Neutrino Wake Force in The Seesaw Mechanism

Muhammaddaniya Sutwilai

VSOP24

Fermion behaves as an effective scalar and mediate long-range force

Boson Mediator

Force in nature

- Classical Force
 Coulomb Potential
 - Yukawa Potential
- Quantum Force
 - □ The Exchange of **Fermion** in a loop
 - □ Mediate Long-range Force?

In SM?

Bosonic treelevel mediator Fermionic Loop-Mediator

Neutrino Force

- Exchange of two neutrino/antineutrino
- □ Small mass → Long Range → Stability of Neutron star and Impact on Dark Matter

 $V(r) \sim \frac{G_F^2}{r^5}$ 4 Fermi-Interaction [S. D. H. Hsu & P.Sikivie]

Very weak and not confirmed experimentally

The Force can be **enhanced** by the presence of a **Neutrino Background**

Dark Matter Scattering via Box Diagram

Modified Propagator Formalism [Mitrajyoti Ghosh et al]

 \Box The Vacuum state -> Background state $|\omega
angle$ as a wave packet

The additional is proportional to the number density

Dark Matter Self-Interaction?

Dark Matter Scattering via Box Diagram

Model

Introduce the Scalar DM (χ) and R.H. Neutrino (N_R) – Yukawa Interaction

$$\mathcal{L}_y = -g\chi \bar{N}_R \nu_L + h.c.$$

The DM-DM Scattering is given by the Box diagram

Matching – Determining the Wilson Coefficient : G

Impose the Mixing of the neutrino from Seesaw Type I to rewrite the Lagrangian in the mass eigenstate

One Loop Matching must be carried on

Potential is strongly enhanced by the Anisotropic profile

Assuming the isotropy, The Potential Profile is calculated to be

$$V_{bkg}(r) = \frac{G_s^2}{4\pi^3 r^4} \int_0^{+\infty} d\frac{\kappa}{\sqrt{\kappa^2 + m_\nu^2}} \frac{[n_+ + n_-]\kappa^2 \left[(2r^2(k^2 + m^2) - 1)sin(2kr) + 2krcos(2kr) \right]}{\checkmark}$$

The Potential depends on the number density profile

- Isotropic profile → Not enough Enhancement
- Anisotropic profile might be the key!

□ Cosmic neutrino background → Isotropic
 □ Astrophysics Neutrino Source → Anisotropic

- UV Completion model of Dark Matter Self-Interaction
 - □ Small Scale Structure Formation
 - DM Phenomenology
- Probing the Neutrino Force
 - □ Anisotropic profile of the Astrophysics neutrino flux?

There's a lot of possibilities on how this project will be carried on