Gravitational waves from domain wall collapses and dark matter in the SM with a complex scalar

Hieu The Pham ¹ Eibun Senaha ²

¹Department of Theoretical Physics, University of Science, Vietnam National University, Ho Chi Minh City, Vietna

²Subatomic Physics Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam

July 24, 2024

VSOP-30

Phys.Rev.D 109,095048

	C×SM	GW from DW	Dark Matter in CxSM		References
000	00	0000		00000	00000000
Outline					

1 Introduction

2 Complex scalar extension the Standard Model (CxSM)

3 Gravitational wave (GW) from DW collapse

Oark Matter in CxSM

5 Numerical results

Introduction	C×SM	GW from DW	Dark Matter in CxSM		References
000					
Motivation					

- "SM very successful but still problematic"
- Spotaneous Symmetry Breaking (SSB) can lead to some topological defect: **Domain wall** (DW), monopole, cosmic string,... They give some cosmologycal effects.
- Experimental data from the detector: NanoGrav, IPTA,... (GW), LZ,... (DM)

Introduction	C×SM	GW from DW	Dark Matter in CxSM		References
000					
Concept of the DW					

Consider a scalar field in ϕ^4 theory, with ϕ is a real field:

$$V(\phi)=-rac{1}{2}\mu^2\phi^2+rac{\lambda}{4!}\phi^4.$$

We have the EOM on the z direction:

$$\frac{\partial^2 \phi}{\partial z^2} = \frac{\partial V}{\partial \phi}.$$

Figure 1: Potential for SSB

The potential is divided into two domains, vacuum expectation value (VEV) v and -v. The transition from domain has VEV -v to v, the boundary conditions:

$$\lim_{z \to \infty} \phi(z) = v, \tag{3}$$

$$\lim_{z \to -\infty} \phi(z) = -v.$$
(4)

Introduction	C×SM	GW from DW	Dark Matter in CxSM		References
000					
Concept of the DW					

The wall tension is:

$$\sigma_{\rm DW} = \int_{-\infty}^{\infty} dz \mathcal{E} = \int_{-\infty}^{\infty} dz \left(\frac{1}{2} \left(\frac{\partial \phi}{\partial z} \right)^2 + V(\phi) \right).$$
(5)

Figure 3: Energy density

In the energy spectrum Fig.(3), the energy is concentrated at the origin \rightarrow the DW must be unstable.

	C×SM	GW from DW	Dark Matter in CxSM		References
	0				
Model					

The Model:

$$V(\Phi, \mathbb{S}) = \mu^{2} |\Phi|^{2} + \frac{\lambda}{4} |\Phi|^{4} + \frac{\delta_{2}}{2} |\Phi|^{2} |\mathbb{S}|^{2} + \frac{b_{2}}{2} |\mathbb{S}|^{2} + \frac{d_{2}}{4} |\mathbb{S}|^{4} + \left(a_{1}\mathbb{S} + \frac{b_{1}}{4}\mathbb{S}^{2} + \text{h.c.}\right).$$
(6)

Our model potential with Φ is SM doublet Higgs and ${\mathbb S}$ is complex scalar:

$$\Phi = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(\nu + h + iG^0) \end{pmatrix}, \quad \mathbb{S} = \frac{1}{\sqrt{2}}(\nu_S + S + i\chi), \tag{7}$$

- The first line is U(1) symmetry.
- b_1 breaking the U(1)
- a_1 term is added to break the Z_2 symmetry in the S direction. This term be considered later in collapsion of the DW.
- a_1, b_1 are the real paprameters.

	C×SM	GW from DW	Dark Matter in CxSM		References
	00				
Model					

Minimization condition:

$$\left\langle \frac{\partial V}{\partial h} \right\rangle = \mu^2 v \frac{\lambda}{4} v^3 + \frac{\delta_2}{4} v v_5^2 = 0, \quad \left\langle \frac{\partial V}{\partial S} \right\rangle = \frac{\delta_2}{4} v^2 v_5 + \frac{b_2}{2} v_5 + \frac{d_2}{4} v_5^3 + \sqrt{2} a_1 + \frac{b_1}{2} v_5 = 0.$$
(8)

The mass matrix:

$$M^{2} = \begin{pmatrix} \frac{\lambda}{2}v^{2} & \frac{\delta_{2}}{2}vv_{5} & 0\\ \frac{\delta_{2}}{2}vv_{5} & \frac{d_{2}}{2}v_{5}^{2} - \sqrt{2}\frac{a_{1}}{v_{5}} & 0\\ 0 & 0 & -b_{1} - \sqrt{2}\frac{a_{1}}{v_{5}} \end{pmatrix}.$$
 (9)

CP-odd scalar mass:

$$m_{\chi}^2 = -b_1 - \sqrt{2} \frac{a_1}{v_S},\tag{10}$$

Diagonalize the mass matrix

$$O^{T}M^{2}O = \operatorname{diag}(m_{h_{1}}^{2}, m_{h_{2}}^{2}), \quad O = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}.$$
(11)

Theoretical constraints: Perturbative unitarity, Global minimum, Stability of the tree-level potential.

	C×SM	GW from DW	Dark Matter in CxSM		References
		0000			
DW in CxSM					

The classical field:

$$\langle H(z) \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \phi(z) \end{pmatrix}, \quad \langle S(z) \rangle = \frac{\phi_{S}(z)}{\sqrt{2}}.$$
 (12)

EOMs:

$$\frac{\partial^2 \phi}{\partial z^2} = \frac{\partial V}{\partial \phi}, \quad \frac{\partial^2 \phi_S}{\partial z^2} = \frac{\partial V}{\partial \phi_S}, \tag{13}$$

with the boundary condition:

$$\lim_{z \to \pm \infty} \phi(z) = v, \quad \lim_{z \to \pm \infty} \phi_S(z) = \pm v_S, \tag{14}$$

and the tension:

$$\sigma_{DW} = \int dz \left[\sigma_{DW}^{\rm kin} + \sigma_{DW}^{\rm pot} \right].$$
(15)

In the $|\alpha|\ll 1$ limit, DW reduced to that in the ϕ^4 :

$$\phi_{S}(z) = v_{S} \tanh\left(\sqrt{\frac{d_{2}}{8}}v_{S}z\right), \qquad (16)$$

and the tension can approx as:

$$\sigma_{\rm DW} \approx \frac{d_2}{8} v_5^3 \int d\xi \left[\tanh^2 \left(\sqrt{\frac{d_2}{8}} v_5 z \right) - 1 \right] = \frac{2}{3} \sqrt{\frac{d_2}{8}} v_5^3 \approx \frac{2}{3} m_{h_2} v_5^2.$$
(17)

Figure 4: The DW profiles of $\phi(z)$ (left) and $\phi_S(z)$ (right), respectivley. We take $m_{h_2} = 4.0$ TeV, $m_{\chi} = 2.0$ TeV, $v_S = 100$ TeV, and $\alpha = 0.10^{\circ}$ (= 1.7×10^{-3} radians). This parameter set gives $\sigma_{\text{DW}} = 2.7 \times 10^{13}$ [GeV³].

	C×SM	GW from DW	Dark Matter in CxSM		References
		0000			
DW to GW					

The DW collapse when the bias enough large:

$$\Delta V = C_{\rm ann} \frac{A\sigma_{\rm DW}}{t_{\rm ann}}.$$
 (18)

Consider the bias term a_1 breaking the \mathcal{Z}_2 . We have the degeneracy of the two vacua:

$$\Delta V \equiv |V(v, v_S) - V(v, v_S)| = 2\sqrt{2}|a_1|v_S.$$
(19)

The bound for the DW annihilation:

• Big Bang nucleosynthesis (BBN) $t_{\sf ann} <$ 0.01s, constrain to the $|a_1|$

$$|a_1| > 2.3 \times 10^{-15} \text{ GeV}^3 \left(\frac{m_{h_2}}{10^3 \text{ GeV}}\right) \left(\frac{v_S}{10^5 \text{ GeV}}\right) C_{\text{ann}} \mathcal{A} \hat{\sigma}_{\text{DW}}.$$
(20)

• The DWs should not dominate the universe:

$$a_{1}| > 8.0 \times 10^{-18} \text{ GeV}^{3} \left(\frac{m_{h_{2}}}{10^{3} \text{ GeV}}\right)^{2} \left(\frac{v_{S}}{10^{5} \text{ GeV}}\right)^{3} C_{\text{ann}} \mathcal{A}^{2} \hat{\sigma}_{\text{DW}}^{2}.$$
(21)

with

$$\hat{\sigma}_{\rm DW} \equiv \frac{\sigma}{m_{h_2} v_{\rm S}^2}.$$
(22)

 $C_{ann} = 2, A = 0.8$ given by Chen, Li, and Wu, "The gravitational waves from the collapsing domain walls in the complex singlet model"

	C×SM	GW from DW	Dark Matter in CxSM		References
		0000			
DW to GW					

The peak frequency given by¹:

$$f_{\text{peak}} = 1.1 \times 10^{-9} \text{ Hz} \left(\frac{g_*(T_{\text{ann}})}{10}\right)^{1/2} \left(\frac{g_{*s}(T_{\text{ann}})}{10}\right)^{-1/3} \left(\frac{T_{\text{ann}}}{10^{-2} \text{ GeV}}\right), \quad (23)$$

$$\Omega_{\rm GW} h^2(f_{\rm peak}) = 7.2 \times 10^{-10} \ \tilde{\epsilon}_{\rm GW} \mathcal{A}^2 \left(\frac{g_{*s}(T_{\rm ann})}{10}\right)^{-4/3} \left(\frac{T_{\rm ann}}{10^{-2} \ {\rm GeV}}\right)^{-4} \\ \times \left(\frac{m_{h_2}}{10^3 \ {\rm GeV}}\right)^2 \left(\frac{v_S}{10^5 \ {\rm GeV}}\right)^4 \hat{\sigma}_{\rm DW}^2, \tag{24}$$

where $\tilde{\epsilon}_{GW}=0.7\pm0.4.$ And from the simulation^2:

$$\Omega_{\rm GW} h^2 (f < f_{\rm peak}) = \Omega_{\rm GW} h^2 (f_{\rm peak}) \left(f / f_{\rm peak} \right)^3, \tag{25}$$

$$\Omega_{\rm GW} h^2(f > f_{\rm peak}) = \Omega_{\rm GW} h^2(f_{\rm peak}) \left(f_{\rm peak}/f \right). \tag{26}$$

The signal-to-noise ratio $\text{SNR} = \sqrt{t_{\text{dur}} \int_{f_{\text{min}}}^{f_{\text{max}}} df \left(\frac{\Omega_{\text{GW}} h^2}{\Omega_{\text{exp}} h^2}\right)^2}$, with t_{dur} denotes the duration of the mission. The nano-Hz scale future experiment SKA plan with $t_{\text{dur}} = 20$, we assuming SNR = 20.

¹Saikawa, "A Review of Gravitational Waves from Cosmic Domain Walls".

²Hiramatsu, Kawasaki, and Saikawa, "On the estimation of gravitational wave spectrum from cosmic domain walls".

Figure 5: The DM annihilation processes, where f denote the SM fermions, while V represent W^{\pm} and Z.

The Spin-independent (SI) cross section³:

$$\sigma_{\rm SI}^{N} = \frac{1}{8\pi v^2} \frac{m_N^4}{(m_\chi + m_N)^2} \frac{s_{2\alpha}^2 (m_{h_1}^2 - m_{h_2}^2)^2 a_1^2}{m_{h_1}^4 m_{h_2}^4 v_5^4} \left| \sum_{q=u,d,s} f_{\tau_q} + \frac{2}{9} f_{\tau_G} \right|^2.$$
(27)

In our study, we use micrOMEGAs⁴ to calculate $\Omega_{\chi}h^2$ and σ_{SI}^p .

⁴BARDUCCI2018327.

2

³Chiang, Ramsey-Musolf, and Senaha, "Standard Model with a Complex Scalar Singlet: Cosmological Implications and Theoretical Considerations".

Figure 6: Contours of the DM relic abundance with $m_{\chi}=2.0$ TeV, 5.0 TeV, and 15 TeV, respectively. In each panel, the three lines denote $\Omega_{\chi}/\Omega_{\rm DM}$ =0.1 (black, dotted line), 1.0 (red, solid line), and 10 (blue, dashed line), with $\Omega_{\rm DM}$ representing the observed value of the DM relic abundance.

Figure 7: Constraints on the biased term $|a_1|$ with $m_{h_2} = 4.0$ TeV in the left panel and $v_S = 100$ TeV in the right panel, repspectively, and $m_{h_1} = 125$ GeV, $m_{\chi} = 2.0$ TeV, and $\alpha = 0.10^{\circ}$.

The solid line in red represents the BBN bound which yields the lower bound on $|a_1|$. On the other hand, the dashed line in blue (SKA20) denotes the discovery potential case with SNR = 20 which sets the upper bound on $|a_1|$.

	CxSM	GW from DW	Dark Matter in CxSM	Numerical results	References
				00000	
DM constraint					

Figure 8: Discovery potential at SKA as a function of m_{h_2} and v_5 . The lower region of the solid line is excluded by the BBN bound. The solid curve in blue shows the observed DM relic density $\Omega_{\chi}h^2 = 0.12$, and the narrower region rounded by the curve, $\Omega_{\chi}h^2 < 0.12$. $\alpha = 0.10^\circ$, and 10° , the DM mass is fixed to $m_{\chi} = 2.0$ TeV.

DW interpretation is not favored since the best-fit low-frequency slope of GWspectrum reported by the NG15 data is $\Omega_{\rm GW} \propto f^{1.2-2.4}$ **PhysRevD.108.123529**, while $\Omega_{\rm GW} \propto f^3$ in our case.

Figure 9: $\Omega_{\rm GW}h^2$ as a function of frequency f with $v_5 = 100$ TeV and $\alpha = 0.10^\circ$, DM mass is fixed to $m_{\chi} = m_{h_2}/2$ in order to satisfy $\Omega_{\chi}h^2 \leq \Omega_{\rm DM}h^2 = 0.12$. The grey-shaded region represents the SKA sensitivity, while the light-blue region is indicated by the NANOGrav 15-year data.

	C×SM	GW from DW	Dark Matter in CxSM	Numerical results	References
				00000	
Some assumption					

We check some mark point in out alowed region ($m_{h_2} = 4.0, 10, 30$ TeV), that's all those cases lie outside the 95% CL NG15-favored region, they are not ruled out.

Considering DW annihilation can alteration the DM relic density:

- The collapse of DW can generate the entropy given by **physletb.2005.05.022**. But, in our parameters space, the energy density of DW is subdominant.
- DM could be nonthermally produced after collapse of DW (JCAP01(2013)001). If DW, annihilate to h_2 , with our allow region $m_{\chi} \cong m_{h_2}/2$, the $h_2 \to \chi \chi$ produce is suppressed.

	C×SM	GW from DW	Dark Matter in CxSM	Summary	References
				•	
Sumary					

- The bias term $|a_1|$ must be greater than $\mathcal{O}(10^{-15})$ GeV³ (BBN bound). Such a small value of a1 results in $\sigma_{SI}^N \propto a_1^2$ being far below thelatest LZ bound.
- With future SKA experiment, we should take 10 TeV $\leq v_S \leq$ 200 TeV and 1 TeV $\leq m_{h_2} \leq$ 100 TeV for a relatively small mixing angle α , such as $\alpha = 0.1^{\circ}$.
- Allowed region can be marginally found if $m_{\chi} \simeq m_{h_2}/2$. If we take α to be larger, the region where $\Omega_{\chi}h^2 < 0.12$ gets broadened to some extent. However, the upper limit of m_{h_2} becomes smaller owing to the perturbative unitarity constraint, diminishing the parameter space that gives detectable GW signatures.

Introduction	C×SM	GW from DW	Dark Matter in CxSM	Numerical results	Summary	References
						00000000
Sumary						
Reference	es l					

- Bélanger, G. et al. "Dark matter direct detection rate in a generic model with micrOMEGAs₂.2". In: Computer Physics Communications 180.5 (May 2009), 747–767. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2008.11.019. URL: http://dx.doi.org/10.1016/j.cpc.2008.11.019.
- Chen, Ning, Tong Li, and Yongcheng Wu. "The gravitational waves from the collapsing domain walls in the complex singlet model". In: *Journal of High Energy Physics* 2020 (Aug. 2020). DOI: 10.1007/JHEP08(2020)117.
 - Chiang, Cheng-Wei, Michael Ramsey-Musolf, and Eibun Senaha. "Standard Model with a Complex Scalar Singlet: Cosmological Implications and Theoretical Considerations". In: *Physical Review D* 97 (July 2017). DOI: 10.1103/PhysRevD.97.015005.

Hiramatsu, Takashi, Masahiro Kawasaki, and Ken'ichi Saikawa. "On the estimation of gravitational wave spectrum from cosmic domain walls". In: *Journal of Cosmology and Astroparticle Physics* 2014.02 (2014), p. 031. DOI: 10.1088/1475-7516/2014/02/031. URL: https://dx.doi.org/10.1088/1475-7516/2014/02/031.

Introduction 000	CxSM OO	GW from DW 0000	Dark Matter in CxSM O	Numerical results 00000	References 00000000
Sumary					
Reference	s II				

Saikawa, Kenichi. "A Review of Gravitational Waves from Cosmic Domain Walls". In: Universe 3.2 (2017). ISSN: 2218-1997. DOI: 10.3390/universe3020040. URL: https://www.mdpi.com/2218-1997/3/2/40.

	C×SM	GW from DW	Dark Matter in CxSM	Numerical results	References
					0000000
Sumary					

Thank you for your attention!

	C×SM	GW from DW	Dark Matter in CxSM		References
					00000000
Sumary					

Backup slides

	CxSM	GW from DW	Dark Matter in CxSM			References		
000	00	0000		00000		00000000		
Sumary								
The perturbative unitarity								

Quadratic term:

$$V(\Phi,\mathbb{S}) \propto rac{\lambda}{4} |\Phi|^4 + rac{\delta_2}{2} |\Phi|^2 |\mathbb{S}|^2 + rac{d_2}{4} |\mathbb{S}|^4$$

with

$$\phi = rac{1}{\sqrt{2}} egin{pmatrix} G^+ \ h + i G^0 \end{pmatrix}, \quad \mathbb{S} = rac{1}{\sqrt{2}} (s + i \chi),$$

so we have:

$$V(G^{\pm}, G^{0}, h, S, \chi) \propto \frac{\lambda}{4} \left(\frac{1}{2}h^{2} + \frac{1}{2}(G^{0})^{2} + G^{+}G^{-}\right)^{2} \\ + \frac{\delta_{2}}{4} \left(S^{2} + \chi^{2}\right) \left(\frac{1}{2}h^{2} + \frac{1}{2}(G^{0})^{2} + G^{+}G^{-}\right) + \frac{d_{2}}{16} \left(S^{2} + \chi^{2}\right)^{2}$$

	CxSM	GW from DW	Dark Matter in CxSM			References		
						00000000		
Sumary								
The porturbative unitarity								

The perturbative unitarity

Taking the neutral states of $|G^+G^-\rangle$, $\frac{1}{\sqrt{2}}|G^0G^0\rangle$, $\frac{1}{\sqrt{2}}|hh\rangle$, $\frac{1}{\sqrt{2}}|SS\rangle$, $\frac{1}{\sqrt{2}}|\chi\chi\rangle$, we have the s-wave matrix:

$$a_0^+ = rac{1}{16\pi} egin{pmatrix} \lambda & rac{\lambda}{2\sqrt{2}} & rac{\lambda}{2\sqrt{2}} & rac{\delta_2}{2\sqrt{2}} & rac{\delta_2}{2\sqrt{2}} \ rac{\lambda}{2\sqrt{2}} & rac{3\lambda}{4} & rac{\lambda}{4} & rac{\delta_2}{4} & rac{\delta_2}{4} \ rac{\lambda}{2\sqrt{2}} & rac{\lambda}{4} & rac{\lambda}{4} & rac{\lambda}{4} & rac{\lambda}{4} \ rac{\delta_2}{2\sqrt{2}} & rac{\delta_2}{4} & rac{\delta_2}{4} & rac{\delta_2}{4} \ rac{\delta_2}{2\sqrt{2}} & rac{\delta_2}{4} & rac{\delta_2}{4} & rac{\delta_2}{4} \ rac{\delta_2}{2\sqrt{2}} & rac{\delta_2}{4} & rac{\delta_2}{4} & rac{\delta_2}{4} & rac{\delta_2}{4} \ rac{\delta_2}{2\sqrt{2}} & rac{\delta_2}{4} & rac{\delta_2}{4} & rac{\delta_2}{4} \ rac{\delta_2}{2\sqrt{2}} & rac{\delta_2}{4} & rac{\delta_2}{4} & rac{\delta_2}{4} \ \end{array}
ight),$$

and for and $\left|hG^{0}\right\rangle,\left|SG^{0}\right\rangle,\left|\chi G^{0}\right\rangle,\left|\chi S\right\rangle$:

$$\mathsf{a}_0^- = rac{1}{16\pi} \mathsf{diag}\left(rac{\lambda}{2},rac{\delta_2}{2},rac{\delta_2}{2},rac{d_2}{2}
ight).$$

the s-wave matrix for the charged states $|h\pi^{\pm}\rangle$, $|\pi^{0}\pi^{\pm}\rangle$, $|S\pi^{\pm}\rangle$, $|\chi\pi^{\pm}\rangle$:

$$\mathsf{a}_{\pm} = \frac{1}{16\pi} \mathsf{diag}\left(\frac{\lambda}{2}, \frac{\lambda}{2}, \frac{\delta_2}{2}, \frac{\delta_2}{2}\right)$$

	CxSM	GW from DW	Dark Matter in CxSM		References
					00000000
Sumary					
Dynamic	s of the	DW			

The tension force, defined by the tension in a unit area $p_T \sim \sigma/R_{wall}$; The friction force, which appears when the particles interact with the DW. With a DW moving with the velocity v, the momentum transfer per collision is $\Delta p \sim Tv$; we can estimate the friction force as:

$$p_F \sim \Delta pn \sim vT^4,$$

When these two forces are balanced, we can obtain the following:

$$v\sim rac{\sigma}{T^4R_{
m wall}}\sim rac{\sigma t^2}{m_{
m pl}^2R_{
m wall}},$$

we also have $R_{\rm wall} \sim vt$, so:

$$egin{aligned} & v \sim rac{\sigma^{1/2}t^{1/2}}{m_{
m pl}}, \ & R_{
m wall} \sim rac{\sigma^{1/2}t^{3/2}}{m_{
m pl}}. \end{aligned}$$

DW reaches relativity speed as $t \sim m_{
m pl}^2 \sigma^{-1}$, recently, $R_{
m wall} \sim t$.

$$ho_{
m wall} \sim rac{\sigma}{t}$$
 .

	CxSM	GW from DW	Dark Matter in CxSM		References
					00000000
Sumary					

Figure 10: The density spectrum of the GWs $\Omega_{\rm gw,peak} h^2$

	C×SM	GW from DW	Dark Matter in CxSM		References
					000000000
Sumary					

$$\begin{split} (\sigma \mathbf{v})_{\chi\chi \to h_{i,j} \to h_{i}h_{j}} &= \mathcal{S} \frac{\beta_{h_{ij}}}{8\pi s} \left| \frac{\lambda_{\chi\chi h_{1}}\lambda_{h_{1}h_{i}h_{j}}}{s - m_{h_{1}}^{2} + im_{h_{1}}\Gamma_{h_{1}}} + \frac{\lambda_{\chi\chi h_{2}}\lambda_{h_{2}h_{i}h_{j}}}{s - m_{h_{2}}^{2} + im_{h_{2}}\Gamma_{h_{2}}} \right|^{2}, \\ (\sigma \mathbf{v})_{\chi\chi \to \chi \to h_{i}h_{j}} &= \mathcal{S} \frac{\beta_{h_{ij}}}{\pi s} \frac{\lambda_{\chi\chi h_{1}}^{2}\lambda_{\chi\chi h_{j}}^{2}}{\left(s - m_{h_{i}}^{2} - m_{h_{j}}^{2}\right)^{2}}, \end{split}$$

Figure 11: Cross section of the DM annihilation in some domination processes

0 $\log_{10} T_*/{\rm GeV}$ -1.5 -1.0 -0.5

 $\log_{10}\alpha_*$

-1.5

-1