

GW sourced by decay of massive particle from PBH evaporation

Based on arXiv: 2403.15269 Collaboration with Ki-Young Choi (SKKU) & Satyabrata Mahapatra (SKKU)

30TH VIETNAM SCHOOL OF PHYSICS:

PARTICLES AND DARK MATTER

Erdenebulgan (Bulga) Lkhagvadorj

2024.07.24

Motivation

Study for direct graviton emission :

Motivation

Compensate suppression :

 $\sqrt{T^{\mu\nu}}$ should be very large (considering inflation model) [N. Bernal et al, 2301.11345; 2311.12694]

✓ Sub-Planckian mass scale particle bremsstrahlung without suppression

How to produce such a massive particle?

Presence of PBH

➢PBH could have produced in the early Universe due the collapse of large density perturbations during the radiation dominated era at the end of inflation. [Carr, et al. 2002.12778]

PBH evaporation

The energy spectrum of emitted particles with energy by a Schwarzschild BH:

$$
\frac{d^2u_i(E,t)}{dEdt} = \frac{g_i}{2\pi^2}\frac{\sigma_{s_i}(M_{\rm BH},\mu_i,E_i)}{e^{E_i/T_{\rm BH}} - (-1)^{2s_i}}E_i^3 \qquad \text{where} \qquad \sigma_{s_i} = \left(\frac{27}{64\pi}\frac{M_{\rm BH}^2}{M_p^4}\right)\psi_{s_i}(E)
$$

The rate of PBH mass loss :

[HAWKING1974, HAWKING1975]

$$
\frac{dM_{\rm BH}}{dt} = -\sum_{i} \int_{0}^{\infty} \frac{d^{2}u_{i}(E, t)}{dE dt} dE = -\varepsilon (M_{\rm BH}) \frac{M_{p}^{4}}{M_{\rm BH}^{2}}
$$
\n[Check et al, Phys. Rev. D 105, 015022
\n*Proporation function depending on the grey-body factor*
\nIn **Geometric-optic limit** $\psi_{s_{i}}(E) = 1$:
\n
$$
M_{\rm BH}(t) = M_{\rm in} \left(1 - \frac{t - t_{i}}{\tau}\right)^{1/3}
$$
\n**PBH lifetime:** $\tau \simeq 2.66 \times 10^{-28} \text{ s} \left(\frac{100}{g_{*}(T_{\rm BH})}\right) \left(\frac{M_{\rm in}}{1 \text{ g}}\right)^{3}$ \n[$T_{\rm ev}|_{\rm MD} \simeq 3.55 \times 10^{10} \text{ GeV} \left(\frac{1 \text{ g}}{M_{\rm in}}\right)^{3/2}$]\n

GW production from direct PBH evaporation

The rate of graviton emission for a collective population of evaporating PBHs :

$$
\frac{d\rho_{\rm GW}}{dt dE} \simeq n_{\rm BH}(t) \frac{d^2 u_{\rm GW}}{dt dE} \quad \text{where} \quad n_{\rm BH}(t) = n_{\rm BH,i} \left(\frac{a_i}{a}\right)^3
$$

❖ Comoving PBH number density remain conserved

Redshifting at the time of the complete evaporation of PBH :

$$
\rho_{\rm GW} = \rho_{\rm GW,ev} \left(\frac{a_{\rm ev}}{a}\right)^4, \quad \omega = \omega_{\rm ev} \left(\frac{a_{\rm ev}}{a}\right)
$$

$$
\frac{d\rho_{\rm GW,ev}}{d\ln\omega_{\rm ev}} = \frac{27}{64\pi^3} \frac{M_{\rm in}^2}{M_p^4} n_{\rm BH}(t_i) \omega_{\rm ev}^4 \int_{t_i}^{t_{\rm ev}=t_i+\tau} dt \left(1 - \frac{t - t_i}{\tau}\right)^{2/3} \frac{(a_i/a)^3}{e^{\omega_{\rm ev} a_{\rm ev}/aT_{\rm BH}} - 1}
$$

$$
I(\omega_{\rm ev})
$$

GW production from direct PBH evaporation

The final relic abundance for GW at present:

$$
h^{2}\Omega_{\rm GW} = \frac{1}{\rho_{\rm cr,0}h^{-2}} \frac{d\rho_{\rm GW,0}}{d\ln\omega_{0}} \quad \text{where} \quad \frac{d\rho_{\rm GW,0}}{d\ln\omega_{0}} = \frac{d\rho_{\rm GW,ev}}{d\ln\omega_{\rm ev}} \left(\frac{a_{\rm ev}}{a_{0}}\right)^{4}
$$

$$
\frac{a_{\rm ev}}{a_{0}} \simeq \frac{T_{0}}{T_{\rm ev}} \left(\frac{g_{*,s}(T_{0})}{g_{*,s}(T_{\rm ev})}\right)^{1/3} \simeq 2.3 \times 10^{-24} \left(\frac{M_{\rm in}}{1 \text{ g}}\right)^{3/2}
$$

$$
\frac{d\rho_{\rm GW,0}}{d\ln\omega_{0}} \simeq 6.2 \times 10^{-77} \text{ GeV} \left(\frac{M_{p}}{M_{\rm in}}\right)^{1/2} \omega_{0}^{4} I(\omega_{0})
$$

$$
I(\omega_{0}) = A^{-3} \int_{t_{i}}^{t_{\rm ev}} dt \left(1 - \frac{t - t_{i}}{\tau}\right)^{2/3} \frac{t^{-2}}{\exp\left[\frac{\omega_{0}M_{\rm in}}{AM_{p}^{2}} t^{-2/3} \left(1 - \frac{t - t_{i}}{\tau}\right)^{1/3}\right] - 1}
$$
where $A = a_{\rm ev}/a_{0} \left(1/\tau\right)^{2/3}$

GW production from direct PBH evaporation

GW spectrum from direct evaporation of PBH

$$
f_{\rm peak} \simeq 1.6 \times 10^{13} \text{ Hz} \left(\frac{M_{\rm in}}{1 \text{ g}}\right)^{1/2}.
$$

❖ As the PBH mass increases, the peak frequency of the GW spectrum increases, consequently shifting the spectrum towards higher frequencies.

Massive scalar particle production

$$
m_{\rm particle} \lesssim T_{\rm BH} = \frac{M_p^2}{M_{\rm BH}} \simeq 10^{13}~{\rm GeV}\left(\frac{1~{\rm g}}{\rm M_{\rm BH}}\right) \hspace{0.5cm} \Longleftrightarrow \hspace{0.5cm} \text{Sub-Planckian mass scale ?}
$$

 \checkmark Produced from PBH evaporation at the late stage ($t_1 < \tau$) of its lifetime as a consequence of the increase of Hawking temperature

$$
t_1 = \tau \left[1 - \left(\frac{M_p^2}{M_{\rm in} m_\chi} \right)^3 \right]
$$
 when $\boxed{T_{\rm BH} = m_\chi}$ or $M_{\rm BH}(t_1) = M_p^2/m_\chi$

✓ To obtain large number density of the massive scalar particle we assume that the scalar **χ** can be long lived enough to decay after PBH evaporation

$$
\tau_{\chi} \simeq 7 \times 10^{-26} \text{ s} \left(\frac{10^{-7}}{y_f}\right)^2 \left(\frac{10^{-2} M_p}{m_{\chi}}\right) > \tau_{\text{BH}} \simeq 2.66 \times 10^{-28} \text{ s} \left(\frac{100}{g_*(T_{\text{BH}})}\right) \left(\frac{M_{\text{in}}}{1 \text{ g}}\right)^3
$$

Massive scalar particle production

Energy density evolution

11

GW production from massive scalar particle

Boltzmann equation for the evolution of the energy density of gravitons produced in the bremsstrahlung of the scalar χ :

$$
\frac{d}{da}\left(a^4\frac{d\rho_{\rm GW}}{d\ln E_{\rm GW}}\right) = \frac{n_\chi(a_{\rm ev})a_{\rm ev}^3}{H}\frac{d\Gamma_{\chi\to\rm GW}}{dE_{\rm GW}}
$$
\nThe differential decay rate
\nof scalar particle
\n[S. Kanemura, et al. 2310.12023]

The generation of GW can occur from a_{ev} to a_{γ} . \sim Ω

$$
\frac{d\rho_{\rm GW}(a_\chi)}{d\ln E_{\rm GW}} \simeq 2.3 \times 10^{58} \frac{y_f^2 m_\chi M_p^9}{M_{\rm in}^7} E_{\rm GW} F(E_{\rm GW}/m_\chi) \frac{a_{\rm ev}^3}{a_0^2 a_\chi} \left[1 - \left(\frac{a_{\rm ev}}{a_\chi}\right)^3\right]
$$

The relic abundance of gravitational wave at the present :

$$
h^{2}\Omega_{\rm GW} = \frac{1}{\rho_{\rm cr,0}h^{-2}}\frac{d\rho_{\rm GW}(a_{\chi})}{d\ln E_{\rm GW}}\left(\frac{a_{\chi}}{a_{0}}\right)^{4} \text{ where } E_{\rm GW} = 2\pi f(a_{0}/a_{\chi}) \implies \frac{a_{\chi}}{a_{0}} \simeq \frac{T_{0}}{T_{\chi}}\left(\frac{g_{*,s}(T_{0})}{g_{*,s}(T_{\chi})}\right)^{1/3}
$$

RD: H = 1/2 τ_{χ} \iff $T_{\chi} \simeq \frac{3y_{f}}{4\pi}\left(\frac{M_{p}m_{\chi}}{g_{*}(T_{\chi})^{1/2}}\right)^{1/2}$

 \blacksquare

 Ω

GW production from massive scalar particle

Gravitational wave spectrums for graviton bremsstrahlung from decay of massive scalar

GW contribution to dark radiation

$$
\rho_{\rm rad} = \rho_\gamma \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \left(N_{\rm eff}^{\rm SM} + \overline{\Delta N_{\rm eff}} \right) \right]; \quad \text{ since } \rho_{\rm GW} \propto a^{-4}
$$

Gravitational Wave contribution to ΔN_{eff} :

$$
\Delta N_{\text{eff}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\text{GW}}}{\rho_{\gamma}} = \int df \ f^{-1} \Omega_{\text{GW}}(f) = \frac{120}{7\pi^2} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\text{cr},0}}{T_0^4} \Omega_{\text{GW}}^{\text{max}}
$$

 $h^2\Omega_{\rm GW}^{\rm max} \lesssim 5.6269\times 10^{-6}\Delta N_{\rm eff}$

Indirect probe of GW spectrum:

Planck: $\Delta N_{\text{eff}} < 0.30$ [1807.06209] [1610.02743] CMB-S4: $\Delta N_{\text{eff}} \lesssim 0.06$ [1110.3193] EUCLID: $\Delta N_{\text{eff}} \lesssim 0.013$ CMB-CVL: $\Delta N_{\text{eff}} \lesssim 3.1 \times 10^{-6}$ [1903.11843] Fisher matrix analysis of cosmic variance limited (CVL) CMB polarization measurement

Gravitational wave characteristic strain with both contributions

$$
h_c = f^{-1} \sqrt{\frac{3H_0^2}{4\pi^2} \Omega_{\rm GW}} \simeq 8.93 \times 10^{-19} \sqrt{\Omega_{\rm GW} h^2} \left(\frac{\rm Hz}{f}\right)
$$

$$
M_{\text{in}} = 1 \text{ g}, m_{\chi} = 10^{-2} M_{p}
$$
\n
$$
10^{-19}
$$
\n
$$
10^{-22}
$$
\n
$$
10^{-23}
$$
\n
$$
10^{-39}
$$
\n
$$
10^{-44}
$$
\n
$$
10^{-44}
$$
\n
$$
10^{-49}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-42}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-42}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-42}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-42}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-42}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-40}
$$
\n
$$
10^{-41}
$$
\n
$$
10^{-40}
$$
\n<math display="block</math>

Conclusion

- ❖We have explored the production of stochastic gravitational waves not only through the direct evaporation of PBHs but also via the bremsstrahlung process during the decay of a massive scalar particle **χ**.
- ❖Both contributions give two distinct spectral signatures which are possible to detect by future resonant cavity detectors.
- ❖In our model, a novel source of GW production in bremsstrahlung process can especially account for the high-frequency GW scenarios, but it remains below the sensitivity of the present detectors.
- ❖Moreover, GWs generating from the decay of massive scalar particles, characterized by sub-Planckian mass scales and small Yukawa coupling, could significantly contribute to dark radiation. These contributions are expected to fall within the detection thresholds of CMB-CVL.

C**ả**m ơn!