Production Cross-Sections of B_c Mesons in pp, pA, and AA Collision at LHC Energies.

Madeeha Nazish Centre for High Energy Physics University of the Punjab Lahore, Pakistan

16 – 26 July, 2024 30th Vietnam School of Physics: Particle and Dark Matter

Charm-Beauty Meson and its States

• It is a bound state of charm and antibottom quarks or vise versa.

 $B_c^+(c\bar{b}), \qquad B_c^-(\bar{c}b)$

- Internal state of this meson is defined by following quantum numbers
- 1. Total spin of $Q\bar{Q}$ pair: S = 0,1
- 2. Orbital angular momentum: L = 0, 1, 2, 3, ... represented by (S, P, D, F, ...)
- 3. Total angular momentum: J = |L S|, ..., L + S
- 4. Principle quantum number n = 1, 2, ...
- 5. $Q\overline{Q}$ pair can either be in singlet or octet states: $3\otimes\overline{3} = 8\oplus 1$
- Internal states: $Q\bar{Q}[n^{2S+1}L_J^{(c)}]$ where c = 1 (singlet), 8 (octet state)

<u>S states $(L = 0)$:</u>		<u><i>P</i> states $(L = 1)$:</u>			
For $S = 0, J = 0$:	${}^{1}S_{0}$	For $S = 0, J = 1$:	$^{1}P_{1}$		
For $S = 1, J = 1$:	${}^{3}S_{1}$	For $S = 1, J = 0, 1, 2$:	$^{3}P_{0}$,	${}^{3}P_{1}$	${}^{3}P_{2}$

• We want to calculate the cross section of inclusive B_c production process in pp collision.

$$p + p \rightarrow B_c^+ + X$$
 (Main process)

• Most likely method of B_c^+ production is via a hard process in which above process occur through the interactions of partons (say *i* and *j*) of the colliding protons.

$$i + j \rightarrow B_c^+ + X$$
 (Subprocess)

QCD factorization theorem

$$d\sigma(pp \to B_c^+ X) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_f) f_j(x_2, \mu_f) d\hat{\sigma}(ij \to B_c^+ X)$$

$$P_1 \xrightarrow{f_i(x_1, \mu_f)} f_j(x_2, \mu_f) \xrightarrow{p_1} B_c^+$$

$$P_2 \xrightarrow{proton} f_j(x_2, \mu_f) \xrightarrow{f_j(x_2, \mu_f)} Where f_i(x_1, \mu_f) \text{ and } f_j(x_2, \mu_f) \text{ are parton}$$
distribution functions (PDFs) of *i* and *j* partons.

- Two subprocesses contribute.
 - 1. Gluon fusion subprocess: $g + g \rightarrow B_c^+ + X$ 2. $q\bar{q}$ annihilation subprocess: $q + \bar{q} \rightarrow B_c^+ + X$ where q = u, d, s
- To calculate the cross sections of a subprocess $(ij \rightarrow B_c^+ X)$ we use NRQCD factorization approach.
- In this approach we assume that the subproccess occur in two steps

Step 1: From the interaction of *i* and *j* partons $c\overline{b}$ pair is produced in state $n \equiv {}^{2S+1}L_J^{(c)}$. **Step 2:** The pair $c\overline{b}[n]$ tranforms into a physical quarkonium state of B_c^+ .

• NRQCD factorization formula

Where,

- $d\hat{\sigma}(ij \rightarrow c\overline{b}[n]X)$ is cross section of producing $c\overline{b}$ pair in state n. It can be calculated using Feynman Rules and called short distance coefficient (SDC).
- $\langle O_n^{B_c^+} \rangle$ is called long-distance matrix element (LDME) describing non-perturbative transition of $c\bar{b}[n]$ into physical quarkonium state of B_c^+ .
- Intermediate state of $c\overline{b}$ pair is defined by $n \equiv {}^{2S+1}L_J^{(c)}$

• At leading order in v, we get following results.

For
$${}^{1}S_{0}^{(1)}B_{c}^{+}:d\hat{\sigma}(ij \to B_{c}^{+}X) = d\hat{\sigma}(ij \to c\bar{b}[{}^{1}S_{0}^{(1)}]X)\left(\mathcal{O}^{B_{c}^{+}}[{}^{1}S_{0}^{(1)}]\right)$$

For ${}^{3}S_{1}^{(1)}B_{c}^{+}:d\hat{\sigma}(ij \to B_{c}^{+}X) = d\hat{\sigma}(ij \to c\bar{b}[{}^{3}S_{1}^{(1)}]X) \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}S_{1}^{(1)}] \right\rangle$

For
$${}^{1}P_{1}^{(1)}B_{c}^{+}:d\hat{\sigma}(ij \to B_{c}^{+}X) = d\hat{\sigma}(ij \to c\bar{b}[{}^{1}P_{1}^{(1)}]X) \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{1}P_{1}^{(1)}] \right\rangle + d\hat{\sigma}(ij \to c\bar{b}[{}^{1}S_{0}^{(8)}]X) \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{1}S_{0}^{(8)}] \right\rangle$$

For ${}^{3}P_{J}^{(1)}B_{c}^{+}:d\hat{\sigma}(ij \to B_{c}^{+}X) = d\hat{\sigma}(ij \to c\bar{b}[{}^{3}P_{J}^{(1)}]X) \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}P_{J}^{(1)}] \right\rangle + d\hat{\sigma}(ij \to c\bar{b}[{}^{3}S_{1}^{(8)}]X) \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}S_{1}^{(8)}] \right\rangle$ (where J = 0,1,2)

• So we have 8 LDMEs

$$\left\langle \mathcal{O}^{B_{c}^{+}}[{}^{1}S_{0}^{(1)}] \right\rangle, \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}S_{1}^{(1)}] \right\rangle \sim v^{0}$$

$$\left\langle \mathcal{O}^{B_{c}^{+}}[{}^{1}P_{1}^{(1)}] \right\rangle, \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}P_{0}^{(1)}] \right\rangle, \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}P_{1}^{(1)}] \right\rangle, \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}P_{2}^{(1)}] \right\rangle; \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{1}S_{0}^{(8)}] \right\rangle, \left\langle \mathcal{O}^{B_{c}^{+}}[{}^{3}S_{1}^{(8)}] \right\rangle \sim v^{2}$$

• And 8 corresponding SDC are required to calculate production cross sections of B_c^+ states.

At LO in α_s gluons fusion process $g + g \rightarrow c + \overline{b} + b + \overline{c}$ $c\overline{b}[n] X$

At LO in $\alpha_s q\bar{q}$ annihilation process $q + \bar{q} \rightarrow c + \bar{b} + b + \bar{c}$ $c\bar{b}[n] \quad X$

Input parameters:

$$\begin{split} E_{\rm cm} &= 13 \text{ TeV} \\ m_c &= 1.5 \text{ GeV}, \ m_b = 4.5 \text{ GeV} \\ \mu_F &= M_T \equiv \sqrt{p_T^2 + M_{B_c}}, \ M_{B_c} \approx m_c + m_b \\ \alpha_s \text{ is taken running. CTEQ6L1 PDF set is used.} \end{split}$$

Results:

State	$\sigma(pp ightarrow B_c^+ X)$ (nb) (via gluon fusion) Our results	$\sigma(pp o B_c^+ X)$ (nb) (via gluon fusion) Results of Ref[1,2]	$\sigma(pp ightarrow B_c^+ X)$ (nb) (via $q \bar{q}$ annihilation) Our results
${}^{1}S_{0}^{(1)}$	47.9	42.4	0.13
${}^{3}S_{1}^{(1)}$	119.5	105	0.83
$^{1}P_{1}^{(1)}$	5.79	4.74	0.03
${}^{3}P_{0}^{(1)}$	2.03	1.9	0.01
${}^{3}P_{1}^{(1)}$	4.90	4.1	0.03
${}^{3}P_{2}^{(1)}$	12.10	10.2	0.07

Gu. Chen, Chao-His Chang, and Xing-Gang Wu, Phys. Rev. D 97, 114022 (2018).
 Chao-Hsi Chang, Jian-Xiong Wang, and Xing-Gang Wu, Phys. Rev. D 70, 114019 (2004)

$$d\sigma(pA \to B_c^+X) = N_A \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_f) f_j^A(x_2, \mu_f) d\hat{\sigma}(ij \to B_c^+X)$$

$$d\sigma(AA \to B_c^+ X) = N_A^2 \sum_{i,j} \int dx_1 dx_2 f_i^A(x_1, \mu_f) f_j^A(x_2, \mu_f) d\hat{\sigma}(ij \to B_c^+ X)$$

Where $f_i^A(x_1, \mu_f)$ and $f_j^A(x_2, \mu_f)$ are nuclear PDFs, modified due to nuclear shadowing effect.

A parton of a proton/neturon in a nucleus is surrounded by other nucleons, which change the parton distribution functions.

This effect is called nuclear shadowing

Our Results:

State	$\sigma(pPb \to B_c^+X)$ (nb)	$\sigma(pXi \to B_c^+X)$ (nb)	$\sigma(\text{XiXi} \rightarrow B_c^+ X)$ (nb)	$\sigma(\mathbf{PbPb} \to B_c^+ X)$ (nb)
${}^{1}S_{0}^{(1)}$	41.9×10 ²	3.39×10 ²	15.2×10^{4}	23.2×10 ⁴
$^{3}S_{1}^{(1)}$	104.8×10^{2}	84.4×10^2	38.1×10 ⁴	78.2×10 ⁴
$^{1}P_{1}^{(1)}$	5.1×10 ²	4.1×10^{2}	1.8×10^{4}	2.8×10^{4}
$^{3}P_{0}^{(1)}$	1.7×10^{2}	1.4×10^{2}	0.64×10^{4}	0.97×10^{4}
$^{3}P_{1}^{(1)}$	4.3×10^{2}	3.5×10^{2}	1.6×10^4	2.4×10^{4}
$^{3}P_{2}^{(1)}$	10.6×10^{2}	8.6×10 ²	3.9×10^4	5.9×10 ⁴

(via gluon fussion process)

Results of Ref [1]: [1] Gu. Chen, Chao-His Chang, and Xing-Gang Wu, Phys. Rev. D 97, 114022 (2018).

State	$\sigma(p ext{Pb} o B_c^+ X) \ ext{(nb)}$	$\sigma(extsf{PbPb} o B_c^+ X) \ (extsf{nb})$
${}^{1}S_{0}^{(1)}$	33×10 ²	36×10 ⁴
$^{3}S_{1}^{(1)}$	82.6×10 ²	92×10 ⁴

 $(p_T \text{ distribution p-Pb, Pb-Pb, p-Xe, Xe-Xe collisions})$

(Rapdity (y) distribution p-Pb, Pb-Pb, p-Xe, Xe-Xe collisions)

(Pseudo rapidity (y_p) distribution p-Pb, Pb-Pb, p-Xe, Xe-Xe collisions)

Concluding Remarks

- 1. We have calculated production cross sections of B_c meson in pPb, pXe, Pb-Pb, and and Xe-Xe modes at LHC energies.
- 2. We have also calculated the p_T , rapidity (y), and pseudo rapidity (y_p) distributions.
- 3. Our calculated results indicate that a significant number of B_c mesons can be produced at LHC energies.
- 4. These cross section and related distributions shall be meaured in RUN-3 of LHC and could provide a useful test of the standard model and the factorization approach that has been used.

Backup Slides

Applying Projection Method:

$$n = {}^{1} S_{0}^{[1]}: \qquad \mathcal{A}_{S=0,L=0} = \operatorname{Tr}[C_{1}\Pi_{0}\mathcal{A}]_{q=0}$$

$$n = {}^{3} S_{1}^{[1]}: \qquad \mathcal{A}_{S=1,L=0} = \epsilon_{\alpha} \operatorname{Tr}[C_{1}\Pi_{1}^{\alpha}\mathcal{A}]_{q=0}$$

$$n = {}^{1} P_{1}^{[1]}: \qquad \mathcal{A}_{S=0,L=1} = \epsilon_{\alpha} \frac{\mathrm{d}}{\mathrm{d}q_{\alpha}} \operatorname{Tr}[C_{1}\Pi_{0}\mathcal{A}]_{q=0}$$

$$n = {}^{3} P_{J}^{[1]}: \qquad \mathcal{A}_{S=1,L=1} = \epsilon_{\alpha} \frac{\mathrm{d}}{\mathrm{d}q_{\beta}} \operatorname{Tr}[C_{1}\Pi_{1}^{\alpha}\mathcal{A}]_{q=0}$$

Where, ϵ_{α} is polarization vector used when J = 1. and $\epsilon_{\alpha\beta}^{(J)}$ is polarization tensor used when J = 0,1,2.

• For octet states ${}^{1}S_{0}^{[8]}$, ${}^{3}S_{1}^{[8]}$, we use color projector C_{8} instead of C_{1} .

How to calculate the cross sections $(d\sigma_{ij})$ of sub processes?

Consider an *n* body subprocess: $i + j \rightarrow 1 + 2 + \dots + n$

• Where, $|\mathcal{M}|^2 =$ Spin average squared modulus of total amplitude of all the Feynman diagrams for given subprocess.

•
$$d\Phi_n = \frac{d^3 p_1'}{(2\pi)^3 2E_1'} \frac{d^3 p_2'}{(2\pi)^3 2E_1'} \cdots \frac{d^3 p_1'}{(2\pi)^3 2E_1'} (2\pi)^4 \delta(p_1 + p_2 - p_1' - p_2' - \cdots - p_n')$$

- Perturbative calculation are generally very complex as they may involve 100's of diagrams even at leading order (LO).
- So, we mostly use automatic application tools like MadGraph.

Procedure of Calculation:

Step 1: We use FeynArt to generate Feynman diagrams and corresponding amplitudes.

Step 2: These amplitudes are used in FeynCalc to apply project method.

Step 3: The results generated from the FeycCalc are used in VEGAS to complete phase space integeration including nuclear PDF's.

Step 4: The results of cross sections and distributions of pp collision are counter checked with HELAC-Onia.