3
 𝐿𝐿Planck

1/2
≤ 𝛼𝛼AdS ≤ 8𝜋𝜋𝐿𝐿AdS 1/2

where 𝐿𝐿Planck= 8𝜋𝜋𝐺𝐺𝑁𝑁.
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If CFT2 has a holographic dual in AdS3
∆ = exp(− 𝛼𝛼AdS 𝜙𝜙 + 𝑂𝑂(1)) 

2
3
 𝐿𝐿Planck

1/2
≤ 𝛼𝛼AdS ≤ 8𝜋𝜋𝐿𝐿AdS 1/2

• The tower of light particles can emerge 
when 𝜙𝜙 ≥ 8𝜋𝜋𝐿𝐿AdS −1/2.

• The tower of light particles must emerge 

when 𝜙𝜙 ≥ 2
3
 𝐿𝐿Planck

−1/2
. 
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With supersymmetry

∆ = exp(− 𝛼𝛼AdS 𝜙𝜙 + 𝑂𝑂(1)) 

𝐿𝐿Planck 1/2 ≤ 𝛼𝛼AdS ≤ 8𝜋𝜋𝐿𝐿AdS 1/2

The lower bound agrees with 
the Sharpened Distance Conjecture.

Lee, Lerche, Weigand: 1910.01135
Etheredge, Heidenreich, Kaya, Qiu, Rudelius: 2206.04063 
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From my Strings 2024
closing remarks
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2. Universal Bound on Effective Central Charge
Karch, Kusuki, Sun, Wang + H.O.: 2308.05436 and 2404.01515

The effective central charge 𝑐𝑐eff measures the entanglement 
across a CFT interface, while the transmission coefficient 
encoded in 𝑐𝑐𝐿𝐿𝐿𝐿 measures the energy transmission through the 
interface.

𝑐𝑐𝐿𝐿𝐿𝐿 ≤ 𝑐𝑐eff ≤ min 𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑅𝑅

We prove the upper bound on 𝑐𝑐eff
and give evidence for the lower bound. 
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CFT𝐿𝐿 CFT𝑅𝑅

� �
𝑧𝑧

𝑤𝑤

Interface

𝑇𝑇𝐿𝐿(𝑧𝑧)𝑇𝑇𝑅𝑅(𝑤𝑤) =
𝑐𝑐𝐿𝐿𝐿𝐿

2 𝑧𝑧 − 𝑤𝑤 4

Energy transmission coefficients: 𝒯𝒯𝐿𝐿 =
𝑐𝑐𝐿𝐿𝐿𝐿
𝑐𝑐𝐿𝐿

 ,  𝒯𝒯𝑅𝑅=
𝑐𝑐𝐿𝐿𝐿𝐿
𝑐𝑐𝑅𝑅

Quella, Runkel, Watts: 0611296 
Meineri, Penedones, Rousset: 1904.10974 

This requires 𝑐𝑐𝐿𝐿𝐿𝐿 ≤ min 𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑅𝑅 .
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The effective central charge is defined in terms of the entanglement entropy.

� �Without an interface:
𝐿𝐿

𝑆𝑆 =
𝑐𝑐
3

 log
𝐿𝐿
𝜋𝜋𝜋𝜋

With interfaces: � �𝐿𝐿/2𝐿𝐿/2
𝑆𝑆 =

𝑐𝑐𝐿𝐿 + 𝑐𝑐𝑅𝑅
6

 log
𝐿𝐿
𝜋𝜋𝜋𝜋

𝐿𝐿

𝐿𝐿

� 𝑆𝑆 =
𝑐𝑐eff + 𝑐𝑐𝑅𝑅

6
 log

𝐿𝐿
𝜋𝜋𝜋𝜋

𝑆𝑆 =
𝑐𝑐eff
3

 log
𝐿𝐿
𝜋𝜋𝜋𝜋

We proved that 𝑐𝑐eff  defined by the last two equations are the same.
Karch, Kusuki, Sun, Wang + H.O.: 2308.05436 27/32



Proof of 𝑐𝑐eff ≤ min 𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑅𝑅

Interface

𝑑𝑑

𝑐𝑐
𝑏𝑏

𝑎𝑎

Add the interface to the proof of the 𝑐𝑐 theorem
                                                                 by Casini, Huerta: 0610375. 

𝑎𝑎 𝑑𝑑 = 𝑏𝑏 |𝑐𝑐|

The strong subadditivity 𝑆𝑆 𝑏𝑏 + 𝑆𝑆 𝑐𝑐 ≥ 𝑆𝑆 𝑎𝑎 + 𝑆𝑆 𝑑𝑑  implies 

𝑐𝑐𝑅𝑅 − 𝑐𝑐eff
6

 log
|𝑏𝑏|
|𝑎𝑎|

≥ 0 .

Karch, Kusuki, Sun, Wang + H.O.: 2308.05436
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The inequality also holds 
in free theories and in the 
defect perturbation theory.

AdS3

CFT2

𝑑𝑑𝑠𝑠2 = 𝑎𝑎2(𝜃𝜃)
−𝑑𝑑𝑡𝑡2 + 𝑑𝑑𝑥𝑥2

𝑥𝑥2
+ 𝑑𝑑𝜃𝜃2

𝑐𝑐𝐿𝐿𝐿𝐿 =
4

𝐿𝐿𝐿𝐿 + 𝐿𝐿𝑅𝑅
1
𝐿𝐿𝐿𝐿

+
1
𝐿𝐿𝑅𝑅

+ 8𝜋𝜋𝐺𝐺𝑁𝑁𝜎𝜎
−1 Bachas, Chapman, Ge, 

Policastro: 2006.11333 

≤
3 min 𝑎𝑎 𝜃𝜃

2𝐺𝐺𝑁𝑁
= 𝑐𝑐eff

Evidence for 𝑐𝑐𝐿𝐿𝐿𝐿 ≤ 𝑐𝑐eff Karch, Kusuki, Sun, Wang + H.O.: 2404.01515
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𝑐𝑐𝐿𝐿𝐿𝐿 ≤ 𝑐𝑐eff ≤ min 𝑐𝑐𝐿𝐿, 𝑐𝑐𝑅𝑅

• The upper bound is proven.
• The lower bound holds in holographic CFTs, free CFTs, 

and the defect perturbation theory.
• The lower bound means that the amount of energy 

transmitted across the interface cannot exceed the 
amount of information transmitted.

• The inequalities are sharp and can be saturated.
•  𝑐𝑐𝐿𝐿𝐿𝐿 = 𝑐𝑐eff only if 𝑐𝑐eff = 0 or min 𝑐𝑐𝐿𝐿, 𝑐𝑐𝑅𝑅 , i.e., the 

interface is either a boundary or topological.
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Two tales about 2d CFTs:

∆ = exp(− 𝛼𝛼 𝑡𝑡 + 𝑂𝑂(1)),  1.

1
𝑐𝑐

 ≤  𝛼𝛼 ≤  1 .

2. 𝑐𝑐𝐿𝐿𝐿𝐿 ≤ min 𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑅𝑅
⇒  𝑐𝑐𝐿𝐿𝐿𝐿 ≤ 𝑐𝑐eff ≤ min 𝑐𝑐𝐿𝐿 , 𝑐𝑐𝑅𝑅 .  
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Congratulations, Costas!

1
𝑐𝑐
≤  𝛼𝛼 ≤  1

𝑐𝑐𝐿𝐿𝐿𝐿 ≤ 𝑐𝑐eff ≤ min 𝑐𝑐𝐿𝐿, 𝑐𝑐𝑅𝑅   
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