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Introduction
o
Motivation

@ "SM very successful but still problematic"

@ Spotaneous Symmetry Breaking (SSB) can lead to some topological
defect: Domain wall (DW), monopole, cosmic string,... They give some
cosmologycal effects.

o Experimental data from the detector: NanoGrav, IPTA,... (GW), LZ,...
(DM)
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Introduction
(1]
Concept of the DW

Consider a scalar field in ¢* theory, with ¢ is a 4
real field:

_ Lon A

V@)= 2+ 2ot (1)
We have the EOM on the z direction: X
2
oo _ov. o
0z2 o)

Figure 1: Potential for SSB

The potential is divided into two domains,vacuum expectation value (VEV)
v and —v. The transition from domain has VEV —v to v, the boundary

conditions:
lim ¢(z) =v, (3)
lm, 9() = —v. “
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Introduction

oce

Concept of the DW

The wall tension is:

oow = /_0o dz€ = /_OC dz (; (%)2 + V(qb)) . (5)

o0 (oo}

Figure 2: Domain wall solution Figure 3: Energy density

In the energy spectrum Fig.(3), the energy is concentrated at the origin—
the DW must be unstable.
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Model

The Model:

A o b d
V(®,5) =16 + Z10[* + ZIOS[ + 2 + LIS

+ (alS + %82 + h.c.) : (6)
Our model potential with ® is SM doublet Higgs and S is complex scalar:
G* 1
] ﬁ(v—l—h—kiGo) , S ﬁ(vs—l-s—l-lx), @)

@ The first line is U(1) symmetry.
by breaking the U(1)

@ a; term is added to break the Z; symmetry in the S direction. This term
be considered later in collapsion of the DW.

@ aj, by are the real paprameters.
b
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Model

Minimization condition:

VN _ 2 X5 B2 o OVN 6 » b db s b
<8h>* vz V=0, <as>’4VV5+2V5+4V5+\631+2V5*0'
(8)
The mass matrix:
6;\ 2 %vvs 0
M = | Zyvs ﬁvé — \/5i 0 - (9)
2 2 Vs 2
0 0 —b —22
Vs
CP-odd scalar mass: R
m? =—b — V22, (10)

Diagonalize the mass matrix
cosa  sina
0" M?0 = diag(m},, mp,), O = ) . 11
iag( by hz)’ —sina  cosa (11)
Theoretical constraints: Perturbative unitarity, Global minimum, Stability of

the tree-level potential.
6/20



GW from DW
o0
DW in CxSM

The classical field:

e =35 (o) (5ten = 2L

V2 V2
EOMs:

P60V des _ oV

0z2 9¢’  0z2 O¢s’
with the boundary condition:

lim ¢(z) = v, lim ¢s(z) = +vs,

z—+oo z—+oo

and the tension:
opw = /dz [UDW +Jp0t} .

In the |a| < 1 limit, DW reduced to that in the ¢*:

¢s(z) = vs tanh <\/§vsz> ,

and the tension can approx as:

d. | d. 2 /d.
opw ~ évg’/df [tanh2< 82vsz) —11 = 3 gzvgz

(12)

(13)

(14)

(15)

(16)
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DW in CxSM

GW from DW
oe
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Figure 4: The DW profiles of ¢(z) (left) and ¢s(z) (right), respectivley. We take
mp, = 4.0 TeV, my = 2.0 TeV, vs = 100 TeV, and a = 0.10° (= 1.7 x 10~3 radians).

This parameter set gives opw = 2.7 x 10'3 [GeV?3].
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GW from DW
o0
DW to GW

The DW collapse when the bias enough large:

AV = Cann Aopw

(18)

ann

Consider the bias term a; breaking the Z,. We have the degeneracy of the two
vacua:

AV = |V(v,vs) — V(v, vs)| = 2v/2|ai]vs. (19)
The bound for the DW annihilation:
e Big Bang nucleosynthesis (BBN) t.,n < 0.01s, constrain to the |a1]

~15 3 Mh, vs A
a1 > 23 %107 GV (2 ) (fgrsgy ) Condow.  (20)

@ The DWs should not dominate the universe:

2 3
la1] > 8.0 x 10728 Gev3( My )( vs )CannA2&2DW. (21)

103 GeV 10° GeV
with -
pw = . 22
0pw M, Vg ( )

Cann = 2, A = 0.8 given by Chen, Li, and Wu, “The gravitational waves from the collapsing
domain walls in the complex singlet model”
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GW from DW
(] J

DW to GW

The peak frequency given by?:

_ g*(Tann)>1/2 (g*s(rann)>—1/3 ( Tonn )
foeak = 1.1 x 107° H , 23
peak x Z( 10 10 10-2 Gev (23)

(T —4/3 T 4
o (fea) = 7:2 % 10710 z? ((E2C0m) ) (T )

10 10-2 GeV
2 4
Mhy vs 22
X s 24
(103 GeV) (105 GeV) 7bw (24)
where &gw = 0.7 £ 0.4. And from the simulation?:
3
Qowh?(f < foeak) = Qowh? (foeak) (F/fpeak) s (25)
Qowh’(f > foeak) = Qowh’ (fpeak) (Foeak/f) - (26)

. . . fmax 2
The signal-to-noise ratio SNR = \/tdu, . " df (QGWhZ

2
o ) , with ty4,, denotes the
exp

duration of the mission. The nano-Hz scale future experiment SKA plan with
tgur = 20, we assuming SNR= 20.

!Saikawa, “A Review of Gravitational Waves from Cosmic Domain Walls".
2Hiramatsu, Kawasaki, and Saikawa, “On the estimation of gravitational wave spectrum from
cosmic domain walls".
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Dark Matter in CxSM
o
DM annihilation

The most relevant

B h oot diagram in the TeV
< scale of the DM is
R — i e diagram (c).
() (©)
Figure 5: The DM annihilation processes, where f denote
the SM fermions, while V' represent W= and Z.
The Spin-independent (SI) cross section®:
4 2 ( 2 2 )2 2 2
N 1 mpy Sa\My, — My, ) a1 2
o5 = fr, + =f . 27
Sl 87['V2 (mX + mN)2 mﬁl m22 vg Z Tq 9 Te ( )

q=u,d,s

In our study, we use micrOMEGAs* to calculate Q, h* and of,.

3Chiang, Ramsey-Musolf, and Senaha, “Standard Model with a Complex Scalar Singlet:
Cosmological Implications and Theoretical Considerations”.

“BARDUCCI2018327.
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Numerical results

°
DM relic density constraint to mixing angle
my = 2.0 TeV my = 5.0 TeV
Excluded by perturbative unitarity \
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Figure 6: Contours of the DM relic abundance with my, = 2.0 TeV, 5.0 TeV, and 15
TeV, respectively. In each panel, the three lines denote Q, /Qpm =0.1 (black, dotted
line), 1.0 (red, solid line), and 10 (blue, dashed line), with Qpy representing the
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Numerical results

°
Allowed region of bias
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Figure 7: Constraints on the biased term |a;| with mj,, = 4.0 TeV in the left panel and
vs = 100 TeV in the right panel, repspectively, and m, = 125 GeV, m, = 2.0 TeV,
and a = 0.10°.

The solid line in red represents the BBN bound which yields the lower bound
on |ai|. On the other hand, the dashed line in blue (SKA20) denotes the
discovery potential case with SNR = 20 which sets the upper bound on |ai].
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Numerical results

°
DM constraint
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Figure 8: Discovery potential at SKA as a function of mp, and vs. The lower region of
the solid line is excluded by the BBN bound. The solid curve in blue shows the
observed DM relic density QXh2 = 0.12, and the narrower region rounded by the
curve, QXh2 < 0.12. a =0.10°, and 10°, the DM mass is fixed to m, = 2.0 TeV.
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GW spectrum
10°® :
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Figure 9: Qgwh? as a function of frequency f with vs = 100
TeV and a = 0.10°, DM mass is fixed to my = mh2/2 in
order to satisfy QXh2 < Qpmh? = 0.12. The grey-shaded
region represents the SKA sensitivity, while the light-blue
region is indicated by the NANOGrav 15-year data.

Numerical results
L]

DW interpretation is not
favored since the best-fit
low-frequency slope of
GWspectrum reported by the
NG15 data is Qgw o F1224
PhysRevD.108.123529, while
Qcw o 2 in our case.
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Numerical results
o
Some assumption

We check some mark point in out alowed region (mjy, = 4.0, 10,30 TeV),
that's all those cases lie outside the 95% CL NG15-favored region, they are not
ruled out.

Considering DW annihilation can alteration the DM relic density:

@ The collapse of DW can generate the entropy given by
physletb.2005.05.022. But, in our parameters space, the energy density
of DW is subdominant.

@ DM could be nonthermally produced after collapse of DW
(JCAP01(2013)001). If DW, annihilate to h», with our allow region
my & my, /2, the ho — xx produce is suppressed.
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Summary
o
Sumary

@ The bias term |a;| must be greater than O(107**) GeV* (BBN bound).
Such a small value of al results in o oc a? being far below thelatest LZ
bound.

o With future SKA experiment, we should take 10 TeV < vs < 200 TeV and
1 TeV < mp, <100 TeV for a relatively small mixing angle «, such as
a=0.1°

o Allowed region can be marginally found if my ~ my, /2. If we take a to be
larger, the region where Q, h? < 0.12 gets broadened to some extent.
However, the upper limit of my, becomes smaller owing to the
perturbative unitarity constraint, diminishing the parameter space that
gives detectable GW signatures.
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The perturbative unitarity

Quadratic term:

Aoa 02 o2 doqs
V(®,9) x 210/ + ZioPis? + L

with
1 G* 1 .
¢_\/§<h+IGO>’ S_ﬁ(s+lx)a
so we have:
L0 Al 1, o0 s\
V(G 6%k S.x) 5 (Eh +5(6)+ 676 )

2
7

W+ %(G°)2+ c*c;*)

EIE

References
[e]e] lele]elele)

L

= (52 JrX2)2
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The perturbative unitarity

Taking the neutral states of |GTG™), \% |G°GY), %[2 |hh) , % |SS), \% [xx),
we have the s-wave matrix:

>
>
>
N
>
N

A

22 22 2y2 22

A R A

22 4 4 4 4

G 1 LS S S S
7 167 23/5 4 4 4 4 |’

2k % 3 &

22 4 4 4 4

gé G2 [ 3d>

22 4 4 4 4

and for and |hG®),|SG®),|xG°), |xS):
_ Lag(2,8, % )
T 2727272
the s-wave matrix for the charged states |hr™) | [7%7F) | |SaT) [y ™T):

1 di ()\ A 62 62)

T len e \2'2272

a

a+t
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Dynamics of the DW

The tension force, defined by the tension in a unit area pr ~ o/Ruan; The
friction force, which appears when the particles interact with the DW. With a
DW moving with the velocity v, the momentum transfer per collision is
Ap ~ Tv; we can estimate the friction force as:

prF ~ Apn ~ vT4,

When these two forces are balanced, we can obtain the following:

o ot?

~ 4 ~/ > 5
T*Rual mp| Ruwan

v

we also have Ryai ~ vt, so:

SL/241/2
v~y ——

My
1/2,3/2

ot

Rwall ~
My
DW reaches relativity speed as t ~ mf,lo*_l, recently, Ryai ~ t.

Pwall ~ ? .
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Figure 10: The density spectrum of the GWs ng,peakh2
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Figure 11: Cross section of the DM annihilation in some domination processes
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Figure 12: favored region and exeption region from Nanogravl5
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