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Holographic description of quantum gravity in 4d asymptotically flat spacetimes (A = 0)?

—> These spacetimes are relevant from collider physics ... to astrophysics (< cosmological scales)

Ac3
A1Gh

[Bekenstein][Hawking]

SpH =

./4 . event horizon area
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Holography beyond JCFT?
A <O

@}- Event Horizon Telescope
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Flat space holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Early attempts:

[Susskind ‘99][Polchinski ‘99][Giddings '99]

[de Boer, Solodukhin ‘03][Arcioni, Dappiaggi ‘03 '04]
[Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]...
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Flat space holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Early attempts:

[Susskind ‘99][Polchinski ‘99][Giddings '99]

[de Boer, Solodukhin ‘03][Arcioni, Dappiaggi ‘03 '04]
[Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]...

...and even earlier General Relativity and Gravitation, Vol. 7, No. 1 (1976), pp. 107-111
[Penrose ‘76][Newman ’'76]
—> aimed at a reconstruction of the bulk Heaven and Its Properties
spacetime from quantities defined only at
null infinity &

EZRA T. NEWMAN
Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
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Flat space holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Main obstructions/difficulties:
(1) The conformal boundary includes
future/past timelike infinity

future/past null infinity
spatial infinity

(2) There are fluxes leaking out

the boundary Quantum gravity

‘in a box’

timet

spacer ?
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Flat space holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Road map: symmetries

What are the symmetries of asymptotically flat spacetimes?
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Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Road map: symmetries

What are the symmetries of asymptotically flat spacetimes?

what was expected what was found
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Flat space holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Road map: symmetries

What are the symmetries of asymptotically flat spacetimes?

—> infinite-dimensional extension of Poincaré!

4 Poincaré translations

Symmetry
enhancement

%o BMS supertranslations

[Bondi, van der Burg, Metzner '62] [Sachs '62]

arbitrary function
on the celestial sphere

Laura Donnay A Carrollian perspective on celestial holography




Flat space holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes? i+

Road map: symmetries

What are the symmetries of asymptotically flat spacetimes?

—> infinite-dimensional extension of Poincaré!

While BMS symmetries were originally disregarded, it was realized CC,’
(50 years later) that they 3

= constrain the gravitational S-matrix

(out|S|in)
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Flat space holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes? i+

Road map: symmetries

What are the symmetries of asymptotically flat spacetimes?

—> infinite-dimensional extension of Poincaré!

While BMS symmetries were originally disregarded, it was realized C?
(50 years later) that they 3

= constrain the gravitational S-matrix

= have associated low-energy observables (memory effects)

= allow further extensions, including the local conformal group

! i

revival / proposals for ’
flat holography <OU‘t ’ S|1Il>
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Salvador Dali, illustrations for Alices Adventures in Wonderland, 1969:

Outline

1. Celestial holography

2. Carrollian holography

3. ng_OO symmetries

4. Final remarks




Flat space holography: on which boundary?

celestial sphere

Euclidean 2-sphere

4d bulk/2d holography: ‘celestial holography’
Dual: 2d ‘celestial CFT’

[de Boer, Solodukhin ‘03][Pasterski, Shao, Strominger '17] [Pasterski, Shao '17]
[Cheung, de la Fuente, Sundrum’17]]...]




Flat space holography: on which boundary?

null infinity celestial sphere
lighlike 3d hypersurface Euclidean 2-sphere
J =R x §?
4d bulk/3d holography: ‘Carroll holography’ 4d bulk/2d holography: ‘celestial holography’
Dual: 3d ‘BMS field theory’ Dual: 2d ‘celestial CFT’
[Arcioni, Dappiaggi ‘03 "04] [Adamo, Casali, Skinner “14] [Bagchi, Basu, Kakkar, Melhra [de Boer, Solodukhin '03][Pasterski, Shao, Strominger ’17] [Pasterski, Shao '17]

’16] [Ciambelli, Marteau, Petkou, Petropoulos, Siampos] [LD, Fiorucci, Herfray,

[Cheung, de la Fuente, Sundrum’17]]...]
Ruzziconi’22][Bagchi, Banerjee, Basu, Dutta ‘22]][...]




Flat space holography: on which boundary?

null infinity celestial sphere
lighlike 3d hypersurface Euclidean 2-sphere
J =R x §?
4d bulk/3d holography: ‘Carroll holography’ 4d bulk/2d holography: ‘celestial holography’
Dual: 3d ‘BMS field theory’ Dual: 2d ‘celestial CFT’
[Arcioni, Dappiaggi ‘03 "04] [Adamo, Casali, Skinner “14] [Bagchi, Basu, Kakkar, Melhra [de Boer, Solodukhin '03][Pasterski, Shao, Strominger ’17] [Pasterski, Shao '17]

’16] [Ciambelli, Marteau, Petkou, Petropoulos, Siampos] [LD, Fiorucci, Herfray,
Ruzziconi’22][Bagchi, Banerjee, Basu, Dutta ‘22]][...]

Features: closer to AdS/CFT © Features: powerful CFT techniques at hand ©

[Cheung, de la Fuente, Sundrum’17]]...]

treatment of fluxes ® role of translations obscured ®




Celestial Holography

If you look up at the sky on a clear cloudless night,
you appear to see a hemispherical dome above you,
punctuated by myriads of stars.’

R. Penrose, The road to reality, 2004



Celestial Holography
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Celestial Holography

The 4d spacetime S-matrix is encoded in a 2d ‘Celestial Conformal Field Theory’

momentum of a massless @

particle
P = we (2, 2) — o

Ww: energy
(2,%) : a point on CS?
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Celestial Holography

The 4d spacetime S-matrix is encoded in a 2d ‘Celestial Conformal Field Theory’

momentum of a massless @

particle
P = we (2, 2) — o

Ww: energy
(2,%) : a point on CS?

Louk]S | im?

Simple idea: make conformal properties manifest

—> Plane waves are mapped to
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Celestial currents

The soft sector of celestial CFT is captured by 2d celestial currents.

w—0 1
An_l_ 1 Y — n [Weinberg ‘65][...]

Laura Donnay




Celestial currents O, +(2.7) = (%)h (@Yohﬁ(z,z)

The soft sector of celestial CFT is captured by 2d celestial currents.

[Kapec, Mitra, Raclariu, Strominger ‘16] [Cheung, de la Fuente, Sundrum ‘17]
[LD, Puhm, Strominger ‘18] [Fotopoulos, Stieberger,Taylor ‘20] ...

Asymptotic symmetry Ward identity Weight 2d Celestial current
‘large gauge’ Soft photon A =1 7(2)0, + (1, T) ~ 1 O,  (w, @)
0A, = D¢ theorem (h,7) = (1,0) h,h \" (z _ w) h,h \W5
supertranslations Soft . A —1 _ _ 1 _
, graviton P(2. 2O,  (w. 1) ~ O, 17, 1(w,w
2 1 1
+ 00, =DIf theorem (%’ %) ( ’ ) h”h( ’ ) (z — w) h+2’h+2( ’ )
Qg ___________________________________________________________________________________________________
superrotations . 7 I
”N g Sub-leading soft A—2 T(2)0, 7 (w, ) ~ h ~0, - (w, @) + 00, j(w, w)
s 00, = uDgYZ graviton theorem (2’ 0) ’ (z —w)? ™ Z—w

2d stress tensor!




Celestial Holography

Y = keo

<ouk|S | im

collinear limits pY || pb celestial OPEs
low point amplitudes kinematic singularities
asymptotic symmetries 2d currents




Celestial Holography

N ~
I O ®)
" Celestial Conformal
Field Theory P
%\% E .,)

collinear limits pY || pb celestial OPEs Qe

low point amplitudes kinematic singularities

asymptotic symmetries 2d currents

spectrum? non-unitary?




Adventures in Wonderland

)
Alice’s
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Carrollian physics

" 1965: A curiosity of Lévy-Leblond (also independently by Sen Gupta 1966)

The ¢ — o¢ limit of the Poincaré group leads to the Galilean group.

But what if we take the ¢ — 0 limit instead? light cones

> ‘Carroll group’ \\7// \/

“Alice’s Adventures in Wonderland” Carrollian spacetime

Lewis Carroll (1865) Galilean spacetime

(space is absolute) (time is absolute)




Carrollian physics

" 1965: A curiosity of Lévy-Leblond (also independently by Sen Gupta 1966)

The ¢ — oo limit of the Poincaré group leads to the Galilean group. CARROLL WORKSHOP
¥4 SECOND EDITION #¢

UMONS | 12 - 16 SEPTEMBER 2022

But what if we take the ¢ — 0 limit instead?

nnnnnnnnnn

- ‘Carroll group’

= Weird features... but (lately) found to be relevant for

- Hamiltonian analysis of GR [Henneaux ‘79]

Nicolas BOULANGER, Andres CAMPOLEONI, Yannick HERFRAY i

. UMONS fnis WwF m

- fluid/gravity correspondence
[Ciambelli, Marteau, Petkou, Petropoulos, Siampos ‘18]
[de Boer, Hartong, Obers, Sybesma, Vandoren ‘22]

- black hole near-horizon physics [Penna‘18][LD, Marteau ‘18]

- cosmology [de Boer, Hartong, Obers, Sybesma, Vandoren ‘22]

- ...flat space holography




BMS = conformal Carrollian symmetries

" BMS symmetries = conformal symmetries of a Carrollian structure at null infinity
[Geroch][Penrose][Henneaux][Duval, Gibbons, Horvathy][Hartong][Ciambelli, Leigh, Marteau, Petropoulos][Bekaert, Morand][Herfray]...
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Carrollian geometry f+ L (N 2. 7)

ab . @ degenerate metric
dab J Gapdz®dz? = 0 x du? + 2v,:dzdz

a vector field satisfying qabnb =0

n = Oy




BMS = conformal Carrollian symmetries

" BMS symmetries = conformal symmetries of a Carrollian structure at null infinity
[Geroch][Penrose][Henneaux][Duval, Gibbons, Horvathy][Hartong][Ciambelli, Leigh, Marteau, Petropoulos][Bekaert, Morand][Herfray]...

Carrollian geometry f+ L (“ - :)

ab . @ degenerate metric
dab J Gapdz®dz? = 0 x du? + 2v,:dzdz

a vector field satisfying qabnb =0

n = Oy

Conformal Carrollian symmetries:
LeGab = 20qqpy Lgn® = —an

a:= (DY + DY)

§=T+5(DY+DY)| 0, + 0+ 0

Clarry = bmsg




Carrollian ‘dictionary’

Observables: S-matrix elements as correlators of a ‘Carrollian’ field theory
[LD, Fiorucci, Herfray, Ruzziconi ’22]

| T o wz,Z,). . = mft,..»im\>
<ok|S | am < kK koK,

Cx(

Field-operator map (s) I s—1 _out ~
(for outgoing massless spin s field) ¢ (X) ~ T Uk:,k (u, 4 Z)




Carrollian ‘dictionary’

Observables: S-matrix elements as correlators of a ‘Carrollian’ field theory
[LD, Fiorucci, Herfray, Ruzziconi ’22]

oklsliny G EEEN- G gwni)

Field-operator map (s) It s—1 out !
(for outgoing massless spin s field) ¢ (X) ~ ( ) :

transform as a ‘conformal Carrollian primary’ of weights (%, )

0eop i = [(T + %(0Y + 0Y)) 0y + YO + VO + kY + kY] o




Carrollian ‘dictionary’

Observables: S-matrix elements as correlators of a ‘Carrollian’ field theory
[LD, Fiorucci, Herfray, Ruzziconi ’22]

O
©

oo du

out

(u, z, 2)

out =\ __ :
U=l | g i

Carrollian — celestial operator map




Just a change of basis?
/s this really holography?
/s this usetul?

Can we learn something we did not know already?




Salvador Dali, illustrations for Alice’s Adventures in Wonderland, 1969:
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jwl—l—oo symmetries in celestial CFT

= Celestial operators of integer conformal dimension give rise to 2d currents
Hk(Z,E) = lim €Ok_|_5 492 k:2,1,0,—1,...
e—0 ’

Laura Donnay @




$w1+oo symmetries in celestial CFT

= Celestial operators of integer conformal dimension give rise to 2d currents
Hk(Z,E) = lim €Ok_|_5 492 k:2,1,0,—1,...
e—0 ’

)n—i—l

212 = _
OA1 +2(Z1,21)0A21+2(22,22) ~ ——5 ZB A1+n 1 Ag 1)“T8n0A1+A2,+2(22,22)

[Guevara, Himwich, Pate, Strominger ‘21]
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$w1+oo symmetries in celestial CFT

= Celestial operators of integer conformal dimension give rise to 2d currents

Hk(z,z) = 1im €O 4e 42 k=2,1,0,—-1,...
e—0
1l — Z19)" 1 -
Oy, 12(21, 21)On, 42(22, 22) ~ BN Z B(Ai+n—1, A2—1)%3ROAI+A2,+2(ZQ,52)
£12 ., n:

[Guevara, Himwich, Pate, Strominger ‘21]

(]
[l
ol
S
—
™2
SN—

H*(z2,%) = ey the holomorphic modes close the algebra
n="E=-2 7T
2—k 21 2—k 21
[Hk: Hl} _ —E[H(Q—k) —m(2—1)] (T_m+7 _n_l)‘(T_i_m_'_T_'_n_l)!Hk—l—l
e B —mlH =m)t (R m)i(3 4t T
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$w1+oo symmetries in celestial CFT

= Celestial operators of integer conformal dimension give rise to 2d currents

Hk(z,z) = 1im €O 4e 42 k=2,1,0,—-1,...
e—0
(le)n—i—l an -
OAl +2(Z]_,21)0A21+2(22, 2,’2) ~ __z_ Z B A1—|—TL 1 AQ ].)Ta OA1+A2;+2(ZQ,ZQ)
12 .
2 1
H*(z, %) = Higﬁ redefining wh = E(p—n— D(p+n—1)H P
b2 20 2




$w1+oo symmetries in celestial CFT

= Celestial operators of integer conformal dimension give rise to 2d currents

H*(2, %) := lim EOk+e +2 k=2.1,0—1,...
e—0
(le)n—l—l an _
On,42(21,21) O, 42(22, 22) ~ __%ZB (Ar+n—1, Ay 1)T3 O, +,,+2(22, 22)
5 .
Hk(z,z) = HJ?:EC )2 redefining  w? = E(p —n—Dl(p+n-1) H;2p+4
otz 2
pt+q—2 p:1,§,2,§,... 1—p§m§p_1
[wgw w,f,{] — [m(q - 1) - ’rl(p — 1)] Wy t'n 2’779

‘wedge’

Virasoro
(super)translations




$w1+oo symmetries in celestial CFT

= Celestial operators of integer conformal dimension give rise to 2d currents

H*(2, %) := lim EOk+e +2 k=2.1,0—1,...
e—0
(le)n—l—l an _
On,42(21,21) O, 42(22, 22) ~ __%ZB (Ar+n—1, Ay 1)T3 O, +,,+2(22, 22)
5 .
Hk(z,z) = HJ?:EC )2 redefining  w? = E(p —n—Dl(p+n-1) H;2p+4
otz 2
pt+q—2 p:1,§,2,§,... 1—p§m§p_1
[wgw w,f,{] — [m(q - 1) - ’rl(p — 1)] Wy t'n 2’779

‘wedge’

Virasoro

The infinite tower of celestial currents organizes (super)translations

into a single -ZW11 o algebra! [strominger 21]




ij_oo symmetries seen from null infinity

= ... but how do these symmetries act on the boundary fields ?
[LD, Herfray, Freidel ‘24]
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ij_oo symmetries seen from null infinity

= ... but how do these symmetries act on the boundary fields ?

Go to twistor space ! [LD, Herfray, Freidel 24]

= The $w1+oo algebra has a very natural implementation
in twistor space [Penrose ‘76] [Boyer, Plebanski ‘85][Adamo, Mason, Sharma ‘22]

24 = (1%, Xa(2)) ecCP? ap 091 0go
. N a {91,092} =€ .
9=90(z) + 9a(2)n” + ga5(z)pn" " + ... O 9pp




ij_oo symmetries seen from null infinity

= ... but how do these symmetries act on the boundary fields ?

Go to twistor space !

j BOUNDARY

o(u,z,Zz)

Carrollian field of weights

(k k) = (52,2 BULK

N o) (X)

Large rexpansion / zero-rest mass field of
Kirchoff-d’Adhémar formula helicity s

[Eastwood, Tod ‘82]
M [LD, Herfray, Freidel ‘24]




ij_oo symmetries seen from null infinity

= ... but how do these symmetries act on the boundary fields ?

Go to twistor space !

574 BOUNDARY — > TWISTOR SPACE
_ Twistor lift
o (u 2 Z) twistor representative
Carro_llian field of weights o1 (PT, 0(2 P 2))
(k. k) = (555, F) BULK
" () (X) / PT
Large rexpansion / zero-rest mass field of Penrose transform
Kirchoff-d’Adhémar formula helicity s [Penrose “69]

[Eastwood, Tod ‘82]
M [LD, Herfray, Freidel ‘24]




$w1_|_oo symmetries

= ... but how do these symmetries act on the boundary fields ?

54
a(u, A)

3
"
3 Y
N

GOAL: da(u,A) ?




ij_oo symmetries

= ... but how do these symmetries act on the boundary fields ?

34

g(u,\) —— h(u,\)=0,'c —@— h=h(u=p\X)DX 7' (00
twistor lift cC?

; i

c S
a 2 825}1 Penrgse
rge r transform
55 (11, \ 5%:] 5h = {g,h
(1, 2) Gid) )= e Doy (id) 19: 1y

[LD, Herfray, Freidel 24]




$w1+oo symmetries

« ...how do these symmetries act on the boundary fields ?

Main result:

0,0 = zn: o+t (gd(n))_\d(n)) La?) (un—ﬁ a;l—(i 5(210) ¢ — 49

— (n—0)1"
- l
_ an—t( ya(n) ~1(, n—0 93—£ 76—1 .
0,0 = EZ_; 0 (ga(n))\ ) n— E)!au (u o, "0 O') 5= —2
og”LUH_oo generators non-local action
=012 (vs local in twistor space)

[LD, Herfray, Freidel 24]
v’ explicit match with [Freidel, Raclariu, Pranzetti 21]

Laura Donnay



In summary

: $w1+oo symmetries organize an infinite tower of celestial currents at tree level

=  We derived the explicit realization of these symmetries for Carrollian fields
at null infinity.

The action of these symmetries is local in twistor space but non-local in spacetime

What is the faith of these symmetries beyond tree level ?




Final remarks:

IR divergences and
loop corrections




The problem of IR divergences

" The S-matrix is plagued with infrared (IR) divergences
— set all conventional Fock basis S-matrix elements to zero

In practice, dealt with by working with inclusive cross-sections
[Yennie, Frautschi, Suura ‘61][Weinberg ‘65]
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= We now understand that
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The problem of IR divergences

" The S-matrix is plagued with infrared (IR) divergences
— set all conventional Fock basis S-matrix elements to zero

In practice, dealt with by working with inclusive cross-sections
[Yennie, Frautschi, Suura ‘61][Weinberg ‘65]

= We now understand that
IR divergences = penalties to pay for violating BMS conservation laws !
[Kapec, Perry, Raclariu, Strominger “17][Choi, Akhoury]

Indeed, BMS symmetries act on the vacuumas ~ 0C?% = 920" (2,2) £ 0

1

supertranslation Goldstone boson

— need to account for transitions between in and out vacuua




Soft factorization

VOLUME 140, NUMBER 2B

Infrared Photons and Gravitons*

STEVEN WEINBERGT
Depariment of Physics, University of California, Berkeley, California
(Received 1 June 1965)

= Weinberg showed that IR divergences factorize

. IR divergences from soft virtual gravitons
An — Asoft Aﬁnite ( 8 8
exchanged between external legs)

1 g2 1+ 57, . 1. 148
ASOft — eXp E 2(87'(')2 Z 771773 mzm.] Bw 1 B 5 Zﬂ—csnianj o 5 ln 1 . )8?/3)

1n; = £1 (in or out)

Bij = \/1 — (pi - pj) 2




Soft factorization

VOLUME 140, NUMBER 2B

Infrared Photons and Gravitons*

STEVEN WEINBERGT
Depariment of Physics, University of California, Berkeley, California
(Received 1 June 1965)

= Weinberg showed that IR divergences factorize

An — Asoft Aﬁnite

= In terms of celestial operators, this IR factorization is

~ ~ [Himwich, Narayanan, Pate, Paul,

-An — <W1 c e Wn) (Ol « e Onz\ Strominger ‘20]
soft (IR divergent) hard (IR finite) operators
. A (0 (4 N
massless particle p = wq : W(p) = ewc (4) C(U)(C]) : supertranslation Goldstone

massive particle p =mp : W(p) = exp

= / d2ciiQT(ﬁ; ) C(m(@)]

bulk-to-boundary operator




Loop corrections to soft theorems?




Loop corrections to soft theorems

= Tree-level soft graviton theorem
(power series expansion in the soft momentum ¢ = wq )

[Weinberg ‘65]
[Cachazo, Strominger ‘14]

Apyy “2° [w—l SO | wOS;1>] A, + Ow)

T T

leading subleading
n [T, A~
8720) — g D; D; 5ui(q) = go}c'le' ¥ :(
— P4 Ew_,o : o
S(l) _ _E Zn: p? E#V(q\) 5 (J)\u 4 S}\V)
" 24~ piq ‘ ‘ k= V32rG




Logarithmic soft theorems

= One-loop corrections generate logarithmic corrections!

2
Ani1 @20 |yt S0) _ %lnw S A, 4+ 0w

T

dominate over the subleading term

[Laddha, Sen ’18 “19] [Sahoo, Sen ‘18] [Saha, Sahoo, Sen ‘19][Krishna, Sahoo ‘23]
[Ciafaloni, Colferai, Veneziano ‘18] [Addazi, Bianchi, Veneziano '19]
[di Vecchia, Heissenberg, Russo, Veneziano ‘23][Alessio, di Vecchia ‘24]




Logarithmic soft theorems

= One-loop corrections generate logarithmic corrections! [Sahoo, Sen “18][...]
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Logarithmic soft theorems

= One-loop corrections generate logarithmic corrections! [Sahoo, Sen ‘18][...]
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Summary and outlook

Celestial CFT living on the celestial sphere
{ «—— quantum gravity in flat spacetime

Conformal Carrollian field theory living at null infinity

What is a CCFT?
— Beyond kinematics? Top-down constructions?

full tower of currents

link with AdS/CFT, dS/CFT
building representations
log corrections

higher dimensions

massive particles
relationship to string theory
adding black holes




BMS symmetries in the sky

LD, Boris Goncharov & Jan Harms [Phys. Rev. Lett. 2024]

w1021 Total %« 10~22 Disp. memory
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FIG. 4: Demonstration of the GW memory contribution to strain from a merger of two non-spinning BBHs in the
extended BMS scenario, (m1, mz,0jn,z) = (30 Mg, 30 Mg, 7/3,0.06). Solid lines show h., dashed lines show h.




BMS symmetries in the sky

LD, Boris Goncharov & Jan Harms [Phys. Rev. Lett. 2024]

Model selection between standard and extended BMS symmetries.
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Thank you!
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