

Cosmics' deposited energy resolution

Lavinia Russo

Steps of the analysis

○ I analyzed a run of cosmic rays taken at J-PARC with B field (run862)

 $\,\circ\,$ The data are reconstructed with hatRecon

 \circ I looked at:

- momentum reconstructed through the log(Q) method (Ulysse)
- dE/dx reconstructed with truncated mean method (Vlada)

 $\,\circ\,$ I disabled the merging between ERAMs

Don't know

more 😳

Module selection

End Plate 0	End Plate 1
pos[0] < 0	pos[0] > 0

Row 0	Row 1
pos[1] < -740	pos[1] > -740

Col 0	Col 1	Col 2	Col 3
-2790 ≤ pos[2] < -2365	-2365 ≤ pos[2] < -1945	-1945 ≤ pos[2] < -1520	-1520 ≤ pos[2] < -1090

Energy resolution without cuts

HA-TPC meeting

dEdx vs momentum

- electrons: |p|<100 MeV
- muons: |p|> 0.4 GeV

Cuts

dEdx vs momentum

Before cuts:

After cuts: no more electrons for |p|< 100 MeV

Energy resolution before and after cuts

Mean dEdx for different |p| ranges

9

Mean dEdx for different |p| ranges

Without merging within two modules we get a Eres $\sim 15\%$

What if we merge?

ERAM 03

ERAM 01

ncl with merging

Number of cluster for all the 16 modules

- When a track crosses just one module Eres $\sim 15\%$
- When a track crosses two modules Eres $\sim 10\%$

• Consistent with
$$E_{res} \sim 1/\sqrt{ncl}$$

MC data: Eres

MC data: mom vs curv

MC data: dir[*] vs curv

Conclusions

- I've analyzed run862 of cosmic rays (mostly muons)
 - Tracks crossing one module: Eres $\sim 15\%$
 - Tracks crossing two modules: Eres $\sim 10\%$
- dE/dx in function of p follows Bethe-Bloch prediction
- Combining modules with different gain does not give a big effect on the Eres → ionization fluctuations dominate over detector effects
- It would be useful to have more cosmics with B field for a more careful characterization

Next steps:

- > Apply gain calibration constants using Shivam gain maps
- > Analyze the MC data

Back up slides

MC data: dEdx vs momentum

Before cuts:

HA-TPC meeting

run862: mom vs curv

run862 : dir[*] vs curv

CERN 2022 test beam analysis

Energy resolution without cuts

End Plate 0

Energy resolution without cuts

1200

1000

80C

600

400-

200

dEdx vs ncl

The tracks are not merged:

Cuts: ncl == 32

dEdx vs ncl

dEdx vs dir[1]

Cuts: abs(dir[1]) > 0.95

End Plate 0

dEdx vs dir[1]

Cuts: abs(dir[1]) > 0.95

1/31/24

Momentum

momentum with cuts

Energy resolution after cuts

0 200 400 600 800 1000 1200 1400 1600 1800 2000

dEdx [c.u.]

ERAM 24 ERAM 30 ERAM 28 ERAM 19 600 600 500 500 15.7 +/- 0.2 % 14.7 +/- 0.2 % 15.9 +/- 0.2 % 15.9 +/- 0.2 % 500 500 400 400 400 400 300 300 300 300 200 200 200 200 100 100 100 100 بيليب ليتباب ليتبا تتبا halan 🗫 dan dan dan dan dan dan dari ليبيل بينا بينا بينا بينا بينا سالها المكل 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 L 0 200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 dEdx [c.u.] dEdx [c.u.] dEdx [c.u.] dEdx [c.u.] ERAM 21 ERAM 13 ERAM 09 ERAM 02 600 450 400 F 350 15.0 +/- 0.1 % 15.4 +/- 0.2 % 15.1 +/- 0.1 % 17.3 +/- 0.2 % 400 E 500 350 300 350 F 300 250 400 300 F 250 200 250 300 200 200 150 150 F 200 150 100 100 100 100 50 50 F 50 Meeting to the structure of the structur بتبا بتبا بتبا بتبا بتبا يع li i li i 🔊 0 200 400 600 800 1000 1200 1400 1600 1800 2000

^{dE}∰A-TPC meeting

0 200 400 600 800 1000 1200 1400 1600 1800 2000

End Plate 0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

dEdx [c.u.]

dEdx [c.u.]

Energy resolution after cuts

dEdx [c.u.]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 dEdx [c.u.]

Manda and an a land a sa la sa la

"HA-TPC meeting

0 200 400 600 800 1000 1200 1400 1600 1800 2000

400 F

350

300

250

200

150

100

50

լովուլի ֆեսրիստիուիս

dEdx [c.u.]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

uluulu Kashuluulusiluuluu

dEdx [c.u.]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

dEdx vs momentum

p range [GeV]	mean value [GeV]	
0.4 - 0.6	0.5	
0.6 - 0.75	0.675	
0.75 - 1	0.875	
1 - 1.25	1.125	
1.25 - 1.5	1.375	
1.5 - 2	1.75	
2 - 3	2.5	
3 - 5	4	

0.4 GeV < |p| < 0.6 GeV

End Plate 0

0.4 GeV < |p| < 0.6 GeV

dEdx [c.u.]

0.6 GeV < |p| < 0.75 GeV

End Plate 0

0.6 GeV < |p| < 0.75 GeV

ERAM 01

14.9 +/- 0.5 %

dEdx [c.u.]

30

25

20

15

0.75 GeV < |p| < 1 GeV

End Plate 0

0.75 GeV < |p| < 1 GeV

dEdx [c.u.]

1 GeV < |p| < 1.25 GeV

End Plate 0

1 GeV < |p| < 1.25 GeV

dEdx [c.u.]

1.25 GeV < |p| < 1.5 GeV

End Plate 0

ERAM 03

30

25

20

15

10

1.25 GeV < |p| < 1.5 GeV

1/31/24

1.5 GeV < |p| < 2 GeV

End Plate 0

1.5 GeV < |p| < 2 GeV

ERAM 01

15.0 +/- 0.6 %

dEdx [c.u.]

1/31/24

5

2 GeV < |p| < 3 GeV

End Plate 0

2 GeV < |p| < 3 GeV

dEdx [c.u.]

3 GeV < |p| < 5 GeV

End Plate 0

3 GeV < |p| < 5 GeV

dEdx [c.u.]