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(When) does QG 
require axions to 
exist?

Which kinds of axion 
models are 
plausible?



Warm-Up: Magnetic Symmetry and 
Monopoles
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Magnetic Symmetry and Monopoles
A first example: U(1) gauge theory has a topological U(1) symmetry, with 

current . This is a -form symmetry, acting on ’t Hooft operators.


Conserved due to the Bianchi identity: .


How can we eliminate it?


1. Gauge it: add a  coupling to a dynamical -form gauge 

field. This gives the photon a mass and changes the IR physics. 


2. Break it (explicitly): add dynamical magnetic monopoles, 

1
2π

F (d − 3)

dF = 0

1
2π

B(d−2) ∧ F (d − 2)

1
2π

dF = Jmag .
4



Gauging vs Breaking

TN(γ)

The magnetic symmetry is implemented by a family of topological 

surface operators .Ug=eiα(Σ) = exp (iα∫Σ

1
2π

F)
Gauging:


 


Current exact,  
becomes trivial on-shell.

1
2π

F =
1
g2

d ⋆ H(d−1)

Ug(Σ)

Breaking: 


’t Hooft line can 
end.


 nontrivial 
but not topological.
Ug(Σ)

Ug=eiα(S2)

eiαN 1
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Gauging and Breaking from Low-Energy EFT

When we gauge a continuous symmetry, often has a big impact on 
spectrum of low-energy EFT.


• gauge 0-form symmetry  propagating gauge field


• gauge 1-form magnetic symmetry  gauge field mass, decouples 

⇒

⇒

When we break a continuous symmetry, effect may not be visible in EFT 
of light modes. However there is often some heavy object describable in 
EFT that makes the breaking visible.


• break 1-form symmetry  monopole exists⇒
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Prediction: Magnetic Monopoles Exist
This example is instructive because it shows that the principle of no global 
symmetries in QG has a direct real-world implication.


Photon is massless  magnetic 1-form symmetry was not gauged.


Symmetry must be broken  magnetic monopoles exist.


The magnetic monopoles could be very heavy, so this is not immediately useful 
as a guide to experiment. But it is an important proof of principle.


Strategy:


1. Identify a symmetry.


2. Categorize ways to gauge or break it.


3. Understand which are possible in the real world.

⇒

⇒
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Instanton Number Symmetry
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Topological Symmetries in Gauge Theory, 1.
Gauge theories have many topological symmetries.


From the mathematical viewpoint, these correspond to characteristic classes of 
the gauge bundle.


A familiar example arises in non-abelian gauge theory:

d tr(F ∧ F) = tr(dF ∧ F + F ∧ dF)
= tr((dF + [A, F]) ∧ F + F ∧ (dF + [A, F]))
= tr(dAF ∧ F + F ∧ dAF) = 0

This shows that  is a conserved current due to the non-abelian Bianchi 
identity . It generates a -form instanton number symmetry.

tr(F ∧ F)
dAF = 0 (d − 5)
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Topological Symmetries in Gauge Theory, 2.
More generally, we have a family of conservation laws, d tr (⋀

k
F) = 0

Here  denotes , with k copies of F.⋀
k
F F ∧ F ∧ ⋯ ∧ F

We call such a U(1) global symmetry a Chern-Weil global symmetry. The 
currents (appropriately normalized) integrate to integers. E.g., for U(1) or SU(N),

∫M

1
8π2

tr(F ∧ F) ∈ ℤ,

for any closed spin 4-manifold .M
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w/ Ben Heidenreich, Jake McNamara, Miguel Montero, Tom Rudelius, Irene Valenzuela
arXiv:2012.00009 [hep-th]



Topological Symmetries in Gauge Theory, 3.
More general examples also arise, e.g., in  gauge theory, 
there is a -valued “Stiefel-Whitney class” . It is closed, 

, so it generates a  -form global symmetry.

This is the “magnetic symmetry” of  gauge theory. It is broken by monopoles 
carrying a  charge: 

We can also form lower-form symmetries along the lines of , and so on.

In general,  gauge theory (for compact, connected ) has a -form 
magnetic symmetry group , the Pontryagin dual of the fundamental group. 

PSU(N) ≅ SU(N)/ℤN
ℤN w2(A) ∈ H2(X, ℤN)

d(w2) = 0 ℤN (d − 3)

PSU(N)
ℤN

w2 ∪ w2

G G (d − 3)
π1(G)∨
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dw2 = Jmag .



Monopole Breaking of  Symmetry, 1.F ∧ F
Given monopoles also break :

1
2π

dF = Jmag, Jinst =
1

8π2
F ∧ F

dJinst = d ( 1
8π2

F ∧ F) =
1

4π2
F ∧ dF =

1
2π

F ∧ Jmag .
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This generalizes to other gauge groups  that are not simply connected!G

w/ Daniel Aloni, Eduardo García-Valdecasas, Motoo Suzuki
                      work in progress

PSU(N) : Ninst = ∫M

1
8π2

tr(F ∧ F) ≡
N − 1

N ∫M

1
2

w2 ∪ w2 mod 1

ΔNinst ∼
1
N ∫ w2 ∪ Jmag mod 1.

Thus,  monopoles break instanton 
number symmetry:

PSU(N)



Monopole Breaking of  Symmetry, 2.F ∧ F
In , do monopoles break ? , trivially.d = 4 Jinst =

1
8π2

F ∧ F dJinst = 0

S = ∫ (−
1

2e2
F ∧ ⋆F −

f2

2
dθ ∧ ⋆dθ +

1
8π2

θF ∧ F) .

13

There is still a sense in which “ -form” instanton number symmetry is broken: 
monopoles obstruct a coupling to a background axion field.

(−1)

Start from action with gauge field and axion :θ



Monopole Breaking of  Symmetry, 3.F ∧ F
Ordinarily we dualize a U(1) gauge field  to the magnetic dual  viaA AM

1
2π

FM ≡
1

2π
dAM = −

1
e2

⋆ F,

which makes sense because, away from sources,  In the presence of 
the axion coupling, however, we have

d ⋆ F = 0.

1
e2

d ⋆ F =
1

4π2
dθ ∧ F .

We say that  has a “modified Bianchi identity,” and we must define it 
differently:

AM
1

2π
dAM = −

1
e2

⋆ F +
1

4π2
θF .
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Monopole Breaking of  Symmetry, 3.F ∧ F
We find the magnetic gauge field  by solving: AM

1
2π

dAM = −
1
e2

⋆ F +
1

4π2
θF .

But  is a gauge field, and  is not gauge invariant! If  then our 
solution changes, e.g.,

θ FM θ ↦ θ + 2πn,

AM ↦ AM + nA .

This means that a monopole worldvolume action of the form 

SM = ∫Γ
(T ⋆Γ 1 + AM)

is not invariant under  background gauge transformations; hence, the symmetry 
generated by  was broken.

θ
J
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This is the Witten effect!



Dyon Restoration of  Symmetry, 1.F ∧ F
Now suppose on the monopole we have a dyon degree of freedom

σ ≅ σ + 2π, A ↦ A + dα, σ ↦ σ − α, dAσ ≡ dσ + A

We can have a monopole worldvolume action coupling to the background field :θ

SM = ∫Γ (T ⋆Γ 1 + AM −
1

2ℓ2
dAσ ∧ ⋆dAσ +

1
2π

θ dAσ)

θ ↦ θ + 2πn : AM +
1

2π
θ (dσ − A) ↦ (AM + nA) +

1
2π

(θ + 2πn) (dσ − A)
(related: Witten, 1979; Callan & Harvey, 1985 
[“anomaly inflow”]; Fukuda & Yonekura, 2020)
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This restores the invariance:

δSM = ∫Γ
n dσ ⇒ exp(i δSM) = 1.



Dyon Restoration of  Symmetry, 3.F ∧ F

Even though the monopole worldvolume action is not invariant under 
,  is invariant.


We can thus couple the monopole with a dyon mode to a background axion 
field . Another way to say this is that there is an improved symmetry current:

θ ↦ θ + 2π exp(iSM)

θ

Jimp =
1

8π2
F ∧ F +

1
2π

dAσ ∧ Jmag .

dJimp =
1

4π2
F ∧ dF +

1
2π

d(dAσ) ∧ Jmag =
1

2π
F ∧ Jmag −

1
2π

F ∧ Jmag = 0.
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In the  case we can check this is conserved:d > 4



Monopoles and  SymmetryF ∧ F
Summary for U(1) case

• A magnetic monopole always breaks the symmetry with current .


• If the monopole has a dyon mode, there is an improved symmetry that is a 
linear combination of  and the localized  term. This symmetry can 
be gauged. In , this means coupling to an axion.


• Whether or not the dyon mode exists depends on the UV completion, but


• the dyon mode can be described in the monopole worldvolume EFT.

F ∧ F

F ∧ F dAσ
d = 4
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This generalizes to other gauge groups  that are not simply connected!G



Examples in Quantum Gravity
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Examples
I’ll now survey some examples in string theory with gauge fields, where we can 
see whether or not the instanton number symmetry is gauged, i.e., is there a 

 Chern-Simons term or not?


We’ll see examples of breaking and examples of gauging


Keep an eye on:


• Existence of “magnetic” defects playing a role in symmetry breaking or 
restoration


• Mass scale of electrically charged states

∫ C(d−4)tr(F ∧ F)
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Example: Type IIB on Rigid Calabi-Yau
(Cecotti & Vafa, 1808.03483)
A CY with rigid complex structure is one with : the only 3-cycles are the 
holomorphic  and anti-holomorphic . We obtain a 4d U(1) gauge field from 

.


The gauge coupling and  angle are both frozen, because there are no vector multiplets 
to provide moduli. Cecotti & Vafa argued that  or .


Magnetic monopole: a D3 brane wrapping   breaks  symmetry. 


Electrically charged particle: a D3 brane wrapping .


Both are very heavy: .

h2,1 = 0
Ω Ω

A = ∫Ω
C4

θ
θ = 0 θ = π

Ω ⇒ F ∧ F

Ω

∼ Mstring 𝒱 ∼ MPl
21



Example: U(1) Kaluza-Klein theory
Compactify pure -dimensional gravity on a circle of radius . One obtains a U(1) 
gauge theory in  dimensions. There is no  term in the 
effective action.


Magnetic monopole: the Kaluza-Klein monopole, which has tension . Has 
no dyonic excitation with electric KK charge, and explicitly breaks the  symmetry.


Electrically charged particle: Kaluza-Klein graviton, with mass .

d R
(d − 1) C(d−5) ∧ F ∧ F

πRM(d−2)/2
Pl

F ∧ F

1/R

The -dimensional EFT breaks down at the mass scale of 
the electrically charged particle, which is also the core 
radius of the monopole.

d
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Example: Heterotic string theory
In heterotic string theory, the gauge group is  or . In both 
cases, the instanton number symmetry is gauged by  (the magnetic dual of ); 
this follows from the modified Bianchi identity in the Green-Schwarz mechanism. 


Focus on . Two groups with permutation symmetry; the combination 
 is gauged but the combination  is 

(explicitly) broken. There are no monopoles. This current is not  gauge invariant, but 
still could couple to a -odd  gauge field. Why not?*


Is there a defect that makes its breaking visible? There is a  “twist vortex” (7-brane). 
Need a clearer general theory of such examples of explicit breaking.


Spin(32)/ℤ2 (E8 × E8) ⋊ ℤ2
B(6) B(2)

(E8 × E8) ⋊ ℤ2
tr1(F ∧ F) + tr2(F ∧ F) tr1(F ∧ F) − tr2(F ∧ F)

ℤ2
ℤ2 B′ (6)

ℤ2

23

(* thanks to Jake McNamara for 
emphasizing this question to me)



Example: Gauge fields on D-branes
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In string theory, gauge fields can live on a stack of Dp-branes, which have a (p+1)-
dimensional worldvolume. In these cases, we always find that the Chern-Weil current 

 is gauged by a closed string ( )-form Ramond-Ramond field:tr(F ∧ F) p − 3

C(p−3) ∧ tr(F ∧ F)

So far, so good. But this field actually propagates into the bulk, where it couples to 
lower-dimensional membranes, so a more complete story is:

C(p−3) ∧ [tr(F ∧ F) ∧ JDp + JD(p−4)]
Where  is a ( )-form (the number of delta functions needed to localize on the brane).JDq 9 − q



If the closed string gauge field  is gauging the current in brackets,C(p−3)

C(p−3) ∧ [tr(F ∧ F) ∧ JDp + JD(p−4)]
then what happens to the other linear combination of these two conserved 
currents?


The answer is a well-known effect in string theory: zero-size Yang-Mills instantons 
on the Dp-brane are the same thing as D(p − 4)-branes. 

(Witten ’95; Douglas ’95; Green, Harvey, Moore ’96).

YM ⟷ ⟷

Dp Dp Dp

D(p−4)“Gauging and breaking”

Example: Gauge fields on D-branes
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Example: Gauge fields on D6-branes
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Consider the specific case where we get 4d gauge fields from D6-branes wrapped on a 

3-cycle , and they coupled to an axion . We could try to decouple this 

axion using the 10d term , turning on a flux  through 

an intersecting cycle . In 4d this turns into a large  tree-level axion mass. The 

instanton number symmetry is effectively broken: instantons can dissolve into  flux.


However, there is a catch: this obstructs the existence of chiral fermions charged 
under the gauge fields on the cycle !

α θ = ∫α
C(3)

1
8π2 ∫ C(3) ∧ dC(3) ∧ H(3) ∫β

H(3)

β
1

2π
θF4

F4

α



Example: Gauge fields on D6-branes
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Chiral fermions live at the intersection of D6 branes on  and D6 branes on an 

intersecting cycle . If , then we cannot wrap D6 branes on ! The gauge 

field  on such D6 branes has a Stueckelberg coupling involving , which 

dualizes to a term .


The  flux gives a tadpole in 4d for the magnetic gauge field, which is inconsistent.


Thus, the D6-brane example has a light axion coupled to gauge fields whenever 
there are chiral fermions charged under the gauge field.

α

β ∫β
H(3) ≠ 0 β

A dA − B(2)

1
2π ∫M3,1×β

A(4)
M ∧ H(3)

H(3)



Patterns in Examples
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In cases where we understand the breaking of instanton number symmetry to be 
due to monopoles, electrically charged particles are heavy — they have mass at 
the cutoff scale.


In Standard Model-like examples with light chiral matter, we find axions.


This pattern is at least partly explained by the Callan-Rubakov effect: to define 
consistent boundary conditions for light charged fermions at the core of a 
magnetic monopole, we couple them to a localized dyon mode. 


The  example suggests that the full story is more complex: e.g., 
what if there is a “twin” Standard Model and only one axion for both? (considered in 
phenomenological models: Rubakov ’97; Berezhiani, Gianfagna, Giannotti ’00; Dimopoulos, Hook, Huang, 
Marques-Tavares ’16)

(E8 × E8) ⋊ ℤ2



Classifying the Options
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The current  is either gauged or explicitly broken.


Gauged: axion or fermion with anomalous but otherwise unbroken chiral 
symmetry  classic Strong CP solutions.


Explicitly broken: visible with defect in EFT. This defect could be…


Monopole: only if  and no chiral fermions


Twist vortex: only if . Characterize better?


Something else? How to be exhaustive?


For explicit breaking,  is frozen to discrete possible values  look for new 
Strong CP solutions? (or known ones, e.g., twin axion)

tr(F ∧ F)

⇒

π1(G) ≠ 1

π0(G) ≠ 1

θ ⇒



Axion Models and Cosmology: 
Overview
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Axion Models at a Glance

Pseudo-Nambu-Goldstone 
for 4d U(1)PQ

Zero mode of gauge field in 
higher dimensions

“Pre-inflation” 
scenario

Post-inflation 
PQ transition

Not possible 
(no linearly realized PQ 
symmetry to break)


(maybe similar late-time physics from 
other initial conditions?)

Quality problem


Isocurvature problem

Quality problem


Domain wall problem


Stable relic problem

(Quality problem)


Isocurvature problem
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Post-Inflation Axion Cosmology

Figure from Ciaran O’Hare’s lectures on axion cosmology, 
arXiv:2403.17697 [hep-ph] 
Using code from Alejandro Vaquero, Javier Redondo, Julia 
Stadler, arXiv:1809.09241

4d U(1) PQ symmetry spontaneously 
broken after inflation.


• Axion randomized, strings form 
(Kibble-Zurek)


• QCD phase transition: axion 
domain walls form


• String-wall network destroys itself 
( )NDW = 1

Axion dark matter relic abundance dominantly from axion emission from 
string network, as well as misalignment.  
Detailed simulations, e.g., Buschmann, Foster, Hook, Peterson, Willcox, Zhang, Safdi arXiv:2108.05368
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Post-Inflation: Axion Domain Wall Problem

w/ Qianshu Lu, Zhiquan Sun
arXiv:2312.07650 [hep-ph]

Domain walls can end on strings if

∫
kG

8π2
θ tr(F ∧ F)

has minimal coupling .NDW = |kG | = 1
But such strings may not form, or may not be 
elementary! Tension w/ models for quality problem

Example: 
 symmetry, 




Kibble-Zurek: string of 
winding 

ℤp
Φ(x) = feiφ(x) = feiθ(x)/p

p

Composite string — 
frustrated network

33

Hard to find 
convincing models!



“Pre-Inflation”: Axion Isocurvature Problem

Figure from Ciaran O’Hare’s lectures on axion 
cosmology, arXiv:2403.17697 [hep-ph]

A light scalar during inflation fluctuates by . Fluctuations 
independent of inflaton fluctuations  isocurvature, strongly constrained.

δφ ∼ HI /(2π)
⇒

Leads to a bound





which is much stronger than the observational 
bound from (lack of) tensor modes, 
 

 

HI ≲ 3 × 107 GeV
fI

1012 GeV

HI ≲ 1013 GeV .

Is a bound a problem? Not a sharp one, but the simplest and most natural 
inflation models are large-field (hence high-scale).
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Solutions to the Axion Isocurvature Problem
Several ideas have been discussed in the literature for opening up a wider range 
of  for a given axion decay constant. Broadly,


• Turn on larger  term during inflation — back to post-inflation.


• Dynamical axion mass, heavier than  during inflation, e.g., make QCD very 
strongly coupled so  is not small. (Dvali ’95, …)  
 
[Awkward to continuously change exponentially tiny number to O(1)!]


• Dynamical axion decay constant,  to relax bound (Linde/Lyth ’90, …)


String pheno: time-varying modulus can lead to both of the last two. 
 
Rest of this talk: a new variation on dynamical axion mass.

HI

|Φ |2

HI
ΛQCD/f

fI ≫ fa
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Eliminating Axion Isocurvature:  
A New Approach

w/ Prish Chakraborty, Junyi Cheng, Zekai Wang
expected to appear on arxiv this summer
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Monodromy Mass vs. Isocurvature

S = ∫ −
1
2

f2 |dθ |2 −
1

2g2
|F(4) |2 +

n
2π

θF(4), n ∈ ℤ .
[Kallosh, Linde, Linde, Susskind ’95; Gabadadze ’99; Silverstein, Westphal ’08; Kaloper, Sorbo ’08; ….]

An axion  can get a large (“monodromy”) mass from a Chern-
Simons coupling to a 4-form field strength :

θ ≅ θ + 2π
F(4) = dC(3)

Main idea: 


If  is a dynamical integer, it could be nonzero during inflation (heavy 
axion, no isocurvature) and zero today (standard axion).


Change between them with a first-order phase transition. 

n ∈ ℤ

m ̂θ =
n

2π
g
f

.Axion mass:
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Avoiding confusion

The monodromy potential  has infinitely 
many branches labeled by an integer 

and a gauge invariance 




, the  electric field, is always dynamical. 
It is not the dynamical integer  that we wish 
to change in cosmology.

V(θ)

j =
1
e2

4
⋆ F(4) −

n
2π

θ,

θ ↦ θ + 2π, j ↦ j − n .

j C(3)

n

S = ∫ −
1
2

f2 |dθ |2 −
1

2g2
|F(4) |2 +

n
2π

θF(4), n ∈ ℤ .

θ

V(θ)
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Making  Dynamicaln

1
4π2 ∫M(4)×Y(n

C(p) ∧ dA(q) ∧ dC(3+s)

Idea: the integer  is flux of higher-dimensional gauge field, n n =
1

2π ∫Σ(q+1)

dA(q)

Extra-dimensional axion θ = ∫Λ(p)

C(p)

Chern-Simons in  extra dims:n = p + q + s + 1

⇓

∫M4

n
2π

θF(4)
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Flux Tunneling
Our tunneling process must change the flux .n =

1
2π ∫Σ(q+1)

dA(q)

This can only happen by nucleating a dynamical 
magnetically charged brane for . This has 

 dimensions. Wrapping the 
 internal dimensions transverse to , we 

have a domain wall in (3+1)d.

A(q)

4 + n − q = 3 + r + s
r + s Σ(q+1)

(see, e.g., Blanco-Pillado, Schwartz-Perlov, Vilenkin ’09, 
but details differ — we do not want a Freund-Rubin 
compactification, our flux is through a cycle in a larger 
geometry)
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Bubble Mergers

Provided the  state has lowest vacuum energy, we expect colliding 
branes to reconnect and the  regions to collapse.

n = 0
n ≠ 0

41



Flux Tunneling at the End of Inflation?
Need to suppress isocurvature:  during inflation. Drops to 0 after.


Vacuum energy contribution  from flux energy density: could that 
provide the energy driving inflation? 
 
“Graceful exit” problem of old inflation: need to make bubble nucleation 
rate time-dependent.  until some critical time . 
Scenarios:


• Inflaton  affects , e.g., brane tension  dynamical.


• Tunneling as inflation is ending,  starts to drop rapidly.

|n | > 0

V(n)

Γ(t) < H(t)4 t*

ϕ Γ(t) 𝒯(ϕ)

H(t)

S = ∫ −
Zn

2
|dϕ |2 −

1
2

fn(ϕ)2 |dθ |2 −
1

2gn(ϕ)2
|F(4) |2 +

n
2π

θF(4) + V(ϕ, n) + h(ϕ)𝒯δ(2)(M)
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String Theory Embedding?
All the ingredients exist in string theory, e.g.: 
 

Type IIA model with D6 branes, , dynamical integer , 

axion mass from .


The bubble wall is an NS5 brane wrapped on .


Inside the wall: D6’s wrapped on  for realizing Standard Model.  
Outside the wall: obstructed by  flux on .


Dynamical emergence of chirality after inflation? (Potential implications for 
baryogenesis, Festina Lente bound, ….)

θ = ∫α
C(3) n = ∫β

H(3)

C(3) ∧ dC(3) ∧ H(3)

β

β
H(3) β
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Summary
• Axions play an important role in quantum gravity, by gauging instanton number 

symmetry. The alternative, explicit breaking, can happen but known examples are 
not SM-like.


• Conventional 4d QCD axion models face serious cosmological challenges.


• Extra-dimensional axions primarily face the axion isocurvature problem: difficult to 
combine with high-scale inflation.


• Possible scenario: time-dependent moduli fields after inflation change the value of 
the decay constant.


• Novel scenario: first-order phase transition from large tree-level axion mass during 
inflation to zero mass afterward. Implications for reheating, gravitational waves, and 
more. Can we find a realistic version of this scenario?
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