Energy Reflection and Transmission at 2D Holographic Interfaces

Shira Chapman

Ben Gurion University of the Negev

Phys.Rev.Lett. 125 (2020) 23, 231602

Costas Bachas, SC, Dongsheng Ge, Giuseppe Policastro

Phys.Rev.Lett. 131 (2023) 2, 021601

Costas Bachas, Stefano Baiguera, **SC**, Giuseppe Policastro, Tal Schwartzman

ENS Summer Institute

24 June 2024

Outline

(1) Conformal interfaces

(2) Universality of energy transmission (in 2d)

(3) Transmission in holography

(3a) The thin brane model

(3b) The thick brane model (Janus)

(4) Summary and outlook

(1) Conformal Interfaces

Conformal Interfaces

Interfaces – codimension one extended objects which split the system into two

- Conformal Interfaces separate two critical systems and preserve a large subgroup of the conformal symmetry $SO(d, 1) \subset SO(d + 1, 1)$
- In 2d these are impurities which preserve one copy of the Virasoro algebra

What are conformal interfaces good for?

- Condensed matter physics: Junction of quantum wires [Wong, Affleck, 1993], line or surface defects in the critical 2D or 3D Ising models [Oshikawa, Affleck, 1997]...
- Holography: dynamical branes in AdS [Karch, Randall, 2000] [DeWolfe, Freedman, Ooguri, 2001], supergravity solutions (Janus) [Bak, Gutperle, Hirano, 2007]
- Playgrounds for computations in quantum information: Islands in black hole evaporation [Almheiri, Engelhardt, Marolf, Maxfield, 2019] [Penington, 2019] [Almheiri, Mahajan, Maldacena, Zhao, 2019] [Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini, 2019]
- Monotonicity theorems along the RG flow: g-theorem, b-theorem [Affleck, Ludwig, 1991] [Jensen, O'Bannon 2015]
- And many more....

Conformal Interfaces in 2d

 Preserves Virasoro generators that do not displace the interface

 $L_n + (-1)^n \, \overline{L}_n$

• Energy conservation implies a gluing condition ($T_{x\tau}$ is continuous)

$$T_L - \overline{T}_L \Big|_{x=0^-} = T_R - \overline{T}_R \Big|_{x=0^+}$$

Conformal Interfaces in 2d

• 2pt functions of stress tensor completely fixed by conformal symmetry

$$\langle T_L(z)T_L(w)\rangle_I = \frac{c_L/2}{(z-w)^4} \qquad \langle T_R(z)T_R(w)\rangle_I = \frac{c_R/2}{(z-w)^4}$$

New coefficient in left/right correlations

(2) Universality of energy transmission and reflection (in 2d)

Energy Reflection and Transmission

Scattering experiment

 $\mathcal{T} = \frac{\text{transmitted energy}}{\text{incident energy}}$

$$R = \frac{reflected \ energy}{incident \ energy}$$

Different transmission from left and right

$$\mathcal{T}_{L(R)}$$
 $\mathcal{R}_{L(R)}$

 Universality – scattered and reflected energy is completely independent* of the details of the incoming excitation

Quella, Runkel, Watts (2007) Meineri, Penedones, Rousset (2019)

* as long as no more than one spin 2 conserved quasi-primary is present

Energy Reflection and Transmission

$$\mathcal{T}_L = \frac{c_{LR}}{c_L} \qquad \mathcal{T}_R = \frac{c_{LR}}{c_R} \qquad \mathcal{R}_{L(R)} = 1 - \mathcal{T}_{L(R)}$$

ANEC implies $0 \le T, \mathcal{R} \le 1 \Rightarrow 0 \le c_{LR} \le \min(c_L, c_R)$

* Recent claims Karch [2404.01515] at al. $c_{LR} \leq c_{eff} \leq \min(c_L, c_R)$

Can't fully transmit from higher to lower central charge.

Quella, Runkel, Watts (2007) Meineri, Penedones, Rousset (2019)

(3) Energy reflection and transmission in holography

Goal of this Talk: Holographically compute the transmission coefficient

Conduct a holographic scattering experiment to find

$$\mathcal{T}_{L(R)} \leftrightarrow \mathcal{C}_{LR}$$

Two models:

- Thin brane model: AdS₂ brane in AdS₃ [Bachas, Chapman, Ge, Policastro, 2020] [Baig, Karch, 2022]
- Thick brane model: continuous geometry with dilaton (Janus AdS₃) [Bachas, SB, Chapman, Policastro, Schwartzman, 2023]

Why?

- Understand better the models.
- Properties of transmission and reflection at strong coupling/large central charge?

(3a) The thin brane model

The thin brane model - bottom-up approach

• Solve Einstein equations in the left/right

$$ds_{L(R)}^{2} = \frac{\ell_{L(R)}^{2}}{\xi_{L(R)}^{2}} \left[-dt_{L(R)}^{2} + d\xi_{L(R)}^{2} + du_{L(R)}^{2} \right]$$

• Israel matching conditions determine the location of the brane [Israel, 1966]

$$\gamma_{L,\alpha\beta} = \gamma_{R,\alpha\beta} \qquad K^R_{\alpha\beta} - K^L_{\alpha\beta} = -8\pi G \sigma \gamma_{\alpha\beta}$$

The thin brane model - bottom-up approach

• Stable solutions with a thin AdS₂ brane exist as long as

$$\left|\frac{1}{\ell_R} - \frac{1}{\ell_L}\right| \le 8\pi G_N \sigma \le \frac{1}{\ell_R} + \frac{1}{\ell_L} \qquad \tan \theta \equiv \frac{u}{\xi}$$

- Lower bound: no bubble nucleation [Coleman, De Luccia, 1980]
- Upper bound: brane geometry becomes de Sitter [Karch, Randall, 2000]
- The solution consists of two patches of AdS₃ connected along an AdS₂ brane with

 $\frac{\ell_L}{\cos \theta_L} = \frac{\ell_R}{\cos \theta_R} = \frac{\tan \theta_L + \tan \theta_R}{8\pi G\sigma}$

Interface

Boundary entropy is fixed by the tension.

 CFT_{I}

 AdS_3

ξ.

CETR

 AdS_2

brane

 $+ \theta_B$

 t_L

Holographic scattering experiment

 Bulk solution corresponding to a scattering experiment? Stress tensor with left and right moving waves

$$\langle T_{\alpha\beta}^{L} \rangle dx_{L}^{\alpha} dx_{L}^{\beta} = \epsilon \left[1 e^{i\omega(t_{L}-u_{L})} d(t_{L}-u_{L})^{2} + \mathcal{R}_{L} e^{i\omega(t_{L}+u_{L})} d(t_{L}+u_{L})^{2} \right] + c.c.$$

$$\langle T_{\alpha\beta}^{R} \rangle dx_{R}^{\alpha} dx_{R}^{\beta} = \epsilon \mathcal{T}_{L} e^{i\omega(t_{R}-u_{R})} d(t_{R}-u_{R})^{2} + c.c.$$

3d Bulk solution is completely fixed in FG gauge

 $g_{\alpha\beta} = 4G_{\rm N}\ell\langle T_{\alpha\beta}\rangle$

$$ds^{2} = \frac{\ell^{2}}{\xi^{2}} \Big[d\xi^{2} + \left(g_{\alpha\beta}^{(0)} + \frac{\xi^{2}}{\ell^{2}} g_{\alpha\beta}^{(2)} + \frac{\xi^{4}}{4\ell^{4}} g_{\alpha\beta}^{(4)} \right) dw^{\alpha} dw^{\beta} \Big] \downarrow_{\xi_{L}} \qquad \begin{bmatrix} \text{AdS}_{2} \\ \text{brane} \end{bmatrix}$$

$$g_{\alpha\beta}^{(2)} = 4G_{N} \ell \langle T_{\alpha\beta} \rangle \qquad g^{(4)} = g^{(2)} (g^{(0)})^{-1} g^{(2)} \qquad \text{Charge}$$

Characteristic frequency ω

 t_R

The brane fluctuates

- Without the metric perturbation the two sides were matched along a brane with angles θ_L and θ_R
- The perturbation changes the shape of the brane

- Method:
 - Impose Israel matching conditions+boundary conditions $\Rightarrow \mathcal{R}_L + \mathcal{T}_L = 1$
 - Impose no-outgoing wave condition at the horizon (in the IR).

Transmission in the single brane model

$$\mathcal{T}_{L(R)} = \frac{2}{\ell_{L,R}} \left[\frac{1}{\ell_L} + \frac{1}{\ell_R} + 8\pi G_N \sigma \right]^{-1}$$

- Monotonically decreases with the tension
- Transmission in empty AdS₃

$$\sigma = 0, \quad \ell_L = \ell_R \quad \Rightarrow \quad \mathcal{T}_{L(R)} = 1$$

- Universality: the result does not depend on the frequency
- Holographic model has only one parameter
 ⇒ Transmission and boundary entropy log g both fixed in terms of the
 tension! Is this generic for strongly coupled theories?

Transmission in the single brane model

$$\left(\mathcal{T}_{L(R)} = \frac{2}{\ell_{L,R}} \left[\frac{1}{\ell_L} + \frac{1}{\ell_R} + 8\pi G_N \sigma\right]^{-1}\right)$$

Allowed range of tensions

$$\left|\frac{1}{\ell_R} - \frac{1}{\ell_L}\right| \le 8\pi G\sigma \le \frac{1}{\ell_R} + \frac{1}{\ell_L}$$

Provides bounds on the transport

$$\frac{c_R}{c_R + c_L} \le \mathcal{T}_L \le \min\left(1, \frac{c_R}{c_L}\right), \qquad \qquad \mathsf{ANEC:} \ 0 \le \mathcal{T}_L \le \min\left(1, \frac{c_R}{c_L}\right)$$

- Consistent with ANEC, but lower bound is stronger.
- Total reflection (T_L =0) when $c_R/c_L \rightarrow 0$ (BCFT limit)
- Is this generic for strongly coupled theories? (we will see that no)

Transmission in double brane model

Fuse two branes and perform the same computation [Baig, Karch, 2022]

$$\mathcal{T}_{L(R)} = \frac{2}{\ell_{L,R}} \left[\frac{1}{\ell_L} + \frac{1}{\ell_R} + 8\pi G_N (\sigma_1 + \sigma_2) \right]^{-1}$$

- Additive in the tensions \Rightarrow for N branes $\sum^{N} \sigma_{i}$
- Does not depend on ℓ_c
- $\log g$ depends on $\ell_c \Rightarrow$ Transmission and $\log g$ can vary independently!
- Consistent with ANEC lower bound can be realized by sending $\ell_c \rightarrow 0$

Shortcomings of the thin brane

- It is discontinuous delta function localized energy
- Bottum-up approach we do not know the dual field theory

Can we find these results for smooth gravity solutions/top-down models?

(3b) The thick brane model (Janus)

Smooth ICFT holographic models

• Einstein gravity coupled to a dilaton

$$S = \frac{1}{16\pi G_N} \int d^{n+1}x \sqrt{-g} \left(R - 2\partial_\mu \phi \partial^\mu \phi - 2V(\phi) \right)$$

Continuous geometries dual to vacuum states of ICFT

$$ds^2 = dy^2 + a^2(y) \, \overline{\gamma}_{lphaeta} dx^{lpha} dx^{eta}, \quad \phi = \phi(y),$$

with $\bar{\gamma}_{\alpha\beta} dx^{\alpha} dx^{\beta}$ the metric on AdS_n slices

• Empty AdS: $V(\phi) = -1/\ell^2$ $\phi(y) = 0, \qquad a(y) = \ell \cosh\left(\frac{y}{\ell}\right)$

Janus – a specific example

• Special case $V(\phi) = -1/L^2$: non-supersymmetric 3d Janus AdS solution [Freedman, Nunez, Schnabl, Skenderis, 2003][Bak, Gutperle, Hirano, 2007]

$$ds^{2} = dy^{2} + a^{2}(y) \left(\frac{-dt^{2} + dz^{2}}{z^{2}}\right)$$
$$a(y) = \frac{L}{\sqrt{2}} \left[1 + (1 - b) \cosh\left(\frac{2y}{L}\right)\right]^{1/2}$$
$$\phi(y) = \phi_{0} + \frac{1}{\sqrt{2}} \log\left[\frac{\sqrt{2 - b} + \sqrt{b} \tanh\left(\frac{y}{L}\right)}{\sqrt{2 - b} - \sqrt{b} \tanh\left(\frac{y}{L}\right)}\right]$$

- b = 0 recovers empty AdS.
- Can be embedded in type IIB SUGRA on $AdS_3 \times S^3 \times M_4$.

Perturbation with plane waves is difficult

Method:

- Add a perturbation for the stress-tensor at the boundary
- Solve the Einstein's equations with perturbation

Problems:

- Fefferman-Graham coordinates are not defined everywhere [Papadimitriou, Skenderis, 2004]
- Hard to study Einstein's equations

Discrete geometries are simpler!

• Our geometries are in fact very similar to empty AdS $d\theta \equiv \frac{dy}{a(y)}$

$$\begin{split} ds^2 &= a(\theta) \left(d\theta^2 + \frac{-dt^2 + dz^2}{z^2} \right) \\ \phi &= \phi(\theta), \end{split}$$

I will keep changing between θ and y, they are really the same thing

- $a(\theta) = \ell / \cos(\theta) \text{empty AdS}$
- This means that we can treat them as many small slices of AdS_{n+1} with different radii!

Discrete geometries are simpler!

• Consider a pizza geometry with multiple branes and use additivity

• Take the continuum limit: $\sum_{i} \sigma_{i} \rightarrow \int_{-\infty}^{\infty} \frac{d\sigma}{dy} dy$

Discretization method

• Take a collection of empty AdS₃ regions

$$ds_j^2 = \tilde{a}_j(\theta) \left(d\theta^2 + \frac{-dt^2 + dz^2}{z^2} \right)$$
$$\tilde{a}_j(\theta) = \frac{\ell_j}{\cos(\theta - \delta_j)} \quad \text{for} \quad (j - 1)\epsilon < \theta < j\epsilon$$

- Impose:
 - Israel matching conditions.
 - recover the original $a(\theta = j\epsilon) = \tilde{a}_j(j\epsilon)$
- continuum limit $a(\theta), \ell(\theta), \delta(\theta)$
- Result is simple

$$\frac{d\sigma}{dy} = \left(\frac{d\phi}{dy}\right)^2, \frac{1}{\ell(y)^2} = \frac{1}{2}\left(\frac{d\phi}{dy}\right)^2 - V(\phi)$$

• Integrate to obtain the transmission!

Transmission of Janus interface

$$\mathcal{T}^{\text{Jan}} = \frac{1}{2}\sqrt{b(2-b)} \left[\operatorname{arctanh}\left(\sqrt{\frac{b}{2-b}}\right) \right]^{-1}$$

- Monotonically decreasing function of the deformation parameter b
- Transmission in empty AdS₃

$$b = 0 \Rightarrow \mathcal{T}^{Jan} = 1$$

• Infinitely strongly coupled case (linear dilaton)

$$b \to 1 \Rightarrow \mathcal{T}^{Jan} \to 0$$

ANEC Bounds for smooth geometries

- Stability window for tension in continuum limit $\left|\frac{1}{\ell_R} - \frac{1}{\ell_L}\right| \le 8\pi G_N \sigma \le \frac{1}{\ell_R} + \frac{1}{\ell_L} \Rightarrow \left|\frac{d}{dy}\frac{1}{\ell(y)}\right| \le 8\pi G_N \frac{d\sigma}{dy} \le \infty$ Satisfied on the equations of motion
- Bounds of tension imply

$$0 \le \mathcal{T}_L \le \min\left(1, \frac{c_R}{c_L}\right)$$

Same bounds given by ANEC!

• Janus case: $c_L = c_R$ gives

$$0 \leq \mathcal{T}_L \leq 1$$

Equivalence between discrete branes and dilaton

• Discretized geometry solves Einstein's equations with source $\frac{d\sigma}{d\sigma}$

$$T_{\mu\nu}^{mat} = -\Lambda(y)g_{\mu\nu} - \frac{a\sigma}{dy}\Pi_{\mu\nu}$$
$$\Lambda(y) = -\frac{1}{\ell(y)^2}, \qquad \Pi_{\mu\nu} = g_{\mu\nu} - \hat{n}_{\mu}\hat{n}_{\nu}$$

• In the continuum limit needs to converge to smooth solution

$$T_{\mu\nu}^{mat} = -\left(\partial^{\rho}\phi\partial_{\rho}\phi\right)\Pi_{\mu\nu} + g_{\mu\nu}\left(\frac{1}{2}\partial^{\rho}\phi\partial_{\rho}\phi - V(\phi)\right)$$

• Map to each other for the background solution:

$$\frac{d\sigma}{dy} = \left(\frac{d\phi}{dy}\right)^2 \qquad , \frac{1}{\ell(y)^2} = \frac{1}{2}\left(\frac{d\phi}{dy}\right)^2 - V(\phi)$$

Equivalence still holds after perturbation

 Universality: scattering experiment can be prepared with 2d transverse traceless modes

$$ds^{2} = dy^{2} + a^{2}(y) (\bar{\gamma}_{\alpha\beta} + h_{\alpha\beta}) dx^{\alpha} dx^{\beta}$$
$$\bar{\gamma}^{\alpha\beta} h_{\alpha\beta} = 0, \quad \overline{\nabla}^{\alpha} h_{\alpha\beta} = 0$$

• Can solve for a given frequency

$$h_{\pm\pm}(\boldsymbol{x}|\boldsymbol{y}) = e^{i\omega(x^0 \pm x^1)} \left[A_{\pm}^{\omega} + B_{\pm}^{\omega} \int^{\boldsymbol{y}} \frac{d\tilde{\boldsymbol{y}}}{a(\tilde{\boldsymbol{y}})^2} \right]$$

- To complete the calculation, should impose boundary conditions for the scattering and the no-outgoing wave condition.
- equation of motion only depend on the scale factor a(y)
- \Rightarrow Discretization should not change the result in the continuum limit!

(4) Summary and outlook

Summary and Outlook

- Energy reflection and transmission are universal in 2d conformal interfaces
- In the thin brane model the transmission is fixed by the tension, just like the boundary entropy
- Bounds by ANEC satisfied, but can't achieve complete reflection
- In general boundary entropy and energy transmission will differ; Full reflection can be achieved (e.g., 2 brane models)
- General technique to compute transmission coefficients for smooth holographic ICFTs with Einstein-dilaton action, including Janus
- Discretization provides a simpler method than a direct computation

Future developments

- Energy transfer in general dimensions? (new subtleties!) Is there anything universal? Other codimensions?
- Holographic check of universality?
- Holographic transport of electric charge? In thermal states?
- Application to cosmology: propagation of gravity waves, particle production
- Relation between energy and information transfer (Karch bound?)
- Monotonicity theorems along RG flows?

Lots to explore!

Thank you for listening!