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(1) Conformal Interfaces



Conformal Interfaces
• Interfaces – codimension one extended objects which split the 

system into two

• Conformal Interfaces – separate two critical systems and preserve a 
large subgroup of the conformal symmetry 𝑆𝑂 𝑑, 1 ⊂ 𝑆𝑂(𝑑 + 1,1)

• In 2d these are impurities which preserve one copy of the Virasoro 
algebra



What are conformal interfaces good for?
• Condensed matter physics: Junction of quantum wires [Wong, Affleck, 

1993], line or surface defects in the critical 2D or 3D Ising models 
[Oshikawa, Affleck, 1997]…

• Holography: dynamical branes in AdS [Karch, Randall, 2000] [DeWolfe, Freedman, 

Ooguri, 2001], supergravity solutions (Janus) [Bak, Gutperle, Hirano, 2007]

• Playgrounds for computations in quantum information: Islands in 
black hole evaporation [Almheiri, Engelhardt, Marolf, Maxfield, 2019] [Penington, 2019] 
[Almheiri, Mahajan, Maldacena, Zhao, 2019] [Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini, 2019]

• Monotonicity theorems along the RG flow: g-theorem, b-theorem
[Affleck, Ludwig, 1991] [Jensen, O’Bannon 2015]

• And many more….



Conformal Interfaces in 2d

• Preserves Virasoro generators 
that do not displace the 
interface 

𝐿! + −1 ! ,𝐿!
• Energy conservation implies a 

gluing condition (𝑇"# is 
continuous)

𝑇$ − ,𝑇$ ."%&!
= 𝑇' − ,𝑇' ."%&"



Conformal Interfaces in 2d
• 2pt functions of stress tensor completely fixed by conformal symmetry

• New coefficient in left/right correlations

• 3pt functions are also fixed
• But 4pt point functions are not!

𝑇$ 𝑧 𝑇$ 𝑤 ( =
𝑐$/2
𝑧 − 𝑤 ) 	 𝑇' 𝑧 𝑇' 𝑤 ( =

𝑐'/2
𝑧 − 𝑤 )

𝑇$ 𝑧 𝑇' 𝑤 ( =
𝑐$'/2
𝑧 − 𝑤 )



(2) Universality of energy transmission 
and reflection (in 2d)



Energy Reflection and Transmission
• Scattering experiment

𝒯 = *+,!-./**01 0!0+23
/!4/10!* 0!0+23 ℛ = +05604*01 0!0+23

/!4/10!* 0!0+23

• Different transmission from left and right

𝒯$(') ℛ$(')
• Universality – scattered and 

reflected energy is completely
independent of the details of the 
incoming excitation 

* as long as no more than one spin 2 conserved quasi-primary is present

*

Quella, Runkel, Watts (2007)
Meineri, Penedones, Rousset (2019)



Energy Reflection and Transmission
𝒯$ =

4#$
4#

𝒯' =
4#$
4$

ℛ$(') = 1 − 𝒯$(')

ANEC implies   0 ≤ 𝒯,ℛ ≤ 1 ⇒ 0 ≤ 𝑐$' ≤ min 𝑐$, 𝑐'

0 ≤ 𝒯$ ≤ 𝑚𝑖𝑛 1, 4$4#
0 ≤ 𝒯' ≤ 𝑚𝑖𝑛 1, 4#4$

Can’t fully transmit from higher to
lower central charge.

Quella, Runkel, Watts (2007)
Meineri, Penedones, Rousset (2019)

* Recent claims Karch [2404.01515] at al. 𝑐!" 	≤ 𝑐#$$ ≤ min 𝑐!, 𝑐"  



(3) Energy reflection and transmission in 
holography



Conduct a holographic scattering experiment to find

𝒯!(#) ↔ 𝑐!#
Two models:
• Thin brane model: AdS2 brane in AdS3 [Bachas, Chapman, Ge, Policastro, 2020] [Baig, Karch, 2022] 

• Thick brane model: continuous geometry with dilaton (Janus AdS3) 
[Bachas, SB, Chapman, Policastro, Schwartzman, 2023]

Why?
• Understand better the models.
• Properties of transmission and reflection at strong coupling/large 

central charge?

Goal of this Talk: Holographically compute 
the transmission coefficient



(3a) The thin brane model



The thin brane model - bottom-up approach 
• Thin AdS2 brane in AdS3

𝑆 =
1

16𝜋𝐺9
∫ 𝑑:𝑥$ −𝑔 𝑅 +

2
ℓ$;

+
1

16𝜋𝐺9
∫ 𝑑:𝑥' −𝑔 𝑅 +

2
ℓ';

− 𝜎 ∫ 𝑑;𝑥 −𝛾

• Solve Einstein equations in the left/right

𝑑𝑠$('); =
ℓ$(');

𝜉$('); −𝑑𝑡$('); + 𝑑𝜉$('); + 𝑑𝑢$(');

• Israel matching conditions determine the location of the brane [Israel, 1966] 

𝛾$,=> = 𝛾',=> 𝐾=>' −𝐾=>$ = − 8𝜋𝐺𝜎𝛾=>

Brane tension

Two different cosmological 
constants encode different 
central charges on the two 
sides via 𝑐!,# =

$ℓ!,#
&'$

	

Induced metric

𝑡

𝑢

ξ



The thin brane model - bottom-up approach 
• Stable solutions with a thin AdS2 brane exist as long as

• Lower bound: no bubble nucleation [Coleman, De Luccia, 1980]

• Upper bound: brane geometry becomes de Sitter [Karch, Randall, 2000]

• The solution consists of two patches of AdS3
connected along an AdS2 brane with

• Boundary entropy is fixed by the tension.
[Bachas, 2002]
[Azeyanagi, Karch, Takayanagi, and Thompson, 2007]
[Anous, Meineri, Pelliconi, Sonner 2022]

Interface

𝑡

𝑢

ξ

tan 𝜃 ≡
𝑢
𝜉

1
ℓ'
−
1
ℓ$

≤ 8𝜋𝐺?𝜎 ≤
1
ℓ'
+
1
ℓ$

ℓ#
ABC D#

= ℓ$
ABC D$

= EFG D#HEFG D$
IJKL



Holographic scattering experiment 
• Bulk solution corresponding to a scattering experiment?

Stress tensor with left and right moving waves

𝑇!"
# 𝑑𝑥#!𝑑𝑥#

" = 𝜖&1 𝑒$𝛚 &!'(! 𝑑 𝑡# − 𝑢# ) +ℛ# .𝑒$𝛚 &!*(! 𝑑 𝑡# + 𝑢# ) + 𝑐. 𝑐.

𝑇!"+ 𝑑x,!𝑑𝑥+
" = 𝜖 𝒯#𝑒$𝛚 &"'(" 𝑑 𝑡+ − 𝑢+ ) + 𝑐. 𝑐

• 3d Bulk solution is completely fixed in FG gauge

𝑑𝑠) = ℓ#

.#
𝑑𝜉) + 𝑔!"

/ + .#

ℓ#
𝑔!"
) + .$

0ℓ$
𝑔!"
0 𝑑𝑤!𝑑𝑤"

𝑔!"
()) = 4𝐺3ℓ 𝑇!" 𝑔(0) = 𝑔()) 𝑔(/) '4𝑔()) Characteristic 

frequency  𝛚

𝜉!
𝜉#

[Costas Bachas, SC, Dongsheng Ge, Giuseppe Policastro 2020]



The brane fluctuates
• Without the metric perturbation the two sides were matched along a 

brane with angles 𝜃$ and 𝜃'
• The perturbation changes the shape of the brane

• Method:
• Impose Israel matching conditions+boundary conditions

⇒ ℛ$ +𝒯$ = 1
• Impose no-outgoing wave condition at the horizon (in the IR).



Transmission in the single brane model

• Monotonically decreases with the tension

• Transmission in empty AdS3
𝜎 = 0, ℓ$ = ℓ' ⇒ 𝒯$(') = 1

• Universality: the result does not depend on the frequency 
• Holographic model has only one parameter
⇒ Transmission and boundary entropy log 𝑔 both fixed in terms of the 
tension! Is this generic for strongly coupled theories?

𝒯$(') =
2
ℓ$,'

1
ℓ$
+
1
ℓ'
+ 8𝜋𝐺?𝜎

MN



• Allowed range of tensions
1
ℓ'
−
1
ℓ$

≤ 8𝜋𝐺𝜎 ≤
1
ℓ'
+
1
ℓ$

Provides bounds on the transport
A$

4$H4#
≤ 𝒯$ ≤ 𝑚𝑖𝑛 1, 4$4# ,               ANEC: 0 ≤ 𝒯$ ≤ 𝑚𝑖𝑛 1, 4$4#

• Consistent with ANEC, but lower bound is stronger.
• Total reflection (𝒯$=0)  when 𝑐O/cP → 0 (BCFT limit)
• Is this generic for strongly coupled theories? (we will see that no)

Transmission in the single brane model

𝒯$(') =
2
ℓ$,'

1
ℓ$
+
1
ℓ'
+ 8𝜋𝐺?𝜎

MN



Transmission in double brane model 
Fuse two branes and perform the same computation [Baig, Karch, 2022] 

• Additive in the tensions ⇒ for N branes ∑( 𝜎)
• Does not depend on ℓ*
• log 𝑔 depends on ℓ* ⇒ Transmission and log 𝑔 can vary independently! 
• Consistent with ANEC – lower bound can be realized by sending ℓ* → 0

𝒯$(') =
2
ℓ$,'

1
ℓ$
+
1
ℓ'
+ 8𝜋𝐺?(𝜎N + 𝜎;)

MN



Shortcomings of the thin brane

• It is discontinuous – delta function localized 
energy

• Bottum-up approach - we do not know the 
dual field theory

Can we find these results for smooth gravity 
solutions/top-down models?



(3b) The thick brane model (Janus)



Smooth ICFT holographic models

constant  

constant 

θ0−θ0

θ

z

z = 0

Constant z

𝑦 = −∞ 𝑦 = ∞

• Einstein gravity coupled to a dilaton 

𝑆 =
1

16𝜋𝐺5
∫ 𝑑6*4𝑥 −𝑔 𝑅 − 2𝜕7𝜙𝜕7𝜙 − 2𝑉 𝜙

• Continuous geometries dual to vacuum states of ICFT

𝑑𝑠) = 𝑑𝑦) + 𝑎) 𝑦 𝛾̅!"𝑑𝑥!𝑑𝑥" , 𝜙 = 𝜙 𝑦 ,

with 𝛾̅!"𝑑𝑥!𝑑𝑥" the metric on AdSn slices

• Empty AdS: 𝑉 𝜙 = −1/ℓ)

𝜙 𝑦 = 0, 𝑎 𝑦 = ℓcosh 8
ℓ

• Double Wick rotation 𝑦 → 𝑖𝑡 and AdSn → EAdS9 leads
to FRW geometry for open universe coupled to an inflaton.

Constant y



Janus – a specific example
• Special case 𝑉 𝜙 = −1/𝐿; : non-supersymmetric 3d Janus

AdS solution [Freedman, Nunez, Schnabl, Skenderis, 2003][Bak, Gutperle, Hirano, 2007] 

𝑑𝑠; = 𝑑𝑦; + 𝑎; 𝑦 M1*,H1Q,

Q,

𝑎 𝑦 = $
; 1 + 1 − 𝑏 cosh ;3

$

N/;

𝜙 𝑦 = 𝜙& +
N
; log

;MSH S EFGT -
#

;MSM S EFGT -
#

• 𝑏 = 0 recovers empty AdS.
• Can be embedded in type IIB SUGRA

on AdS3 ×S3 ×M4.

constant  

constant 

θ0−θ0

θ

z

z = 0

Constant z

𝑦 = −∞ 𝑦 = ∞

Constant y



Perturbation with plane waves is difficult 
Method:
• Add a perturbation for the stress-tensor at the boundary
• Solve the Einstein’s equations with perturbation 

Problems: 
• Fefferman-Graham coordinates are not defined everywhere 

[Papadimitriou, Skenderis, 2004] 

• Hard to study Einstein’s equations



Discrete geometries are simpler! 
• Our geometries are in fact very similar to empty AdS 𝑑𝜃 ≡ 13

, 3

𝑑𝑠; = 𝑎 𝜃 𝑑𝜃; +
−𝑑𝑡; + 𝑑𝑧;

𝑧; ,

𝜙 = 𝜙 𝜃 ,

• 𝑎 𝜃 = ℓ/cos(𝜃) – empty AdS
• This means that we can treat them

as many small slices of AdSn+1 
with different radii!

constant  

constant 

θ0−θ0

θ

z

z = 0

I will keep changing 
between 𝜃 and y, they 
are really the same thing



Discrete geometries are simpler! 
• Consider a pizza geometry with multiple branes and use additivity

• Take the continuum limit: ∑$ 𝜎$ → ∫':
: ;<

;8
𝑑𝑦

[Bachas, Baiguera, SC, Policastro, Schwartzman, 2023] 

𝒯.(0) =
2
ℓ.,0

1
ℓ.
+
1
ℓ0
+ 8𝜋𝐺(3

)

𝜎)

34



Discretization method 
• Take a collection of empty AdS3 regions

𝑑𝑠=) = V𝑎= 𝜃 𝑑𝜃) +
−𝑑𝑡) + 𝑑𝑧)

𝑧)

V𝑎= 𝜃 =
ℓ=

cos 𝜃 − 𝛿=
for j − 1 𝜖 < 𝜃 < 𝑗𝜖

• Impose:
• Israel matching conditions.
• recover the original 𝑎 𝜃 = 𝑗𝜖 = V𝑎= 𝑗𝜖

• continuum limit 𝑎 𝜃 , ℓ 𝜃 , 𝛿 𝜃

• Result is simple
;<
;8
= ;>

;8

)
, 4
ℓ 8 # =

4
)

;>
;8

)
− 𝑉 𝜙

• Integrate to obtain the transmission!



Transmission of Janus interface 

𝒯UFG =
1
2 𝑏 2 − 𝑏 arctanh

𝑏
2 − 𝑏

MN

• Monotonically decreasing function of the deformation parameter b 
• Transmission in empty AdS3

𝑏 = 0 ⇒ 𝒯UFG = 1
• Infinitely strongly coupled case (linear dilaton) 

𝑏 → 1 ⇒ 𝒯UFG → 0
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0



ANEC Bounds for smooth geometries

• Stability window for tension in continuum limit
1
ℓ'
−
1
ℓ$

≤ 8𝜋𝐺?𝜎 ≤
1
ℓ'
+
1
ℓ$

⇒
𝑑
𝑑𝑦

1
ℓ 𝑦 ≤ 8𝜋𝐺?

𝑑𝜎
𝑑𝑦 ≤ ∞

Satisfied on the equations of motion✅
• Bounds of tension imply 

0 ≤ 𝒯$ ≤ 𝑚𝑖𝑛 1,
𝑐'
𝑐$

Same bounds given by ANEC! ✅
• Janus case: 𝑐$ = 𝑐' gives

0 ≤ 𝒯$ ≤ 1



Equivalence between discrete branes and dilaton 
• Discretized geometry solves Einstein’s equations with source 

𝑇VW.,* = −Λ 𝑦 𝑔VW −
𝑑𝜎
𝑑𝑦

ΠVW

Λ 𝑦 = −
1

ℓ 𝑦 ; , ΠVW = 𝑔VW − f𝑛V f𝑛W

• In the continuum limit needs to converge to smooth solution 

𝑇VW.,* = − 𝜕X𝜙𝜕X𝜙 ΠVW + 𝑔VW
1
2𝜕

X𝜙𝜕X𝜙 − 𝑉 𝜙

• Map to each other for the background solution: 
𝑑𝜎
𝑑𝑦 =

𝑑𝜙
𝑑𝑦

;
,
1

ℓ 𝑦 ; =
1
2
𝑑𝜙
𝑑𝑦

;
− 𝑉 𝜙



Equivalence still holds after perturbation

• Universality: scattering experiment can be prepared with 2d transverse 
traceless modes

𝑑𝑠) = 𝑑𝑦) + 𝑎) 𝑦 𝛾̅!" + ℎ!" 𝑑𝑥!𝑑𝑥"
𝛾̅!"ℎ!" = 0, ∇̀!ℎ!" = 0

• Can solve for a given frequency
ℎ±± 𝒙 𝑦 = 𝑒$@ A%±A& 𝐴±@ + 𝐵±@e

8 𝑑 V𝑦
𝑎 V𝑦 )

• To complete the calculation, should impose boundary conditions for the 
scattering and the no-outgoing wave condition.
• equation of motion only depend on the scale factor 𝑎(𝑦)
⇒ Discretization should not change the result in the continuum limit! 



(4) Summary and outlook



Summary and Outlook
• Energy reflection and transmission are universal in 2d 

conformal interfaces
• In the thin brane model the transmission is fixed by the tension, 

just like the boundary entropy
• Bounds by ANEC satisfied, but can’t achieve complete reflection
• In general boundary entropy and energy transmission will differ;

Full reflection can be achieved (e.g., 2 brane models)
• General technique to compute transmission coefficients for 

smooth holographic ICFTs with Einstein-dilaton action, including 
Janus
• Discretization provides a simpler method than a direct 

computation 



Future developments 

• Energy transfer in general dimensions? (new subtleties!) Is there 
anything universal? Other codimensions?
• Holographic check of universality?
• Holographic transport of electric charge? In thermal states?
• Application to cosmology: propagation of gravity waves, particle 

production 
• Relation between energy and information transfer (Karch bound?)
• Monotonicity theorems along RG flows? 

Lots to explore!



Thank you for listening!


