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Prelude

e [his talk Is about placing some old topics in a modern
context. The old topics are Misner/BKL dynamics
close to a singularity (1969) and Arithmetic Chaos
(1990's). The modern context is holographic duality.

* The old results are well-known but perhaps not widely
known, so | will spend some time discussing them too.

 More can found in the paper arXiv:2312.11622,
w/ Marine De Clerck and Jorge Santos.



Black hole exteriors

In holography, eternal black holes are
dual to the thermofield double state
of a dual CFT. [Israel 76, Maldacena 01]
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O @  Thedynamics of the exterior describes
the approach to thermal equilibrium.

ﬁ E.g. quasinormal ‘ringdown’ followed
by hydrodynamics. A rich source of

/V“ inspiration for the dual dynamics of
| strongly quantum matter.

| [e.g. SAH-Lucas-Sachdev 16]




Black hole interiors

The black ho
iInvolving infa
guantum cos

e Interior Is tied up with deep guestions
ing observers, the singularity and

mology.

Recent developments suggest geometric aspects of
the black hole interior encode guantum-information
theoretic facts about the dual state.

special extremal slice

extremal surface

ECFT

[Hartman-Maldacena 13] Penington; AEMM 19]



Which interior?

e The interior of cherished solutions such as
Schwarzschild-AdS is unstable against small

perturbations [cf. Fournodavlos-Sbierski 18] and should be
physically irrelevant at late interior times.

* Interior dynamics widely studied by mathematicians.
Holographic implications have not been explored.
Are interior instabilities related to dual thermalization?

 Understanding actual, generic classical interiors may
be necessary before addressing quantum gravity
guestions about e.g. the singularity.



Deformation of the CFT

 Deforming a CFT by a relevant operator triggers an
RG flow. Does this more generic deformed QFT have
a more generic singularity in the dual?

 Holographic renormalization group flow is described
by radial evolution that breaks the scale invariance of
AdS:

S = SCFT + /daj‘qb(())cf) — gb(z)

* [hese are usually considered at zero temperature. At
>0, continue the RG flow past the horizon. In the
interior the flow develops in time.



A Tirst attempt

[2004.01192 w/ Alex Frenkel, Jorrit Kruthoft, Zhengyan Shi]
* Include scalar field dual to the deforming operator
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The Kasner Universe

[Kasner 21; Belinski-Khalatnikov 73]
e The singularity is found to have scaling properties.

e |In Kasner form (t—0 is proper time to singularity):

ds® ~ —dr? &+ 72Prdt? + 7P (de + dyQ) ,

e |n our model:
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INnterlude

 Marc Henneaux explained to us that the reason we
had not landed on more interesting chaotic
behaviour Is that we did not have enough “walls”.

e Chaotic behaviour is (conjecturally) generic once
all modes, including inhomogeneities, are present.

BKL 70] for pure gravity in D=4

Damour-Henneaux-Nicolai 02] for D <11 + SUSY.

* Objective: find a simple (non-generic) model In
AdS with the expected chaotic interior behaviour.



Vector fields

12312.11622 w/ Marine De Clerck and Jorge Santos]
* [hree massive vector fields do the trick:
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* With fields depending on a single ‘radial’—coordinate:

1 2

ds® = o) (—Fe_ZHdt2 - d% + e 26422 + ezGdy2) A =¢idt, Ag=¢ydr, Az= ¢y dy

* The mass (like the CC) drops out of the equations
near the singularity, but is necessary to have a
regular horizon in the presence of boundary sources.

o If 7 is small enough, the dual vector operator is
relevant and preserves the AdS asymptoitics.



Kasner epochs and eras

* As with the scalar case previously, the ODEs can be
integrated from the boundary and through the horizon.
The tar interior dynamics is now very different:

[—X:z%gtt X:Z%gxx_X:Zg-tgyy]
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Walls

* The leading near-singularity equations in this model
are identical to the Bianchi-IX ‘mixmaster’ universe
tudied by Misner and the Landau Institute school.
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e Convenient near-singularity coordinates:

ds? = e Pe?Pdt? — ndp? + e Pe [e‘ﬁgda}z + e‘/ggdyz]
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Stochastic properties

e BKL derived recursion relations for the Kasner
exponents at the start of the Nth Kasner era.

e These reduce to the chaotic Gauss map for zn € [0,1] :
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Stochastic properties

* The equilibrium distribution is reached very quickly
and can be used to show that the spatial volume
decreases doubly exponentially over each era:

h=2371s
<1Og (_glog VN)> _ hAN/ KS entropy
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INnterlude

Known for ~ 50 years that the approach to cosmological
singularities Is governed by a chaotic dynamical system.

We have given a simple, explicit embedding of this in an
AdS black hole interior.

A turther aspect of the BKL story is that different points
INn space decouple. This Is not addressed within our
spatially homogeneous model.

The true richness of the near-singularity behaviour is
best appreciated from a Hamiltonian perspective ...



Hamiltonian formalism

e The Hamiltonian constraint in our model is:

72 4 3¢t (e_zhwf eh_\/ggwg. eh+\/§97r§) =0
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g

H = —7T§22 7T
* In arelational description, one thinks of 2 as time.

This constraint then determines time evolution.

e Chitre and Misner noticed that if one sets:
(Q=¢€"cosh R, g = e’ sinh R cos ¢, h = €’ sinh Rsin ¢

Then as T— o the exponential potential becomes an
infinite barrier. One lands in a hyperbolic billiard.




Cosmological billiards

* [he near-singularity ‘Hamiltonian” generating
evolution in 7 Is time-independent!

* Characterise the time-independent Hamiltonian via
ts spectrum — do a semi-classical canonical
quantisation. (Essentially the same information is
contained in the classical periodic orbits.)
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The billlard domain

 Map the Poincaré disc to the upper half plane, z =z + iy

e Boundaries are the
fixed points of the
0 reflections:
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e Half the fundamental domain of I(2), “the principal

congruence subgroup of level 2”7 of SL(2,7), with

enerators: , __*
g z— 2+ 2, z %+ 1




The billlard domain

* The eigenfunctions we are after are the odd
automorphic forms of I'(2):

v(vz) =(z), VyeTl(2) and ¥(—2")=—v%(z)

* [he spectrum must be broken up with respect to
the Sz symmetry. Present results for the ‘sign’
representation, these are wave functions defined in
the small green region and are precisely the odd
automorphic forms of the modular group SL(2,2).

* Widely studied! We (re)computed the first 2250
eigenvalues. Other sectors less studied.



The Weyl law

* [he density of states is known
to behave asymptotically as:

3 1 3
pp(e) = 5 9 loge — i log 2 + O(loge/e?)

* [he interesting features of
guantum chaos have to do
with the fluctuations of the
density of states about this
smooth asymptotic behaviour.
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Nearest-neighbour spacing

e The ‘unfolded’ energy differences:

Sn = N(ent1) = N(en) = plen)(Ent1 — €n)

Capture universal aspects of

late time behaviour.

 Find (as is well-known) a
2oisson rather than Wigner-
Dyson distribution. No level
repulsion.
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 Usually a feature of integrable rather than chaotic

systems.



The spectral form factor

* A richer probe of the spectrum:

disconnected part:
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The spectral form factor

e Subtract off the disconnected part:

« Ramp Is exponential rather
than linear.
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e Seen previously in arithmetic
guantum chaotic system. Via
periodic orbit theory, comes
from an exponentially large

. degeneracy ez’ of closed

T e S R geodesics of length L.
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* Also seen recently in integrable versions of the SYK model.
[Liao-Vikram-Galitski; Winer-dian-swingle 20]



Hecke relations

* The integrable-like features ot arithmetic quantum

chaotic systems are due to an infinite number of
conserved ‘Hecke operators’.

* |nthe Fourier expansion

+00
U, (z,y) = Z cr /Y Kie, (2mmy) sin(2mrmz)

m=1

* One finds that all the non-prime coefficients are

determined by the prime ones from Hecke relations
(number theoretic voodoo):

. .n . n __.n
Crp = CmCp ~ Cm/p



Sato-Tate conjecture

 The Hecke relations imply that an associated 'L-
function” obeys an Euler product formula:
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e (Generalisations of the Riemann zeta function.

* Prime cp for fixed energy level
conjectured to be distributed //\ A
as Wigner semicircle (= the 1/
eigenvalues of a random matrix). s
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Work In Progress ...

General relativity near singularities follows chaotic
dynamics with strong connections to number theory.

Does a time-independent, arithmetically chaotic
amiltonian near the singularity give a dual description of
the interior. The wave functions share properties of CFT
partition functions [cf Benjamin-Collier-Fitzpatrick-
Maloney-Perlmutter '21]

Are the symmetries special to Einstein gravity or do they
reflect a deeper principle? E.g. what happens with higher
derivative terms?



