
C. Degrande

Loop computation

• Box, Triangle, Bubble and Tadpole are known scalar
integrals

• Loop computation = find the coefficients

• Unitarity

• Multiple cuts

• Tensor reduction (OPP)

Prelims History Present

Tensor Reduction 2

A1−loop =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei

+
∑

i

ai Tadpolei + R

where

Tadpolei =
∫

dnq̄ 1

D̄0
Bubblei =

∫

dnq̄ 1

D̄0D̄1

Trianglei =
∫

dnq̄ 1

D̄0D̄1D̄2

Boxi =
∫

dnq̄ 1

D̄0D̄1D̄2D̄3

analytic work is necessary

Roberto Pittau Automatizing 1-loop multi-leg calculations for LHC (and ILC)

Automated computation for BSM

C. Degrande

FeynRules in a nutshell

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

Interfaces coming with current public version

© C. Degrande

FeynRules in a nutshell

Donnerstag, 14. Oktober 2010

Input : model.fr

Output : vertices

C. Degrande

Feynman rules outputs

FeynRules
outputs can be
used directly by

event generators

UFO : output with
the full information

used by several
generators

C. Degrande

Feynman Rules

FeynRules takes care of all the conventions

cross-check ME and event generation
Predefined

basis for most
ME

Lorentz (Metric/Levi-
Civita tensors,
Momenta,Dirac

matrices)

Color
representationCoupling

(function of the
parameters)

igs T
a3
i1i2

�µ3

0

@
ū 1
u 2
g 3

1

A

C. Degrande

• Generic output with the full model information

• coupling_orders.py, parameters.py, particles.py,
write_param_card.py, __init__.py,

• vertices.py, couplings.py, lorentz.py

• decays.py

• CT_vertices.py, CT_couplings.py (For NLO)

• Python module used in MadGraph, Herwig, Gosam, Sherpa

UFO

igsT
a�µ No basis, all the lorentz

structures of the model

C. Degrande

model file

(***************** This is a template model file for FeynRules ***********)

(********** Index definition *********)

IndexRange[Index[Generation]] = Range[3]

IndexFormat[Generation, f]

(***** Parameter list ******)

M$Parameters = {
}
(***** Gauge group list ******)

M$GaugeGroups = {
}
(***** Particle classes list ******)

M$ClassesDescription = {
}

Definition of variables
in Mathematica syntaxe

C. Degrande

Model information

M$ModelName = "my_new_model";

M$Information = {
Authors -> {"Mr. X", "Ms. Y"},
Institutions -> {"UC Louvain"},
Emails -> {"X@uclouvain.be", "Y@uclouvain.be},
Date -> "01.03.2013",
References -> {"reference 1", "reference 2"},
URLs -> {"http://feynrules.irmp.ucl.ac.be"},
Version -> "1.0"

};

A summary and complete set of options available for M$Information can be
found in Table 1.

The model information will be printed on the screen whenever the model is
loaded into Mathematica. In addition, the contents of M$Information can
be retrieved by issuing the command ModelInformation[] in a Mathemat-
ica session, after the model has been loaded.

2.2 Index Definitions

In general the Lagrangian describing a model is a polynomial in the fields (and
their derivatives) as well as in the parameters of the model. Very often, these
quantities carry indices specifying their members and/or how the di↵erent
quantities transform under symmetry operations. For example, the gauge field
G

a
µ of an unbroken gauge group SU(N) carries two di↵erent types of indices:

- a Lorentz index µ ranging from 0 to 3;
- an adjoint gauge index a ranging from 1 to N

2 � 1.

It is therefore crucial to define at the beginning of each model file the types of
indices that appear in the model, together with the range of values each type
of index may take.

A field i1i2...(x) carrying indices i1, i2, . . . is represented inside FeynRules
by an expression of the form psi[index1, index2, . . .]. Each indexi denotes
an object of the form Index[name, i], and represents an index of type name
taking the value i. In this expression name is a symbol and value can be both a
symbol or an integer. In general the name can be chosen freely by the user, but
we emphasize that there are predefined names for the index types describing
four-vectors (Lorentz), four-component spinors (Spin) and two-component
left and right-handed Weyl spinors (Spin1 and Spin2).

9

Good practice for credit, issue(s) tracking

C. Degrande

Indices definition
For FeynRules to run properly, the di↵erent types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[Index[Colour]] = Range[3];
IndexRange[Index[SU2W]] = Unfold[Range[3]];
IndexRange[Index[Gluon]] = NoUnfold[Range[8]];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
{1, . . . , n}. Moreover, the indices of type Lorentz, Spin, Spin1 and Spin2 are
defined internally and do not need to be defined by the user.

At this stage we have to comment on the functions Unfold and NoUnfold used
in the declaration of the indices of type SU2W and Gluon:

(1) The Unfold command instructs FeynRules that if an index of this
type appears contracted inside a monomial, then it should be expanded,
i.e., the monomial with the contracted pair of indices should be replaced
by the explicit sum over the indices. Any index that expands in terms
of non-physical states must be wrapped in Unfold. For instance, the
SU(2)L indices in the Standard Model or in the Minimal Supersymmetric
Standard Model must always be expanded in order to get the Feynman
rules in terms of the physical states of the theory. Otherwise, wrong
results could be obtained when employing matrix element generators.
We refer to Section 4 for more details.

(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [?]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . .]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] �! G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the di↵erent types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

11

Tells FR to remplace
summed indices by
the explicite sum

Tells FA/FC not to
remplace summed

indices by the
explicite sum

Used in parameters, gauge groups
and fields

C. Degrande

Indices definition
For FeynRules to run properly, the di↵erent types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[Index[Colour]] = Range[3];
IndexRange[Index[SU2W]] = Unfold[Range[3]];
IndexRange[Index[Gluon]] = NoUnfold[Range[8]];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
{1, . . . , n}. Moreover, the indices of type Lorentz, Spin, Spin1 and Spin2 are
defined internally and do not need to be defined by the user.

At this stage we have to comment on the functions Unfold and NoUnfold used
in the declaration of the indices of type SU2W and Gluon:

(1) The Unfold command instructs FeynRules that if an index of this
type appears contracted inside a monomial, then it should be expanded,
i.e., the monomial with the contracted pair of indices should be replaced
by the explicit sum over the indices. Any index that expands in terms
of non-physical states must be wrapped in Unfold. For instance, the
SU(2)L indices in the Standard Model or in the Minimal Supersymmetric
Standard Model must always be expanded in order to get the Feynman
rules in terms of the physical states of the theory. Otherwise, wrong
results could be obtained when employing matrix element generators.
We refer to Section 4 for more details.

(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [?]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . .]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] �! G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the di↵erent types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

11

Tells FR to remplace
summed indices by
the explicite sum

Tells FA/FC not to
remplace summed

indices by the
explicite sum

Used in parameters, gauge groups
and fields

IndexStyle[Colour, i];
IndexStyle[Gluon, a];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

Format:

C. Degrande

Indices definition
For FeynRules to run properly, the di↵erent types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[Index[Colour]] = Range[3];
IndexRange[Index[SU2W]] = Unfold[Range[3]];
IndexRange[Index[Gluon]] = NoUnfold[Range[8]];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
{1, . . . , n}. Moreover, the indices of type Lorentz, Spin, Spin1 and Spin2 are
defined internally and do not need to be defined by the user.

At this stage we have to comment on the functions Unfold and NoUnfold used
in the declaration of the indices of type SU2W and Gluon:

(1) The Unfold command instructs FeynRules that if an index of this
type appears contracted inside a monomial, then it should be expanded,
i.e., the monomial with the contracted pair of indices should be replaced
by the explicit sum over the indices. Any index that expands in terms
of non-physical states must be wrapped in Unfold. For instance, the
SU(2)L indices in the Standard Model or in the Minimal Supersymmetric
Standard Model must always be expanded in order to get the Feynman
rules in terms of the physical states of the theory. Otherwise, wrong
results could be obtained when employing matrix element generators.
We refer to Section 4 for more details.

(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [?]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . .]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] �! G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the di↵erent types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

11

Tells FR to remplace
summed indices by
the explicite sum

Tells FA/FC not to
remplace summed

indices by the
explicite sum

Used in parameters, gauge groups
and fields

IndexStyle[Colour, i];
IndexStyle[Gluon, a];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

Format:

Predefined indices: Lorentz, Spin, Spin1, Spin2

C. Degrande

Parameters definition

IndexStyle[Colour, i];
IndexStyle[Gluon, a];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {
 ParameterType -> External,
 BlockName -> SMINPUTS,
 OrderBlock -> 1,
 Value -> 127.9,
 InteractionOrder -> {QED,-2},
 Description -> "Inverse of the EW coupling constant at the Z
pole"
 },

Numerical value
Compulsory!

C. Degrande

Parameters definition

IndexStyle[Colour, i];
IndexStyle[Gluon, a];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

MW == {
 ParameterType -> Internal,
 Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*aEW/
Gf*MZ^2]],
 TeX -> Subscript[M,W],
 Description -> "W mass"
 },

Expression

C. Degrande

Parameters definition

IndexStyle[Colour, i];
IndexStyle[Gluon, a];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {
 ParameterType -> External,
 BlockName -> SMINPUTS,
 OrderBlock -> 1,
 Value -> 127.9,
 InteractionOrder -> {QED,-2},
 Description -> "Inverse of the EW coupling constant at the Z
pole"
 },

For the LHA cards

Dependence in the expansion parameters

C. Degrande

Parameters definition

IndexStyle[Colour, i];
IndexStyle[Gluon, a];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {
 ParameterType -> External,
 BlockName -> SMINPUTS,
 OrderBlock -> 1,
 Value -> 127.9,
 InteractionOrder -> {QED,-2},
 Description -> "Inverse of the EW coupling constant at the Z
pole"
 },

For the LHA cards

Dependence in the expansion parameters

C. Degrande

Interaction order

aEWM1 == { …
 InteractionOrder -> {QED,-2},
 Description -> "Inverse of the EW coupling constant at the Z pole"
 },

In the SM :
QED
QCD the power of

the power of
gs

e

vev == {…
 InteractionOrder -> {QED,-1},
 Description -> "Higgs vacuum expectation value"
 },

C. Degrande

Interaction order

aEWM1 == { …
 InteractionOrder -> {QED,-2},
 Description -> "Inverse of the EW coupling constant at the Z pole"
 },

In the SM :
QED
QCD the power of

the power of
gs

e

vev == {…
 InteractionOrder -> {QED,-1},
 Description -> "Higgs vacuum expectation value"
 }, � ie2 (⌘µ1,µ4⌘µ2,µ3 + ⌘µ1,µ3⌘µ2,µ4 � 2⌘µ1,µ2⌘µ3,µ4)

sw2

w+ w- > w+ w- WEIGHTED=4 page 1/2

Diagrams made by MadGraph5_aMC@NLO

w+

1

w-

2

w+

3

w-

4

 diagram 1 QCD=0, QED=2

w+

1

w-

2

a

w+

3

w-

4

 diagram 2 QCD=0, QED=2

w+

1

w-

2

h

w+

3

w-

4

 diagram 3 QCD=0, QED=2

w+

1

w-

2

z

w+

3

w-

4

 diagram 4 QCD=0, QED=2

w+

1

w+

3

a

w-

2
w-

4

 diagram 5 QCD=0, QED=2

w+

1

w+

3

h

w-

2
w-

4

 diagram 6 QCD=0, QED=2

ie2v⌘µ2,µ3

2s2w

w+ w- > w+ w- WEIGHTED=4 page 1/2

Diagrams made by MadGraph5_aMC@NLO

w+

1

w-

2

w+

3

w-

4

 diagram 1 QCD=0, QED=2

w+

1

w-

2

a

w+

3

w-

4

 diagram 2 QCD=0, QED=2

w+

1

w-

2

h

w+

3

w-

4

 diagram 3 QCD=0, QED=2

w+

1

w-

2

z

w+

3

w-

4

 diagram 4 QCD=0, QED=2

w+

1

w+

3

a

w-

2
w-

4

 diagram 5 QCD=0, QED=2

w+

1

w+

3

h

w-

2
w-

4

 diagram 6 QCD=0, QED=2

QED=1

QED=2

C. Degrande

Interaction order

yu == {…
 InteractionOrder -> {QED, 1},
 Description -> "Up-type Yukawa couplings"
 },

In the SM :
QED
QCD the power of

the power of
gs

e

vev == {…
 InteractionOrder -> {QED,-1},
 Description -> "Higgs vacuum expectation value"
 },

Such that masses have QED=0

However is not a small parameter!yt

C. Degrande

Interaction order

M$InteractionOrderHierarchy = { {QCD, 1},
 {QED, 2}};

gs ⇠ e2

C. Degrande

Interaction order

M$InteractionOrderHierarchy = { {QCD, 1},
 {QED, 2}};

gs ⇠ e2

NP the power of ⇤�2

L = L+
X

i

1

⇤2
Oi +O

�
⇤�4

�

,{NP, 2}

C. Degrande

Interaction order

M$InteractionOrderHierarchy = { {QCD, 1},
 {QED, 2}};

gs ⇠ e2

NP the power of ⇤�2

L = L+
X

i

1

⇤2
Oi +O

�
⇤�4

�

,{NP, 2}

M$InteractionOrderLimit = {{NP,1}};

Max power per diagram of is 1⇤�2

C. Degrande

Fields definition I

to their symbol,

M$ClassesDescription = {
spin1[1] == { options1 },
spin1[2] == { options2 },
spin2[1] == { options3 },
...}

The symbols spin1, spin2, etc., refer each to one of the field type supported
by FeynRules 2 :

- S: scalar fields;
- F: Dirac and Majorana spinor fields;
- W: Weyl fermions (both left- and right-handed);
- V: vector fields;
- R: four-component Rarita-Schwinger fields (spin-3/2 fields);
- RW: two-component Rarita-Schwinger fields (both left- and right-handed
spin-3/2 fields);

- T: spin-2 fields;
- U: ghost fields (only complex ghosts are supported).

Similar to the declaration of the parameter classes, the quantities options1,
options2, options3, etc., are sets of replacement rules defining field proper-
ties. Following the spirit of the original FeynArts model file format, each
particle class should be thought of as a ‘multiplet’ consisting of particles that
carry the same quantum numbers but might di↵er in mass. This implies that
all fields belonging to the same class necessarily carry the same indices. The
main advantage of collecting particles with the same indices into classes is
that it allows the user to write compact expressions for Lagrangians. This is
illustrated in the example Lagrangian

L = q̄f i/@qf + gsq̄f�
µ
TaqfG

a
µ , (2.4)

where qf denotes the “quark class”, gs the strong coupling constant, Ta the
fundamental representation matrices of SU(3) and Gµ stands for the gluon
field. The notation of Eq. (2.4) avoids having to write out explicitly a La-
grangian term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName

2 The classes R, W and RW are specific to FeynRules and not supported by Fey-
nArts.

19

C. Degrande

Fields definition I

to their symbol,

M$ClassesDescription = {
spin1[1] == { options1 },
spin1[2] == { options2 },
spin2[1] == { options3 },
...}

The symbols spin1, spin2, etc., refer each to one of the field type supported
by FeynRules 2 :

- S: scalar fields;
- F: Dirac and Majorana spinor fields;
- W: Weyl fermions (both left- and right-handed);
- V: vector fields;
- R: four-component Rarita-Schwinger fields (spin-3/2 fields);
- RW: two-component Rarita-Schwinger fields (both left- and right-handed
spin-3/2 fields);

- T: spin-2 fields;
- U: ghost fields (only complex ghosts are supported).

Similar to the declaration of the parameter classes, the quantities options1,
options2, options3, etc., are sets of replacement rules defining field proper-
ties. Following the spirit of the original FeynArts model file format, each
particle class should be thought of as a ‘multiplet’ consisting of particles that
carry the same quantum numbers but might di↵er in mass. This implies that
all fields belonging to the same class necessarily carry the same indices. The
main advantage of collecting particles with the same indices into classes is
that it allows the user to write compact expressions for Lagrangians. This is
illustrated in the example Lagrangian

L = q̄f i/@qf + gsq̄f�
µ
TaqfG

a
µ , (2.4)

where qf denotes the “quark class”, gs the strong coupling constant, Ta the
fundamental representation matrices of SU(3) and Gµ stands for the gluon
field. The notation of Eq. (2.4) avoids having to write out explicitly a La-
grangian term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName

2 The classes R, W and RW are specific to FeynRules and not supported by Fey-
nArts.

19

S 0

W,F 1/2

V 1

RW,R 3/2

T 2

U -1

C. Degrande

Fields definition I

to their symbol,

M$ClassesDescription = {
spin1[1] == { options1 },
spin1[2] == { options2 },
spin2[1] == { options3 },
...}

The symbols spin1, spin2, etc., refer each to one of the field type supported
by FeynRules 2 :

- S: scalar fields;
- F: Dirac and Majorana spinor fields;
- W: Weyl fermions (both left- and right-handed);
- V: vector fields;
- R: four-component Rarita-Schwinger fields (spin-3/2 fields);
- RW: two-component Rarita-Schwinger fields (both left- and right-handed
spin-3/2 fields);

- T: spin-2 fields;
- U: ghost fields (only complex ghosts are supported).

Similar to the declaration of the parameter classes, the quantities options1,
options2, options3, etc., are sets of replacement rules defining field proper-
ties. Following the spirit of the original FeynArts model file format, each
particle class should be thought of as a ‘multiplet’ consisting of particles that
carry the same quantum numbers but might di↵er in mass. This implies that
all fields belonging to the same class necessarily carry the same indices. The
main advantage of collecting particles with the same indices into classes is
that it allows the user to write compact expressions for Lagrangians. This is
illustrated in the example Lagrangian

L = q̄f i/@qf + gsq̄f�
µ
TaqfG

a
µ , (2.4)

where qf denotes the “quark class”, gs the strong coupling constant, Ta the
fundamental representation matrices of SU(3) and Gµ stands for the gluon
field. The notation of Eq. (2.4) avoids having to write out explicitly a La-
grangian term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName

2 The classes R, W and RW are specific to FeynRules and not supported by Fey-
nArts.

19

S 0

W,F 1/2

V 1

RW,R 3/2

T 2

U -1

Unique Id

C. Degrande

Fields definition I

to their symbol,

M$ClassesDescription = {
spin1[1] == { options1 },
spin1[2] == { options2 },
spin2[1] == { options3 },
...}

The symbols spin1, spin2, etc., refer each to one of the field type supported
by FeynRules 2 :

- S: scalar fields;
- F: Dirac and Majorana spinor fields;
- W: Weyl fermions (both left- and right-handed);
- V: vector fields;
- R: four-component Rarita-Schwinger fields (spin-3/2 fields);
- RW: two-component Rarita-Schwinger fields (both left- and right-handed
spin-3/2 fields);

- T: spin-2 fields;
- U: ghost fields (only complex ghosts are supported).

Similar to the declaration of the parameter classes, the quantities options1,
options2, options3, etc., are sets of replacement rules defining field proper-
ties. Following the spirit of the original FeynArts model file format, each
particle class should be thought of as a ‘multiplet’ consisting of particles that
carry the same quantum numbers but might di↵er in mass. This implies that
all fields belonging to the same class necessarily carry the same indices. The
main advantage of collecting particles with the same indices into classes is
that it allows the user to write compact expressions for Lagrangians. This is
illustrated in the example Lagrangian

L = q̄f i/@qf + gsq̄f�
µ
TaqfG

a
µ , (2.4)

where qf denotes the “quark class”, gs the strong coupling constant, Ta the
fundamental representation matrices of SU(3) and Gµ stands for the gluon
field. The notation of Eq. (2.4) avoids having to write out explicitly a La-
grangian term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName

2 The classes R, W and RW are specific to FeynRules and not supported by Fey-
nArts.

19

S 0

W,F 1/2

V 1

RW,R 3/2

T 2

U -1

Unique Id

ClassName->…, SelfConjugate->…,
Indices->…,QuantumNumbers->…,
FlavorIndex->…, ClassMembers,

Mass->…, Witdh->…, PDG->…,
Definitions->…, Unphysical->…,

Chirality->…, MajoranaPhase->…,
WeylComponents->…,

Goldstone->…, Ghost->…, …(Format)

C. Degrande

Fields definition II

F[3] == { ClassName -> uq,
 ClassMembers -> {u, c, t},
 Indices -> {Index[Generation], Index[Colour]},
 FlavorIndex -> Generation,
 SelfConjugate -> False,
 Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
 Width -> {0, 0, {WT,1.50833649}},
 QuantumNumbers -> {Q -> 2/3},
 PDG -> {2, 4, 6},
 …
 }

C. Degrande

Fields definition II

F[3] == { ClassName -> uq,
 ClassMembers -> {u, c, t},
 Indices -> {Index[Generation], Index[Colour]},
 FlavorIndex -> Generation,
 SelfConjugate -> False,
 Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
 Width -> {0, 0, {WT,1.50833649}},
 QuantumNumbers -> {Q -> 2/3},
 PDG -> {2, 4, 6},
 …
 }

Spin index

C. Degrande

Fields definition II

F[3] == { ClassName -> uq,
 ClassMembers -> {u, c, t},
 Indices -> {Index[Generation], Index[Colour]},
 FlavorIndex -> Generation,
 SelfConjugate -> False,
 Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
 Width -> {0, 0, {WT,1.50833649}},
 QuantumNumbers -> {Q -> 2/3},
 PDG -> {2, 4, 6},
 …
 }

Generation index distinguishes
the class members

C. Degrande

Fields definition II

F[3] == { ClassName -> uq,
 ClassMembers -> {u, c, t},
 Indices -> {Index[Generation], Index[Colour]},
 FlavorIndex -> Generation,
 SelfConjugate -> False,
 Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
 Width -> {0, 0, {WT,1.50833649}},
 QuantumNumbers -> {Q -> 2/3},
 PDG -> {2, 4, 6},
 …
 }

Same representation

C. Degrande

Fields definition II

F[3] == { ClassName -> uq,
 ClassMembers -> {u, c, t},
 Indices -> {Index[Generation], Index[Colour]},
 FlavorIndex -> Generation,
 SelfConjugate -> False,
 Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
 Width -> {0, 0, {WT,1.50833649}},
 QuantumNumbers -> {Q -> 2/3},
 PDG -> {2, 4, 6},
 …
 }

External parameters

C. Degrande

Fields definition II

F[3] == { ClassName -> uq,
 ClassMembers -> {u, c, t},
 Indices -> {Index[Generation], Index[Colour]},
 FlavorIndex -> Generation,
 SelfConjugate -> False,
 Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
 Width -> {0, 0, {WT,1.50833649}},
 QuantumNumbers -> {Q -> 2/3},
 PDG -> {2, 4, 6},
 …
 }

External parameters

Generic label

and do not need to be specified. In addition to indices labeling how a field
transforms under symmetries, each field may have additional indices such as
flavor indices. One of these can be distinguished as the flavor index of the class
and labels its members. It is declared in the model file via the FlavorIndex op-
tion. For example, the up-type quark class uq previously introduced is usually
defined carrying two indices supplementing the spin index (automatically han-
dled by FeynRules), one of type Colour ranging from 1 to 3 and specifying
the color of the quark, and another index of type Flavour ranging from 1 to
3. The latter is specified as the flavor index of the class (via the FlavourIndex
option) so that it labels the members of the class,

Indices -> { Index[Colour], Index[Flavour] },
FlavorIndex -> Flavour

Quantum fields are not always only characterized by the tensor indices they
carry, but also by their charges under the discrete and / or abelian groups of
the model. FeynRules allows the user to define an arbitrary number of U(1)
charges carried by a field, as, e.g., in

QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}
QuantumNumbers -> {Q -> 2/3}

Next, the user can specify the symbol and the numerical value for the masses
and the decay widths of the di↵erent members of a particle class using the
Mass and Width options 3 . The argument of Mass is a list with masses for each
of the class members, as in

Mass -> {MW}
Mass -> {MU, MC, MT}
Mass -> {Mu, MU, MC, MT}

where in the last example, the symbol Mu is given for the entire class, while
the symbols MU, MC and MT are given to the members. The symbol for the
generic mass (Mu in this case) is by default a tensorial parameter carrying a
single index corresponding to the FlavorIndex of the class. In addition, the
AllowSummation property is internally set to True. The user can not only
specify the symbols used for the masses but also their numerical value as in

Mass -> {MW, Internal}
Mass -> {MZ, 91.188}
Mass -> {{MU,0}, {MC,0}, {MT, 174.3}}
Mass -> {Mu, {MU, 0}, {MC, 0}, {MT, 174.3}}

3 In the following we only discuss the masses of the particles. Widths however work
in exactly the same way.

21

C. Degrande

Fields definition II

F[3] == { ClassName -> uq,
 ClassMembers -> {u, c, t},
 Indices -> {Index[Generation], Index[Colour]},
 FlavorIndex -> Generation,
 SelfConjugate -> False,
 Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
 Width -> {0, 0, {WT,1.50833649}},
 QuantumNumbers -> {Q -> 2/3},
 PDG -> {2, 4, 6},
 …
 }

Not used in FR but by
following codes

C. Degrande

Fields definition III

V[12] == {
 ClassName -> Wi,
 Unphysical -> True,
 SelfConjugate -> True,
 Indices -> {Index[SU2W]},
 FlavorIndex -> SU2W,
 Definitions -> { Wi[mu_,1] -> (Wbar[mu]+W[mu])/Sqrt[2],
Wi[mu_,2] -> (Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3] -> cw
Z[mu] + sw A[mu]}
 }

FR does not export
them to matrix
element code

Physical fields

Interaction eigenstates

C. Degrande

Fields definition IV

U[11] == {
 ClassName -> ghB,
 Unphysical -> True,
 SelfConjugate -> False,
 Ghost -> B,
 Definitions -> { ghB -> -sw ghZ + cw ghA}
 },

S[2] == {
 ClassName -> G0,
 SelfConjugate -> True,
 Goldstone -> Z,
 …
 },

ClassName of the
boson

C. Degrande

Gauge Groups

M$GaugeGroups = {
 U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },…
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
 StructureConstant -> f,
 Representations -> {T,Colour},
 SymmetricTensor -> dSUN
 }
};

C. Degrande

Gauge Groups

M$GaugeGroups = {
 U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },…
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
 StructureConstant -> f,
 Representations -> {T,Colour},
 SymmetricTensor -> dSUN
 }
};

C. Degrande

Gauge Groups

M$GaugeGroups = {
 U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },…
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
 StructureConstant -> f,
 Representations -> {T,Colour},
 SymmetricTensor -> dSUN
 }
};

C. Degrande

Gauge Groups

M$GaugeGroups = {
 U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },…
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
 StructureConstant -> f,
 Representations -> {T,Colour},
 SymmetricTensor -> dSUN
 }
}; Generator label

Associated index

C. Degrande

Gauge groups

Table 10: Gauge group options (continued)

Representations Refers to a list of two-component lists
containing all the representations de-
fined for this gauge group. The first
component of these lists consists of the
symbol by which the generators of the
representation are denoted, while the
second component is the name of the
index it acts on.

Definitions Contains a list of replacement rules
that should be applied by FeynRules
before calculating vertices, expressing
representation matrices and/or struc-
ture constants in terms of the model
parameters and Mathematica stan-
dard objects.

Table 11

The list of all the options described above is summarized in Table 10.

2.6.2 FeynRules functions related to gauge groups

The declaration of a gauge group enables FeynRules to automatically con-
struct field strength tensors, superfield strength tensors and covariant deriva-
tives associated with this group, so that they can be further used when building
Lagrangians. In the case of abelian gauge groups, the field strength tensor is
invoked by issuing

FS[A, mu, nu]

where A is the corresponding gauge boson and mu and nu denote Lorentz
indices. Its supersymmetric counterparts can be called by the command

SuperfieldStrengthL[V, sp]
SuperfieldStrengthR[V, spdot]

respectively. In these commands, V stands for the vector superfield associated
with the gauge group and sp and spdot are left-handed and right-handed spin
indices. These three functions can be easily generalized to the non-abelian case,

FS[A, mu, nu, a]

33

SuperfieldStrengthL[V, sp , a]
SuperfieldStrengthR[V, spdot, a]

where a stands for an adjoint gauge index. Following the FeynRules con-
ventions, these quantities are defined as

F
a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ + gf

a
bcA

b
µA

c
⌫ ,

W↵ = � 1

4
D̄·D̄e

2gV
D↵e

�2gV
,

W ↵̇ = � 1

4
D·De

�2gV
D̄↵̇e

2gV
,

(2.7)

where g and f denote the coupling constant and the structure constants of
the gauge group and D and D̄ are the superderivatives defined below, in
Section 4.5. The abelian limit is trivially derived from these expressions. We
emphasize that the spinorial superfields W↵ and W ↵̇ are not hard-coded in
FeynRules and are recalculated each time. However, they are evaluated only
when an expansion in terms of the component fields of the vector superfield V
is performed.

From the information provided at the time of the declaration of the gauge
group, FeynRules can also define, in an automated way, gauge covariant
derivatives. These can be accessed through the symbol DC[phi, mu], where
phi is the field that it acts on and mu the Lorentz index. In our conventions,
the covariant derivative reads

Dµ� = @µ�� igA
a
µTa� (2.8)

where Ta stands for the representation matrices associated to the represen-
tation of the gauge group in which the field � lies. The sign convention in
Eq. (2.8) is consistent with the sign convention in Eq. (2.7).

All the functions presented in this section are summarized in Table 12.

2.7 Model restrictions

In phenomenological studies, it can sometimes be useful to consider restricted
models which are obtained from a parent model by putting some of the ex-
ternal parameters to zero. As an example, one might be interested in the
Standard Model with a diagonal CKM matrix. While it is of course always
possible to make the CKM matrix numerically diagonal, it is desirable to re-
move the interaction terms proportional to the o↵-diagonal terms altogether
in order to avoid a proliferation of vanishing diagrams in Feynman diagram
calculations. This can be achieved by the use of the so-called restriction files
in FeynRules. Restriction files are text files (with the extension .rst) that

34

()
abelian

SuperfieldStrengthL[V, sp , a]
SuperfieldStrengthR[V, spdot, a]

where a stands for an adjoint gauge index. Following the FeynRules con-
ventions, these quantities are defined as

F
a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ + gf

a
bcA

b
µA

c
⌫ ,

W↵ = � 1

4
D̄·D̄e

2gV
D↵e

�2gV
,

W ↵̇ = � 1

4
D·De

�2gV
D̄↵̇e

2gV
,

(2.7)

where g and f denote the coupling constant and the structure constants of
the gauge group and D and D̄ are the superderivatives defined below, in
Section 4.5. The abelian limit is trivially derived from these expressions. We
emphasize that the spinorial superfields W↵ and W ↵̇ are not hard-coded in
FeynRules and are recalculated each time. However, they are evaluated only
when an expansion in terms of the component fields of the vector superfield V
is performed.

From the information provided at the time of the declaration of the gauge
group, FeynRules can also define, in an automated way, gauge covariant
derivatives. These can be accessed through the symbol DC[phi, mu], where
phi is the field that it acts on and mu the Lorentz index. In our conventions,
the covariant derivative reads

Dµ� = @µ�� igA
a
µTa� (2.8)

where Ta stands for the representation matrices associated to the represen-
tation of the gauge group in which the field � lies. The sign convention in
Eq. (2.8) is consistent with the sign convention in Eq. (2.7).

All the functions presented in this section are summarized in Table 12.

2.7 Model restrictions

In phenomenological studies, it can sometimes be useful to consider restricted
models which are obtained from a parent model by putting some of the ex-
ternal parameters to zero. As an example, one might be interested in the
Standard Model with a diagonal CKM matrix. While it is of course always
possible to make the CKM matrix numerically diagonal, it is desirable to re-
move the interaction terms proportional to the o↵-diagonal terms altogether
in order to avoid a proliferation of vanishing diagrams in Feynman diagram
calculations. This can be achieved by the use of the so-called restriction files
in FeynRules. Restriction files are text files (with the extension .rst) that

34

DC[phi, mu]

C. Degrande

Lagrangian

{{a11, a12} , {a21, a22}}] , {u, d}].

As already discussed in Section 2.6, gauge invariant derivatives can be con-
veniently defined via the functions DC[phi,mu] and FS[G, mu, nu, a]. The
first argument of both functions is the relevant field, mu and nu are Lorentz
indices and a represents an index of the adjoint representation of the associ-
ated gauge group. The gauge fields and generators that appear in covariant
derivatives of a particular field are fixed by its indices and by the definition of
the gauge group. For example, the QCD Lagrangian for massless down quarks,

LQCD ⌘ �1

4
G

µ⌫
a G

a
µ⌫ + id̄ /Dd, (3.16)

is written as

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]
+ I dqbar.Ga[mu].DC[dq, mu]

All the predefined FeynRules functions useful for the building of the La-
grangian are given in Table 14.

Finally, it is often convenient to write a Lagrangian in terms of two-component
fermions and to let FeynRules perform the transformations to four-component
fermions. We note that this operation is mandatory for most Feynman diagram
calculators, which in general only work with four-component spinors. More
precisely, if � and ⇠̄ are left and right-handed Weyl spinors, and = (�, ⇠̄)T

is a Dirac fermion, we can easily switch to four-component fermions by using
the replacements

�! 1� �
5

2
 , ⇠ ! 1� �

5

2

c
,

�̄! 1 + �
5

2

c
, ⇠̄ ! 1 + �

5

2
 .

(3.17)

These transformation rules are implemented in FeynRules via the WeylTo-
Dirac function, which takes as an argument a Lagrangian written in terms of
two-component fermions, and returns the same Lagrangian in terms of four-
component fermions.

3.1 Tools for Lagrangians

FeynRules provides functions, collected in Table 15, that can be used while
constructing Lagrangians. For example, the function ExpandIndices[] re-
turns the Lagrangian with all the indices written explicitly. Each of the other
functions return a di↵erent part of the Lagrangian as described in the table.

44

{{a11, a12} , {a21, a22}}] , {u, d}].

As already discussed in Section 2.6, gauge invariant derivatives can be con-
veniently defined via the functions DC[phi,mu] and FS[G, mu, nu, a]. The
first argument of both functions is the relevant field, mu and nu are Lorentz
indices and a represents an index of the adjoint representation of the associ-
ated gauge group. The gauge fields and generators that appear in covariant
derivatives of a particular field are fixed by its indices and by the definition of
the gauge group. For example, the QCD Lagrangian for massless down quarks,

LQCD ⌘ �1

4
G

µ⌫
a G

a
µ⌫ + id̄ /Dd, (3.16)

is written as

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]
+ I dqbar.Ga[mu].DC[dq, mu]

All the predefined FeynRules functions useful for the building of the La-
grangian are given in Table 14.

Finally, it is often convenient to write a Lagrangian in terms of two-component
fermions and to let FeynRules perform the transformations to four-component
fermions. We note that this operation is mandatory for most Feynman diagram
calculators, which in general only work with four-component spinors. More
precisely, if � and ⇠̄ are left and right-handed Weyl spinors, and = (�, ⇠̄)T

is a Dirac fermion, we can easily switch to four-component fermions by using
the replacements

�! 1� �
5

2
 , ⇠ ! 1� �

5

2

c
,

�̄! 1 + �
5

2

c
, ⇠̄ ! 1 + �

5

2
 .

(3.17)

These transformation rules are implemented in FeynRules via the WeylTo-
Dirac function, which takes as an argument a Lagrangian written in terms of
two-component fermions, and returns the same Lagrangian in terms of four-
component fermions.

3.1 Tools for Lagrangians

FeynRules provides functions, collected in Table 15, that can be used while
constructing Lagrangians. For example, the function ExpandIndices[] re-
turns the Lagrangian with all the indices written explicitly. Each of the other
functions return a di↵erent part of the Lagrangian as described in the table.

44

definition through the Indices option, given in the same order. The di↵erent
flavors can also be accessed using the names given in ClassMembers. They have
the same indices as the full flavor multiplet, with the flavor index omitted. We
recall that, if a field is not self-conjugate, FeynRules automatically creates
the symbol for the conjugate field by adding ‘bar’ at the end of the particle
name, i.e., the antiparticle associated to psi is denoted by psibar. For a
fermion , the conjugate field is ̄ ⌘

†
�
0. Alternatively, the conjugate field

can be obtained by issuing anti[psi].

Fields (and their derivatives) can be combined into polynomials. By conven-
tion, all the indices appearing inside a monomial in FeynRules must be
contracted, i.e., all indices must appear pairwise 6 . Furthermore, all indices
must be spelled out explicitly. For anticommuting fields (fermions and ghosts),
the Mathematica Dot function has to be used, in order to keep the relative
order among them fixed. For example, the interaction between the gluon and
all the down quarks can be written as

gs Ga[mu, s, r] T[a, i, j] dqbar[s, f, i].dq[r, f, j] G[mu, a]

There is however one case where indices do not need to be spelled out com-
pletely but can be omitted. If in a fermion bilinear, all the indices of the
rightmost fermion are connected to all the indices of the leftmost fermion
(perhaps with intermediate matrices), then these indices can be suppressed
and FeynRules takes care of restoring them internally, such as in

dqbar.Ga[mu].T[a].dq
! Ga[mu,s,r] T[a,i,j] dqbar[s,f,i].dq[r,f,j] .

In case of doubt, the user should always spell out all indices explicitly.

The Dot product is mandatory for anticommuting fields or parameters. It
should be noted that Mathematica does not keep the Dot product between
the components of vectors or matrices after computing their product explicitly

{ubar, dbar}.{u, d} = u ubar + d dbar

The appropriate treatment requires, therefore, use of the Inner function for
each Dot, e.g.

Inner[Dot, {ubar, dbar}, {u, d}] = ubar.u + dbar.d

or for more than one multiplication,

Inner[Dot, Inner[Dot, {ubar, dbar} ,

6 With the exception of single-index parameters for which the AllowSummation

option is set to True (see Section 2.3).

43

FeynRules creates the “anti”-particle name

Dot to avoid commuting the fermions

FeynRules restores the
indices internally

C. Degrande

Running FeynRules

Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[L] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[L] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[L] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[L] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[<the address of the package>];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.

51

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

In Mathematica :
Loading Feynrules

Loading the model

Checking the Lagrangian
CheckKineticTermNormalisation[L]
CheckMassSpectrum[L]

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

Extracting the Feynman rules

WriteUFO[L]
Outputting the Lagrangian

C. Degrande

Running FeynRules

Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[L] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[L] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[L] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[L] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[<the address of the package>];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.

51

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

In Mathematica :
Loading Feynrules

Loading the model

Checking the Lagrangian
CheckKineticTermNormalisation[L]
CheckMassSpectrum[L]

All the model files should
be loaded at once

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

Extracting the Feynman rules

WriteUFO[L]
Outputting the Lagrangian

C. Degrande

8
<

:

0

@
A 1
GP 2
GP† 3

1

A , ie (pµ1
2 � pµ1

3)

9
=

;

n o

…

All momenta are incoming

h0| iLI |fieldsi

Running FeynRules

Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[L] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[L] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[L] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[L] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[<the address of the package>];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.

51

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

In Mathematica :
Loading Feynrules

Loading the model

Checking the Lagrangian
CheckKineticTermNormalisation[L]
CheckMassSpectrum[L]

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

Extracting the Feynman rules

WriteUFO[L]
Outputting the Lagrangian

C. Degrande

8
<

:

0

@
A 1
GP 2
GP† 3

1

A , ie (pµ1
2 � pµ1

3)

9
=

;

n o

…

All momenta are incoming

h0| iLI |fieldsi

Off-shell

Running FeynRules

Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[L] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[L] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[L] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[L] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[<the address of the package>];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.

51

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

In Mathematica :
Loading Feynrules

Loading the model

Checking the Lagrangian
CheckKineticTermNormalisation[L]
CheckMassSpectrum[L]

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[< file.fr >, < file2.fr >, ...]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[LQCD];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

Extracting the Feynman rules

WriteUFO[L]
Outputting the Lagrangian

C. Degrande

Checks

CheckHermiticity[L, options]

CheckDiagonalKineticTerms[L, options]

CheckDiagonalMassTerms[L, options]

CheckDiagonalQuadraticTerms[L, options]

CheckKineticTermNormalisation[L, options]

CheckMassSpectrum[L, options]

+

Table 15: Manipulating a Lagrangian

All the functions below share the same options as FeynmanRules,

which can be found in Table 19.

ExpandIndices[L, options] Restores all the suppressed in-
dices in the Lagrangian L.

GetKineticTerms[L, options] Returns the kinetic terms in
the Lagrangian L.

GetMassTerms[L, options] Returns the mass terms in the
Lagrangian L.

GetQuadraticTerms[L, options] Returns the quadratic terms
in the Lagrangian L.

GetInteractionTerms[L, options] Returns the interaction terms
in the Lagrangian L.

SelectFieldContent[L, list] Returns the part of the La-
grangian L corresponding to
the field content specified in
list.

Table 15

Once the Lagrangian is implemented, several sanity checks can be performed
by means of the functions presented in Table 16. First, the function

CheckHermiticity[L];

checks if the Lagrangian L is Hermitian. Next, three functions are available to
check if the kinetic terms and the mass terms are diagonal, CheckDiagonalKi-
neticTerms, CheckDiagonalMassTerms and CheckDiagonalQuadraticTerms.
Finally, two functions, CheckKineticTermNormalisation and CheckMass-
Spectrum, allow to check the normalization of the kinetic terms and compare
the masses computed from the Lagrangian to those of the model description.
The FeynRules conventions on the normalization of the kinetic and mass
terms for the scalar, spin 1/2 and vector fields are

(1) Scalar fields:
- Real:

1

2
@µ�@

µ
�� 1

2
m

2
�
2
,

- Complex (including ghost fields):

@µ�
†
@
µ
��m

2
�
†
�,

46

Table 15: Manipulating a Lagrangian

All the functions below share the same options as FeynmanRules,

which can be found in Table 19.

ExpandIndices[L, options] Restores all the suppressed in-
dices in the Lagrangian L.

GetKineticTerms[L, options] Returns the kinetic terms in
the Lagrangian L.

GetMassTerms[L, options] Returns the mass terms in the
Lagrangian L.

GetQuadraticTerms[L, options] Returns the quadratic terms
in the Lagrangian L.

GetInteractionTerms[L, options] Returns the interaction terms
in the Lagrangian L.

SelectFieldContent[L, list] Returns the part of the La-
grangian L corresponding to
the field content specified in
list.

Table 15

Once the Lagrangian is implemented, several sanity checks can be performed
by means of the functions presented in Table 16. First, the function

CheckHermiticity[L];

checks if the Lagrangian L is Hermitian. Next, three functions are available to
check if the kinetic terms and the mass terms are diagonal, CheckDiagonalKi-
neticTerms, CheckDiagonalMassTerms and CheckDiagonalQuadraticTerms.
Finally, two functions, CheckKineticTermNormalisation and CheckMass-
Spectrum, allow to check the normalization of the kinetic terms and compare
the masses computed from the Lagrangian to those of the model description.
The FeynRules conventions on the normalization of the kinetic and mass
terms for the scalar, spin 1/2 and vector fields are

(1) Scalar fields:
- Real:

1

2
@µ�@

µ
�� 1

2
m

2
�
2
,

- Complex (including ghost fields):

@µ�
†
@
µ
��m

2
�
†
�,

46

(2) Spin-1/2 fermions:
- Majorana:

1

2
�̄i/@�� 1

2
m�̄�,

- Dirac:
 ̄i/@ �m ̄ ,

(3) Vectors:
- Real:

� 1

4
Fµ⌫F

µ⌫ � 1

2
m

2
AµA

µ
,

- Complex:

� 1

2
F

†
µ⌫F

µ⌫ �m
2
A

†
µA

µ
.

FeynRules does not use the quadratic pieces of a Lagrangian. However,
the propagators hard-coded either in FeynRules or in the event generators
assume that the quadratic piece of the Lagrangian follow the above-mentioned
conventions. Furthermore, since the kinetic and mass terms for spin-3/2 and
spin-2 fields are model dependent, they are therefore not implemented. Finally,
checks on Weyl fermion kinetic and mass terms are also not supported since
there exist several ways to write them down.

3.2 Automatic generation of supersymmetric Lagrangians

The implementation of supersymmetric Lagrangians in FeynRules can be
highly facilitated by means of a series of dedicated built-in functions. The
Lagrangian describing the kinetic terms and the gauge interactions of the
chiral content of any supersymmetric theory is given by

Lchiral =

"

�†
i e

�2gjV j
�i

#

✓·✓✓̄·✓̄

= Dµ�
†
iD

µ
�
i + F

†
i F

i � i

2

⇣
Dµ ̄i�̄

µ

i � ̄i�̄
µ
Dµ

i
⌘

+ i

p
2gj�̄

ja · ̄iTa�
i � i

p
2gj�

†
iTa

i · �ja � gjD
ja
�
†
iTa�

i
,

(3.18)

where the superfield content of the theory is represented by a set of chiral
superfields {�i = (�i

,
i
, F

i)} and vector superfields {V j = (vj,�j, Dj)}. In
the first line of the equation above, the [.]✓·✓✓̄·✓̄ indicates that one has to extract
the highest-order coe�cient in ✓ and ✓̄ from the expansion of the superfield
expression included in the brackets. We recall that the covariant derivatives are
defined in Eq. (2.8) and that the matrices Ta stand for representation matrices
of the gauge group relevant to the fields they act on. This Lagrangian can be
computed in FeynRules by issuing

Theta2Thetabar2Component[CSFKineticTerms[]]

47

(2) Spin-1/2 fermions:
- Majorana:

1

2
�̄i/@�� 1

2
m�̄�,

- Dirac:
 ̄i/@ �m ̄ ,

(3) Vectors:
- Real:

� 1

4
Fµ⌫F

µ⌫ � 1

2
m

2
AµA

µ
,

- Complex:

� 1

2
F

†
µ⌫F

µ⌫ �m
2
A

†
µA

µ
.

FeynRules does not use the quadratic pieces of a Lagrangian. However,
the propagators hard-coded either in FeynRules or in the event generators
assume that the quadratic piece of the Lagrangian follow the above-mentioned
conventions. Furthermore, since the kinetic and mass terms for spin-3/2 and
spin-2 fields are model dependent, they are therefore not implemented. Finally,
checks on Weyl fermion kinetic and mass terms are also not supported since
there exist several ways to write them down.

3.2 Automatic generation of supersymmetric Lagrangians

The implementation of supersymmetric Lagrangians in FeynRules can be
highly facilitated by means of a series of dedicated built-in functions. The
Lagrangian describing the kinetic terms and the gauge interactions of the
chiral content of any supersymmetric theory is given by

Lchiral =

"

�†
i e

�2gjV j
�i

#

✓·✓✓̄·✓̄

= Dµ�
†
iD

µ
�
i + F

†
i F

i � i

2

⇣
Dµ ̄i�̄

µ

i � ̄i�̄
µ
Dµ

i
⌘

+ i

p
2gj�̄

ja · ̄iTa�
i � i

p
2gj�

†
iTa

i · �ja � gjD
ja
�
†
iTa�

i
,

(3.18)

where the superfield content of the theory is represented by a set of chiral
superfields {�i = (�i

,
i
, F

i)} and vector superfields {V j = (vj,�j, Dj)}. In
the first line of the equation above, the [.]✓·✓✓̄·✓̄ indicates that one has to extract
the highest-order coe�cient in ✓ and ✓̄ from the expansion of the superfield
expression included in the brackets. We recall that the covariant derivatives are
defined in Eq. (2.8) and that the matrices Ta stand for representation matrices
of the gauge group relevant to the fields they act on. This Lagrangian can be
computed in FeynRules by issuing

Theta2Thetabar2Component[CSFKineticTerms[]]

47

(2) Spin-1/2 fermions:
- Majorana:

1

2
�̄i/@�� 1

2
m�̄�,

- Dirac:
 ̄i/@ �m ̄ ,

(3) Vectors:
- Real:

� 1

4
Fµ⌫F

µ⌫ � 1

2
m

2
AµA

µ
,

- Complex:

� 1

2
F

†
µ⌫F

µ⌫ �m
2
A

†
µA

µ
.

FeynRules does not use the quadratic pieces of a Lagrangian. However,
the propagators hard-coded either in FeynRules or in the event generators
assume that the quadratic piece of the Lagrangian follow the above-mentioned
conventions. Furthermore, since the kinetic and mass terms for spin-3/2 and
spin-2 fields are model dependent, they are therefore not implemented. Finally,
checks on Weyl fermion kinetic and mass terms are also not supported since
there exist several ways to write them down.

3.2 Automatic generation of supersymmetric Lagrangians

The implementation of supersymmetric Lagrangians in FeynRules can be
highly facilitated by means of a series of dedicated built-in functions. The
Lagrangian describing the kinetic terms and the gauge interactions of the
chiral content of any supersymmetric theory is given by

Lchiral =

"

�†
i e

�2gjV j
�i

#

✓·✓✓̄·✓̄

= Dµ�
†
iD

µ
�
i + F

†
i F

i � i

2

⇣
Dµ ̄i�̄

µ

i � ̄i�̄
µ
Dµ

i
⌘

+ i

p
2gj�̄

ja · ̄iTa�
i � i

p
2gj�

†
iTa

i · �ja � gjD
ja
�
†
iTa�

i
,

(3.18)

where the superfield content of the theory is represented by a set of chiral
superfields {�i = (�i

,
i
, F

i)} and vector superfields {V j = (vj,�j, Dj)}. In
the first line of the equation above, the [.]✓·✓✓̄·✓̄ indicates that one has to extract
the highest-order coe�cient in ✓ and ✓̄ from the expansion of the superfield
expression included in the brackets. We recall that the covariant derivatives are
defined in Eq. (2.8) and that the matrices Ta stand for representation matrices
of the gauge group relevant to the fields they act on. This Lagrangian can be
computed in FeynRules by issuing

Theta2Thetabar2Component[CSFKineticTerms[]]

47

(2) Spin-1/2 fermions:
- Majorana:

1

2
�̄i/@�� 1

2
m�̄�,

- Dirac:
 ̄i/@ �m ̄ ,

(3) Vectors:
- Real:

� 1

4
Fµ⌫F

µ⌫ � 1

2
m

2
AµA

µ
,

- Complex:

� 1

2
F

†
µ⌫F

µ⌫ �m
2
A

†
µA

µ
.

FeynRules does not use the quadratic pieces of a Lagrangian. However,
the propagators hard-coded either in FeynRules or in the event generators
assume that the quadratic piece of the Lagrangian follow the above-mentioned
conventions. Furthermore, since the kinetic and mass terms for spin-3/2 and
spin-2 fields are model dependent, they are therefore not implemented. Finally,
checks on Weyl fermion kinetic and mass terms are also not supported since
there exist several ways to write them down.

3.2 Automatic generation of supersymmetric Lagrangians

The implementation of supersymmetric Lagrangians in FeynRules can be
highly facilitated by means of a series of dedicated built-in functions. The
Lagrangian describing the kinetic terms and the gauge interactions of the
chiral content of any supersymmetric theory is given by

Lchiral =

"

�†
i e

�2gjV j
�i

#

✓·✓✓̄·✓̄

= Dµ�
†
iD

µ
�
i + F

†
i F

i � i

2

⇣
Dµ ̄i�̄

µ

i � ̄i�̄
µ
Dµ

i
⌘

+ i

p
2gj�̄

ja · ̄iTa�
i � i

p
2gj�

†
iTa

i · �ja � gjD
ja
�
†
iTa�

i
,

(3.18)

where the superfield content of the theory is represented by a set of chiral
superfields {�i = (�i

,
i
, F

i)} and vector superfields {V j = (vj,�j, Dj)}. In
the first line of the equation above, the [.]✓·✓✓̄·✓̄ indicates that one has to extract
the highest-order coe�cient in ✓ and ✓̄ from the expansion of the superfield
expression included in the brackets. We recall that the covariant derivatives are
defined in Eq. (2.8) and that the matrices Ta stand for representation matrices
of the gauge group relevant to the fields they act on. This Lagrangian can be
computed in FeynRules by issuing

Theta2Thetabar2Component[CSFKineticTerms[]]

47

C. Degrande

Toolbox

ExpandIndices[L, options]

GetKineticTerms[L, options]

GetMassTerms[L, options]

GetQuadraticTerms[L, options]

GetInteractionTerms[L, options]

SelectFieldContent[L, list]

C. Degrande

Check your model in MG

check gauge/ permutation/ Lorentz + your process

play with coupling order, check the diagrams

check the behaviour of your model, high energy,
resonance

C. Degrande

• Why

• LHC : QCD correction are larges

• loop induced processes may dominate (DM DM
to 2 photons, scalar production ‘a la Higgs’)

• How :

• Automated based on development done in
FeynRules and MadGraph5_aMC@NLO

BSM at one loop

C. Degrande

R2

Finite set of vertices that can be computed once
for all

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30

d 4 ε

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based on MadGraph5[5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The first one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial finite part in the counterterms requires a careful redefinition of the fields and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2⇡)4

Z
d
d
q

N (q)

D0D1 . . . Dm�1
, (2)

with the propagator denominators given by Di ⌘ (q + pi)
2 �m

2
i
and where mi are the masses

of the particles in the loop, q is the loop momentum and pi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d�4 dimensional part x̃ as follow x ⌘ x+ x̃. Rational terms are
finite contributions generated by the part of the integrand linear in d � 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d� 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di↵erent set of scalar integrals [6]. The R2 terms are defined as the finite part due to the d� 4
component of the numerator

R2 ⌘ lim
✏�0

1

(2⇡)4

Z
d
d
q

Ñ (q̃, q, ✏)

D0D1 . . . Dm�1
, (3)

where ✏ is defined by d ⌘ 4 � 2✏. We use here the ’t Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d

dimensions:

⌘
µ ⌫

⌘
µ ⌫

= d, (4)

�
µ
�
µ
= d 1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices in d dimensions �

u
are chosen to

anti-commute with �5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. The R2 term are the second missing ingredient as they had to be computed so far by
hand for each model. The R2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of the R2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by three Mathematica packages, FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added to FeynRules to
renormalize models and output the NLO vertices in the UFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e↵ective field theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2

C. Degrande

R1

R1

q̃2

d, c, b, a

n R1

R1

q̃2 d, c, b

q̃2

m2
i → m2

i − q̃2 .

n

n

q̃2

q̃2 d, c, b

∫

dnq̄
q̃2

D̄iD̄j

= −
iπ2

2

[

m2
i + m2

j −
(pi − pj)2

3

]

+ O(ϵ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= −
iπ2

2
+ O(ϵ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= −
iπ2

6
+ O(ϵ) .

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) .

Z̄i

Like for the 4 dimensional part but with a different set of
integrals

Due to the ℇ dimensional parts of the denominators

Only R = R1+R2 is gauge invariant Check

C. Degrande

UV
What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30

What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30Finite set of vertices that can be computed once
for all

Relations fixed by the Lagrangian (finite part)

C. Degrande

Renormalization

External parameters

Same for the conjugate field

Internal parameters are renormalised by replacing the
external parameters in their expressions

one-loop ingredients for other NLO tools than MadGraph5 aMC@NLO like GoSam [18] for
example which is already using the UFO format. As an explicit example, we consider the Two
Higgs Doublet Model (2DHM). The 2HDM is a simple but important extension of the SM since
it provides a well defined model to search for extra scalar particles.

The paper is organized as follows. The second section focuses on the renormalization of the
Lagrangian and introduces the renormalization conditions for the on-shell scheme. This scheme
is easily extended to complex mass scheme to provide an appropriate treatment of the widths.
The main advantage of those schemes is to avoid the evaluation of the loops on the external legs
and it is used, for example, in MadLoop to make the computation faster. The third section
discusses the algorithm for the computation of the counterterms from the amplitudes. This
section ends with the validation of the algorithm. The 2HDM is briefly introduced in Sect. 4 to
fix the notation. The R2 and UV counterterm vertices for the 2HDM are given in Sect. 5 and 6
respectively. Finally, the conclusion is given in the last section.

2 Renormalization

2.1 The renormalization constants

In dimensional regularization UV-divergences appear as poles in 1/✏ where d ⌘ 4 � 2✏. In a
renormalizable theory, they can absorbed by a redefinition of the free parameters and of the
fields

x0 � x+ �x,

�0 � (1 +
1

2
�Z��)�+

X

�

1

2
�Z���, (6)

where x is an external parameter and � and � are fields with the same quantum numbers, the
bare quantities are denoted by an additional zero subscript compared to the renormalized fields or
parameters, the renormalization constant are preceded by a �. For the fermions, each chirality is
renormalized independently. The external parameters are independent parameters which values
should be fixed by experiments. On the contrary, internal parameters are functions of the external
parameters. Internal parameters are also renormalized. However, their renormalization does not
require the introduction of new renormalization constants and is fixed by their dependence on
the external parameters. The same self renormalization constants Z�� are used for both the
fields and their hermitian conjugates and not its conjugate as required by the complex mass
scheme [19]. Their imaginary parts would otherwise disappear form the hermitian Lagrangian.
For example, the kinetic term of a scalar has an imaginary part if

�0 � (1 + 1
2�Z��)�

�
†
0 � (1 + 1

2�Z��)�†

�
) @

µ
�0@µ�

†
0 � (1 + �Z��)@

µ
�@µ�

† (7)

to absorb the imaginary part coming from the corresponding term of the two point loop ampli-
tude. On the contrary, they would be no imaginary part if the conjugated field is renormalized
with the conjugate of the renormalization constant, i.e.

�0 � (1 + 1
2�Z��)�

�
†
0 � (1 + 1

2�Z
⇤
��

)�†

�
) @

µ
�0@µ�

†
0 � (1 + <�Z��)@

µ
�@µ�

†
. (8)

In the on-shell scheme, those constants are real and therefore also identical for both the fields
and their conjugates. Similarly, external parameters in FeynRules are real and therefore renor-
malized by the same constants as their conjugates. Again, this is valid for both schemes even if
the external parameters have complex renormalization constants as in the complex mass scheme.
The renormalization is therefore identical for those two renormalization schemes but only the
bare Lagrangian is hermitian in the complex mass scheme since the renormalization constants
are complex in this scheme. The bare Lagrangian can also be split into the renormalized one

3

C. Degrande

How does it work?

FeynRules
Renormalize the Lagrangian

NLOCT.m
Compute the NLO vertices

FeynArts
Write the amplitudes

model.mod
model.gen model.nlo

C. Degrande

• Renormalizable Lagrangian, maximum dimension of
the operators is 4

• Feynman Gauge

•

• ‘t Hooft-Veltman scheme

• On-shell/complex mass scheme for the masses and
wave functions

• MS by default for everything else (zero-momentum
possible for fermion gauge boson interaction)

Restrictions/Assumptions

{�µ, �5} = 0

C. Degrande

• tested* on the SM (QCD:P. Draggiotis et al.
+QED:M.V. Garzelli et al)

• tested* on MSSM (QCD:H.-S. Shao, Y.-J. Zhang) :
test the Majorana

R2 : Validation

*Analytic comparison of the expressions

C. Degrande

UV Validation

• SM QCD : tested* (W. Beenakker, S. Dittmaier,
M. Kramer, B. Plumper)

• SM EW : tested* (expressions given by H.-S.
Shao from A. Denner)

*Analytic comparison of the expressions

C. Degrande

Tests in event generators

• aMC@NLO

• The SM QCD has been tested by V. Hirschi
(Comparison with the built-in version)

• The MSSM QCD and SM EW are tested by H.-
S. Shao and V. Hirschi

• 2HDM QCD is currently tested (p p > S, H+ t)

• gauge invariance

• pole cancelation

C. Degrande

SM tests
=== Finite ===

Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result
d d~ > w+ w- g -1.2565695610e+01 -1.2565705416e+01 -1.2565696276e+01 3.9018817097e-07 Pass

=== Born ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d d~ > w+ w- g 1.8518318521e-06 1.8518318521e-06 1.8518318521e-06 8.0617231411e-15 Pass

=== Single pole ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d d~ > w+ w- g -1.9397426502e+01 -1.9397426502e+01 -1.9397426504e+01 5.5894073017e-11 Pass

=== Double pole ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d d~ > w+ w- g -5.6666666667e+00 -5.6666666667e+00 -5.6666666667e+00 3.0015206007e-14 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result
d~ d > a g g -5.3971186943e+01 -5.3971193753e+01 -5.3971189940e+01 6.3091071914e-08 Pass

=== Born ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > a g g 6.4168774056e-05 6.4168764370e-05 6.4168764370e-05 7.5467680882e-08 Pass

=== Single pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > a g g -3.7439549398e+01 -3.7439549398e+01 -3.7439549397e+01 6.8122965983e-12 Pass

=== Double pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > a g g -8.6666666667e+00 -8.6666666667e+00 -8.6666666667e+00 2.2443585452e-14 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result
d~ d > z g g -5.3769573669e+01 -5.3769573347e+01 -5.3769566412e+01 6.7475496780e-08 Pass

C. Degrande

SM tests

=== Born ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > z g g 3.1531233900e-04 3.1531235770e-04 3.1531235770e-04 2.9654886777e-08 Pass

=== Single pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > z g g -3.7464897007e+01 -3.7464897007e+01 -3.7464897007e+01 4.2333025503e-12 Pass

=== Double pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > z g g -8.6666666667e+00 -8.6666666667e+00 -8.6666666667e+00 2.1316282073e-14 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result
d~ d > z z g -5.9990384275e+00 -5.9990511729e+00 -5.9990379587e+00 1.1013604745e-06 Pass

=== Born ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > z z g 2.2616997126e-06 2.2617000449e-06 2.2617000449e-06 7.3450366526e-08 Pass

=== Single pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > z z g -1.5469587040e+01 -1.5469587040e+01 -1.5469587040e+01 1.5226666708e-11 Pass

=== Double pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

d~ d > z z g -5.6666666667e+00 -5.6666666667e+00 -5.6666666667e+00 2.6645352591e-15 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result
g g > h t t~ 2.9740187004e+01 2.9740187005e+01 2.9740187036e+01 5.3265970697e-10 Pass

C. Degrande

SM tests

=== Born ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

g g > h t t~ 1.1079653971e-07 1.1079653974e-07 1.1079653974e-07 1.3190849004e-10 Pass

=== Single pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

g g > h t t~ -7.0825709000e+00 -7.0825709000e+00 -7.0825709000e+00 5.0901237085e-13 Pass

=== Double pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

g g > h t t~ -6.0000000000e+00 -6.0000000000e+00 -6.0000000000e+00 1.7023419711e-15 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result
g g > z t t~ 3.6409017466e+01 3.6409021125e+01 3.6409021117e+01 5.0242920154e-08 Pass

=== Born ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

g g > z t t~ 7.0723041711e-07 7.0723046101e-07 7.0723046101e-07 3.1039274206e-08 Pass

=== Single pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

g g > z t t~ -7.1948086812e+00 -7.1948086773e+00 -7.1948086773e+00 2.7349789963e-10 Pass

=== Double pole ===
Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result

g g > z t t~ -6.0000000000e+00 -6.0000000000e+00 -6.0000000000e+00 2.5165055225e-15 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result
d d~ > w+ w- g -1.2565695610e+01 -1.2565705416e+01 -1.2565696276e+01 3.9018817097e-07 Pass

C. Degrande

SM tests

=== Born ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d d~ > w+ w- g 1.8518318521e-06 1.8518318521e-06 1.8518318521e-06 8.0617231411e-15 Pass

=== Single pole ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d d~ > w+ w- g -1.9397426502e+01 -1.9397426502e+01 -1.9397426504e+01 5.5894073017e-11 Pass

=== Double pole ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d d~ > w+ w- g -5.6666666667e+00 -5.6666666667e+00 -5.6666666667e+00 3.0015206007e-14 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result
d~ d > a g g -1.1504816412e+01 -1.1504816557e+01 -1.1504815497e+01 4.6089385415e-08 Pass

=== Born ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d~ d > a g g 2.3138920858e-06 2.3138920858e-06 2.3138920858e-06 4.3012538015e-15 Pass

=== Single pole ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d~ d > a g g -2.8637049838e+01 -2.8637049838e+01 -2.8637049838e+01 1.5718407645e-13 Pass

=== Double pole ===
Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result

d~ d > a g g -8.6666666667e+00 -8.6666666667e+00 -8.6666666667e+00 1.7421961310e-15 Pass

=== Summary ===
 1/1 passed, 0/1 failed=== Finite ===

Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result
d~ d > z g g -1.0306105482e+01 -1.0306105654e+01 -1.0306102645e+01 1.4600800434e-07 Pass

=1/3 tests+2/3

C. Degrande

EFT at NLO

85

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

In the loop:
same as SM

+axial anomaly

More momenta: higher rank
of the integral numerator

Additional gamma
and colour algebra

C. Degrande

Axial anomaly

86

gAγμγ5
SM:
gu

A = gc
A = gt

A = − gd
A = − gs

A = − gb
A

SMEFT:
gu

A ≠ gc
A ≠ gt

A ≠ − gd
A ≠ − gs

A ≠ − gb
A

gAγμγ5 =

gApγ5

+ modification of quarks-gluon vertex (chromo)

∝ ϵp1p2μ1μ2

C. Degrande

EFT at NLO

87

=? -1 or +1

Evanescent operators:

Operator O(8)
ut is defined as

O
(8)
ut =

�
ū�

µ
T

A
u
� �

t̄�µT
A
t
�

(1)

To derive its CTs we need color decomposition:

(TATB)ij(TBTA)kl =
7

6
(TA)ij(TA)kl +

2

9
�ij�kl (2)

(TATB)ij(TATB)kl = �1

3
(TA)ij(TA)kl +

2

9
�ij�kl (3)

and an evanescent operator defined as (see for example, [1])

E =
�
ū�

µ
�
⌫
�
⇢
PRT

A
u
� �

t̄�µ�⌫�⇢PRT
A
t
�
+ (�16 + 4a")

�
ū�

µ
PRT

A
u
� �

t̄�µPRT
A
t
�

(4)

where the a is just to keep track of the evanescent basis dependence; a = 1
corresponds to the choice of [1]. It follows that

�
µ
�
⌫
�
⇢
PR ⌦ �µ�⌫�⇢PR = E + (16� 4a")�µ

PR ⌦ �µPR (5)

�
µ
�
⌫
�
⇢
PR ⌦ �⇢�⌫�µPR = �E + [4� (12� 4a)"]�µ

PR ⌦ �µPR (6)

1 Diagrams 1,2

First consider diagrams:

Figure 1:

Left diagram:

M1 =
C

⇤2
g
2
s

7

6
T ⌦ T +

2

9
� ⌦ �

�

Z
d
D
q

(2⇡)D
[ū(p3)�

⌫
(/p3 � /q +m3)

(p3 � q)2 �m2
3

�
µ
PRv(p4)]

[v̄(p2)�µPR

(/p1 � /q +m1)

(p1 � q)2 �m2
1

�⌫u(p1)]
1

q2
(7)

1

Operator O(8)
ut is defined as

O
(8)
ut =

�
ū�

µ
T

A
u
� �

t̄�µT
A
t
�

(1)

To derive its CTs we need color decomposition:

(TATB)ij(TBTA)kl =
7

6
(TA)ij(TA)kl +

2

9
�ij�kl (2)

(TATB)ij(TATB)kl = �1

3
(TA)ij(TA)kl +

2

9
�ij�kl (3)

and an evanescent operator defined as (see for example, [1])

E =
�
ū�

µ
�
⌫
�
⇢
PRT

A
u
� �

t̄�µ�⌫�⇢PRT
A
t
�
+ (�16 + 4a")

�
ū�

µ
PRT

A
u
� �

t̄�µPRT
A
t
�

(4)

where the a is just to keep track of the evanescent basis dependence; a = 1
corresponds to the choice of [1]. It follows that

�
µ
�
⌫
�
⇢
PR ⌦ �µ�⌫�⇢PR = E + (16� 4a")�µ

PR ⌦ �µPR (5)

�
µ
�
⌫
�
⇢
PR ⌦ �⇢�⌫�µPR = �E + [4� (12� 4a)"]�µ

PR ⌦ �µPR (6)

1 Diagrams 1,2

First consider diagrams:

Figure 1:

Left diagram:

M1 =
C

⇤2
g
2
s

7

6
T ⌦ T +

2

9
� ⌦ �

�

Z
d
D
q

(2⇡)D
[ū(p3)�

⌫
(/p3 � /q +m3)

(p3 � q)2 �m2
3

�
µ
PRv(p4)]

[v̄(p2)�µPR

(/p1 � /q +m1)

(p1 � q)2 �m2
1

�⌫u(p1)]
1

q2
(7)

1

compute eq. (8) in 4-dimension (as in MadLoop), we would get:

M1 � C

⇤2
g
2
s

✓
7

6
T ⌦ T

◆✓
2

Z 1

0
dx

Z 1�x

0
dy

◆

i

(4⇡)2
(4⇡)"�(1 + ")

1

4

✓
1

"
� log�

◆
g
↵̄�̄ [�⌫̄

�↵̄�
µ̄
PR ⌦ �µ̄��̄�⌫̄PR]

=
iC

⇤2

g
2
s

(4⇡)2
(4⇡)"�(1 + ")

✓
7

6
T ⌦ T

◆

✓
1

"
�
✓
2

Z 1

0
dx

Z 1�x

0
dylog�

◆◆
[�µ̄

PR ⌦ �µ̄PR] (12)

Comparing this with eq. (10), the R2 can be identified:

R21 =
iC

⇤2

g
2
s

(4⇡)2
(4⇡)"�(1 + ")

✓
7

6
T ⌦ T

◆
(�3 + a) [�µ

PR ⌦ �µPR] (13)

This R2 originates from the way in which E is defined.
The diagram on the right, M2, gives the same contribution (for the divergent

part), so in the end both UV and R2 are doubled:

UV1+2 =
iC

⇤2

g
2
s

(4⇡)2

✓
�7

3

◆
(4⇡)"�(1 + ")

1

"
[�µ

PRT
A ⌦ �µPRT

A]

R21+2 =
iC

⇤2

g
2
s

(4⇡)2

✓
�7

3

◆
(4⇡)"�(1 + ")(3� a)[�µ

PRT
A ⌦ �µPRT

A] (14)

2 Diagrams 3,4

Figure 2:

First the right diagram:

M4 =
C

⇤2
g
2
s

�1

3
T ⌦ T +

2

9
� ⌦ �

�

Z
dq

D

(2⇡)D
[ū(p3)�

⌫
(/p3 � /q +m3)

(p3 � q)2 �m2
3

�
µ
PRv(p4)]

[v̄(p2)�⌫
(�/p2

+ /q +m2)

(p2 � q)2 �m2
2

�µPRu(p1)]
1

q2
(15)

3

Operator O(8)
ut is defined as

O
(8)
ut =

�
ū�

µ
T

A
u
� �

t̄�µT
A
t
�

(1)

To derive its CTs we need color decomposition:

(TATB)ij(TBTA)kl =
7

6
(TA)ij(TA)kl +

2

9
�ij�kl (2)

(TATB)ij(TATB)kl = �1

3
(TA)ij(TA)kl +

2

9
�ij�kl (3)

and an evanescent operator defined as (see for example, [1])

E =
�
ū�

µ
�
⌫
�
⇢
PRT

A
u
� �

t̄�µ�⌫�⇢PRT
A
t
�
+ (�16 + 4a")

�
ū�

µ
PRT

A
u
� �

t̄�µPRT
A
t
�

(4)

where the a is just to keep track of the evanescent basis dependence; a = 1
corresponds to the choice of [1]. It follows that

�
µ
�
⌫
�
⇢
PR ⌦ �µ�⌫�⇢PR = E + (16� 4a")�µ

PR ⌦ �µPR (5)

�
µ
�
⌫
�
⇢
PR ⌦ �⇢�⌫�µPR = �E + [4� (12� 4a)"]�µ

PR ⌦ �µPR (6)

1 Diagrams 1,2

First consider diagrams:

Figure 1:

Left diagram:

M1 =
C

⇤2
g
2
s

7

6
T ⌦ T +

2

9
� ⌦ �

�

Z
d
D
q

(2⇡)D
[ū(p3)�

⌫
(/p3 � /q +m3)

(p3 � q)2 �m2
3

�
µ
PRv(p4)]

[v̄(p2)�µPR

(/p1 � /q +m1)

(p1 � q)2 �m2
1

�⌫u(p1)]
1

q2
(7)

1

Extra R2 (gauge invariant)
Change the UV matching

C. Degrande

4F to 2F R2

R2 difference :
• gauge inv.
• basis dependent

Connected by gauge invariance and operator to

𝒪1 = t̄RγμtRt̄RγμtR ∼ t̄RγμTatRt̄RγμTatR = 𝒪8

C. Degrande

SMEFT@NLO

• C.D., G. Durieux, F. Maltoni, K.
Mimasu, E Vryonidou, C. Zhang,
2008.11743

https://arxiv.org/abs/2008.11743

C. Degrande

Tutorial

Notation Spin Mass SU(3) SU(2) U(1)
�1 0 M1 1 1 0
�2 0 M2 1 1 0
U 1/2 MU 3 1 2/3
E 1/2 ME 1 1 -1

Table 1. The BSM field content (with quantum numbers) of the reference toy model.

predicted by the theory for the process of interest. The produced parton-level events are
in turn handed to a general purpose event generator such as Pythia [7] or Herwig [8, 9],
which creates complete events, including the effects of fragmentation and hadronization
of colored particles, initial and final state radiation via parton showers, effects from the
underlying event, decays of unstable resonances, etc. The communication between the
two classes of generators (parton-level and general purpose) is done following a universally
accepted “Les Houches Accord" (LHA) format [10, 11].

The program of the Sixth MC4BSM workshop held at Cornell University in March 2012
centered around hands-on computer tutorials [12] illustrating the tools depicted in Fig. 1.
The starting point of the tutorials was a simple toy theory model described in Section 2.
Its Feynman rules can then be automatically derived via either FeynRules (Section 3) or
LanHEP (Section 4), the end product being the input files necessary to define the model in
the parton-level event generators MadGraph and CalcHEP. The next step is to produce
parton-level events, which is done in the tutorials covered in Sections 5 and 6, respectively.
The parton-level events are then fed into Pythia 8 (Section 7) or Herwig++ (Section 8).
Finally, Section 9 contains a special tutorial on Sherpa [13], which provides an alternative
path combining all of the above steps. In principle, each tutorial exercise is self-contained
and independent of the others. Typically, each tutorial has two parts: in the first part
(the pre-workshop exercise) students download and install the software and perform some
simple tests to make sure it runs properly, while the second part deals with the actual
physics simulations.

2 The reference BSM model used in the tutorials

The tutorial exercises are illustrated with a toy reference BSM model whose particle content
is shown in Table 1. The model contains two real scalar fields, �1 and �2. They are singlets
under all SM gauge groups. Their mass terms are1:

Ls.m. = �m2
1

2
�2
1 �

m2
2

2
�2
2 �m2

12�1�2 . (2.1)

The corresponding mass eigenstates will be denoted by �1 and �2, and their mass eigen-
values by M1 and M2, respectively. For definiteness we will assume that M1 < M2.

1All Lagrangian parameters, here and below, are assumed to be real.

– 3 –

Notation Spin Mass SU(3) SU(2) U(1)
�1 0 M1 1 1 0
�2 0 M2 1 1 0
U 1/2 MU 3 1 2/3
E 1/2 ME 1 1 -1

Table 1. The BSM field content (with quantum numbers) of the reference toy model.

predicted by the theory for the process of interest. The produced parton-level events are
in turn handed to a general purpose event generator such as Pythia [7] or Herwig [8, 9],
which creates complete events, including the effects of fragmentation and hadronization
of colored particles, initial and final state radiation via parton showers, effects from the
underlying event, decays of unstable resonances, etc. The communication between the
two classes of generators (parton-level and general purpose) is done following a universally
accepted “Les Houches Accord" (LHA) format [10, 11].

The program of the Sixth MC4BSM workshop held at Cornell University in March 2012
centered around hands-on computer tutorials [12] illustrating the tools depicted in Fig. 1.
The starting point of the tutorials was a simple toy theory model described in Section 2.
Its Feynman rules can then be automatically derived via either FeynRules (Section 3) or
LanHEP (Section 4), the end product being the input files necessary to define the model in
the parton-level event generators MadGraph and CalcHEP. The next step is to produce
parton-level events, which is done in the tutorials covered in Sections 5 and 6, respectively.
The parton-level events are then fed into Pythia 8 (Section 7) or Herwig++ (Section 8).
Finally, Section 9 contains a special tutorial on Sherpa [13], which provides an alternative
path combining all of the above steps. In principle, each tutorial exercise is self-contained
and independent of the others. Typically, each tutorial has two parts: in the first part
(the pre-workshop exercise) students download and install the software and perform some
simple tests to make sure it runs properly, while the second part deals with the actual
physics simulations.

2 The reference BSM model used in the tutorials

The tutorial exercises are illustrated with a toy reference BSM model whose particle content
is shown in Table 1. The model contains two real scalar fields, �1 and �2. They are singlets
under all SM gauge groups. Their mass terms are1:

Ls.m. = �m2
1

2
�2
1 �

m2
2

2
�2
2 �m2

12�1�2 . (2.1)

The corresponding mass eigenstates will be denoted by �1 and �2, and their mass eigen-
values by M1 and M2, respectively. For definiteness we will assume that M1 < M2.

1All Lagrangian parameters, here and below, are assumed to be real.

– 3 –

The model also contains two new Dirac fermion fields, U and E. Their SM quantum
numbers are those of the SM uR and eR, respectively. These fields have mass terms

Lf.m. = MU ŪU +MEĒE . (2.2)

and interact with the new scalars via

LYuk = �1�1ŪPRu+ �2�2ŪPRu+ �0
1�1ĒPRe+ �0

2�2ĒPRe , (2.3)

where u and e are the SM up-quark and electron fields. Note that there is a Z2 symmetry
under which all fields we added (�1,2, U , E) flip sign, while all SM fields do not, so the new
particles must be pair-produced, and the lightest new particle (LNP) is stable. This same
Z2 also forbids U � u and E � e mixing via Yukawa couplings with the SM Higgs.

We assume the following ordering of masses:

MU > M2 > ML > M1 , (2.4)

so that �1 is the LNP. Not having any SM interactions, it appears as MET in the detector.
The ultimate goal of the tutorial is to simulate the process

pp ! ŪU , (2.5)

at an 8 TeV LHC, and the subsequent U decays:

U ! u�1 , (2.6)
U ! u�2 , �2 ! eE , E ! e�1 . (2.7)

3 FeynRules tutorial

The FeynRules tutorial consists of two steps: a pre-workshop exercise described in Section
3.1, and the on-site exercise described in Section 3.2

3.1 Installation instructions

The aim of this session is to make the user familiar with the basics of FeynRules using
the example of the Standard Model included in the distribution. FeynRules can be
downloaded from http://feynrules.irmp.ucl.ac.be. You need to have Mathematica
installed on your machine in order to run FeynRules. Simply download the package and
untar it.

Next, you can have a look at the SM implementation, contained in the directory
/feynrules-current/models/SM/. This folder contains various files, but in this intro-
ductory session we will only look at two of them:

1. SM.fr: the model file (a text file) containing the implementation of the SM in Feyn-
Rules.

2. SM.nb: a Mathematica notebook, showing how to load and run the model to obtain
the Feynman rules.

– 4 –

The model also contains two new Dirac fermion fields, U and E. Their SM quantum
numbers are those of the SM uR and eR, respectively. These fields have mass terms

Lf.m. = MU ŪU +MEĒE . (2.2)

and interact with the new scalars via

LYuk = �1�1ŪPRu+ �2�2ŪPRu+ �0
1�1ĒPRe+ �0

2�2ĒPRe , (2.3)

where u and e are the SM up-quark and electron fields. Note that there is a Z2 symmetry
under which all fields we added (�1,2, U , E) flip sign, while all SM fields do not, so the new
particles must be pair-produced, and the lightest new particle (LNP) is stable. This same
Z2 also forbids U � u and E � e mixing via Yukawa couplings with the SM Higgs.

We assume the following ordering of masses:

MU > M2 > ML > M1 , (2.4)

so that �1 is the LNP. Not having any SM interactions, it appears as MET in the detector.
The ultimate goal of the tutorial is to simulate the process

pp ! ŪU , (2.5)

at an 8 TeV LHC, and the subsequent U decays:

U ! u�1 , (2.6)
U ! u�2 , �2 ! eE , E ! e�1 . (2.7)

3 FeynRules tutorial

The FeynRules tutorial consists of two steps: a pre-workshop exercise described in Section
3.1, and the on-site exercise described in Section 3.2

3.1 Installation instructions

The aim of this session is to make the user familiar with the basics of FeynRules using
the example of the Standard Model included in the distribution. FeynRules can be
downloaded from http://feynrules.irmp.ucl.ac.be. You need to have Mathematica
installed on your machine in order to run FeynRules. Simply download the package and
untar it.

Next, you can have a look at the SM implementation, contained in the directory
/feynrules-current/models/SM/. This folder contains various files, but in this intro-
ductory session we will only look at two of them:

1. SM.fr: the model file (a text file) containing the implementation of the SM in Feyn-
Rules.

2. SM.nb: a Mathematica notebook, showing how to load and run the model to obtain
the Feynman rules.

– 4 –

The model also contains two new Dirac fermion fields, U and E. Their SM quantum
numbers are those of the SM uR and eR, respectively. These fields have mass terms

Lf.m. = MU ŪU +MEĒE . (2.2)

and interact with the new scalars via

LYuk = �1�1ŪPRu+ �2�2ŪPRu+ �0
1�1ĒPRe+ �0

2�2ĒPRe , (2.3)

where u and e are the SM up-quark and electron fields. Note that there is a Z2 symmetry
under which all fields we added (�1,2, U , E) flip sign, while all SM fields do not, so the new
particles must be pair-produced, and the lightest new particle (LNP) is stable. This same
Z2 also forbids U � u and E � e mixing via Yukawa couplings with the SM Higgs.

We assume the following ordering of masses:

MU > M2 > ML > M1 , (2.4)

so that �1 is the LNP. Not having any SM interactions, it appears as MET in the detector.
The ultimate goal of the tutorial is to simulate the process

pp ! ŪU , (2.5)

at an 8 TeV LHC, and the subsequent U decays:

U ! u�1 , (2.6)
U ! u�2 , �2 ! eE , E ! e�1 . (2.7)

3 FeynRules tutorial

The FeynRules tutorial consists of two steps: a pre-workshop exercise described in Section
3.1, and the on-site exercise described in Section 3.2

3.1 Installation instructions

The aim of this session is to make the user familiar with the basics of FeynRules using
the example of the Standard Model included in the distribution. FeynRules can be
downloaded from http://feynrules.irmp.ucl.ac.be. You need to have Mathematica
installed on your machine in order to run FeynRules. Simply download the package and
untar it.

Next, you can have a look at the SM implementation, contained in the directory
/feynrules-current/models/SM/. This folder contains various files, but in this intro-
ductory session we will only look at two of them:

1. SM.fr: the model file (a text file) containing the implementation of the SM in Feyn-
Rules.

2. SM.nb: a Mathematica notebook, showing how to load and run the model to obtain
the Feynman rules.

– 4 –

The model also contains two new Dirac fermion fields, U and E. Their SM quantum
numbers are those of the SM uR and eR, respectively. These fields have mass terms

Lf.m. = MU ŪU +MEĒE . (2.2)

and interact with the new scalars via

LYuk = �1�1ŪPRu+ �2�2ŪPRu+ �0
1�1ĒPRe+ �0

2�2ĒPRe , (2.3)

where u and e are the SM up-quark and electron fields. Note that there is a Z2 symmetry
under which all fields we added (�1,2, U , E) flip sign, while all SM fields do not, so the new
particles must be pair-produced, and the lightest new particle (LNP) is stable. This same
Z2 also forbids U � u and E � e mixing via Yukawa couplings with the SM Higgs.

We assume the following ordering of masses:

MU > M2 > ML > M1 , (2.4)

so that �1 is the LNP. Not having any SM interactions, it appears as MET in the detector.
The ultimate goal of the tutorial is to simulate the process

pp ! ŪU , (2.5)

at an 8 TeV LHC, and the subsequent U decays:

U ! u�1 , (2.6)
U ! u�2 , �2 ! eE , E ! e�1 . (2.7)

3 FeynRules tutorial

The FeynRules tutorial consists of two steps: a pre-workshop exercise described in Section
3.1, and the on-site exercise described in Section 3.2

3.1 Installation instructions

The aim of this session is to make the user familiar with the basics of FeynRules using
the example of the Standard Model included in the distribution. FeynRules can be
downloaded from http://feynrules.irmp.ucl.ac.be. You need to have Mathematica
installed on your machine in order to run FeynRules. Simply download the package and
untar it.

Next, you can have a look at the SM implementation, contained in the directory
/feynrules-current/models/SM/. This folder contains various files, but in this intro-
ductory session we will only look at two of them:

1. SM.fr: the model file (a text file) containing the implementation of the SM in Feyn-
Rules.

2. SM.nb: a Mathematica notebook, showing how to load and run the model to obtain
the Feynman rules.

– 4 –

The model also contains two new Dirac fermion fields, U and E. Their SM quantum
numbers are those of the SM uR and eR, respectively. These fields have mass terms

Lf.m. = MU ŪU +MEĒE . (2.2)

and interact with the new scalars via

LYuk = �1�1ŪPRu+ �2�2ŪPRu+ �0
1�1ĒPRe+ �0

2�2ĒPRe , (2.3)

where u and e are the SM up-quark and electron fields. Note that there is a Z2 symmetry
under which all fields we added (�1,2, U , E) flip sign, while all SM fields do not, so the new
particles must be pair-produced, and the lightest new particle (LNP) is stable. This same
Z2 also forbids U � u and E � e mixing via Yukawa couplings with the SM Higgs.

We assume the following ordering of masses:

MU > M2 > ML > M1 , (2.4)

so that �1 is the LNP. Not having any SM interactions, it appears as MET in the detector.
The ultimate goal of the tutorial is to simulate the process

pp ! ŪU , (2.5)

at an 8 TeV LHC, and the subsequent U decays:

U ! u�1 , (2.6)
U ! u�2 , �2 ! eE , E ! e�1 . (2.7)

3 FeynRules tutorial

The FeynRules tutorial consists of two steps: a pre-workshop exercise described in Section
3.1, and the on-site exercise described in Section 3.2

3.1 Installation instructions

The aim of this session is to make the user familiar with the basics of FeynRules using
the example of the Standard Model included in the distribution. FeynRules can be
downloaded from http://feynrules.irmp.ucl.ac.be. You need to have Mathematica
installed on your machine in order to run FeynRules. Simply download the package and
untar it.

Next, you can have a look at the SM implementation, contained in the directory
/feynrules-current/models/SM/. This folder contains various files, but in this intro-
ductory session we will only look at two of them:

1. SM.fr: the model file (a text file) containing the implementation of the SM in Feyn-
Rules.

2. SM.nb: a Mathematica notebook, showing how to load and run the model to obtain
the Feynman rules.

– 4 –

+Gauge kinetic term

C. Degrande

Step 0

• Download FeynRules 2.0 from

• https://feynrules.irmp.ucl.ac.be

• Copy the SM directory in feynrules/models and rename it
Tutorial

• Create a model file Tutorial.fr (text file)

https://feynrules.irmp.ucl.ac.be

C. Degrande

Step 1 : Model information

M$ModelName = "Tutorial";
M$Information = {Authors -> {"C.
Degrande"},
Version -> "1.0",
Date -> "21. 07. 2014",
Institutions -> {“UCLouvain"},
Emails ->
{“celine.degrande@uclouvain.be“}
};

C. Degrande

Step 2 : parameters

• 9 new external parameters :
• m1, m2, m12, MU, ME, λ1, λ2, λ1’, λ2’

M$Parameters = {
...
MM1 == {
ParameterType -> External,
Value -> 200},
...
};

See
Step 3

C. Degrande

Step 2 : parameters

• 9 new external parameters :
• m1, m2, m12, MU, ME, λ1, λ2, λ1’, λ2’

M$Parameters = {
...
MM1 == {
ParameterType -> External,
Value -> 200},
...
};

See
Step 3

InteractionOrder ->{NP, 1},

C. Degrande

Step 2 : parameters

• 3 internal parameters : M1, M2, ϑ

Celine Degrande

Step 2 : parameters
• 3 internal parameters : M1, M2, ϑ

• ParameterType is Internal

• Value is a Mathematica expression

FeynRules Tutorial 3

},
...

}

The first option tags MM1 as an external parameter, while the second option assign a value of 200GeV to m1.
We stress that this numerical value can be changed later on in the matrix element generators.

The masses in the scalar sector are not the physical masses, because the mass matrix is not diagonal. In
order to obtain the physical masses, we need to diagonalize the mass matrix

(

m2
1 m2

12

m2
12 m2

2

)

. (7)

In the following, we denote the eigenvalues by MPe1 and MPe2. In addition, we need to introduce a mixing
angle θ (th) relating the fields φi to the mass eigenstates Φi by,

(

φ1

φ2

)

=

(

− sin θ cos θ
cos θ sin θ

) (

Φ1

Φ2

)

. (8)

As in this case the mass matrix is only two-dimensional, we can compute the eigenvalues and the mixing
angle analytically, and simply implement the analytical formulas into FeynRules. The implementation follows
exactly the same lines as for the masses m1, m2, m12, with the only differences that

1. the ParameterType is Internal (as these parameters are dependent on the external mass parameters,

2. the Value is given by an analytical expression (in Mathematica syntax).

Next we turn to the implementation of the new coupling constants, which we will call lam1, la21, lam1p,
lam2p. They are all external parameters, and thus the implementation follows exactly the same lines as the
implementation of the mass parameters, with only one modification: some matrix element generators, like
for example MadGraph, keep track of the types of couplings that enter a process. This allows for example
to generate a process by only taking into account QCD-type vertices, and to neglect all QED-type vertices.
For this reason, it is mandatory to tell the matrix element generator how the new coupling constants should
be counted. As in this case we are dealing with new classes of couplings which are a priori independent
of QCD or QED interactions, we simply assign a new tag, called interaction order, to the coupling via the
option

InteractionOrder -> {NP, 1}

The name of the tag (NP for “new physics” in this case) can be chosen freely. The above option instructs the
matrix element generator to count one unit of “NP” for each new coupling.

4 Implementation of the fields

In this section we discuss the implementation of the new fields. The implementation is similar to the
implementation of the parameters, i.e., all the fields are entries of a list called M$ClassesDescription. In
Tab. 1 we show the names of the fields used in the implementation3.

We illustrate the implementation of a new field on the example of the particle U (uv). The definition of
the particle corresponds to an entry in M$ClassesDescription of the following form

3Note that the symbol u, e and phi are already in use in the SM implementation. We also avoid using simply uppercase
letters, as some matrix element generators are case insensitive.

Interaction
eigenstates

Mass
eigenstates

Interaction
eigenstates

Mass
eigenstates

• ParameterType is Internal
• Value is a Mathematica expression

C. Degrande

Step3 : fields

Celine Degrande

Step 3 : fieldsFeynRules Tutorial 4

U E φ1 φ2 Φ1 Φ2

uv ev pi1 pi2 p1 p2

Table 1: Symbols used for the fields in the FeynRules implementation.

M$ClassesDescription = {
...
F[100] == {

ClassName -> uv,
SelfConjugate -> False,
Indices -> {Index[Colour]},
QuantumNumbers -> {Y -> 2/3, Q -> 2/3},
Mass -> {Muv, 500},
Width -> {Wuv,1}

},
...

}

The meaning of this definition is as follows: each particle class has a name of the form X[i], where X is
related to the spin of the field (See Tab. 2), and i is an integer that labels the classes. Note that i can be
chosen freely, as long as there is no name clash with an already existing class (in this case, there could be a
name clash with the SM particles already defined in SM.fr). Each class has a series of options

1. ClassName: the symbol by which the particle will be represented in the Lagrangian.

2. SelfConjugate: a boolean variable, indicating whether the particle has an antiparticle (False) or
not (True). If the field is not selfconjugate, a symbol for the antiparticle is automatically defined by
appending “bar” to the name of the particle. In the above example the antiparticle associated to uv
will be denoted by uvbar. Note that in the case of fermions the symbol for the antiparticle refers to
the quantity Ū rather than U †.

3. Indices: All indices carried by the field. The available types of indices from the SM implementation
are

• Generation: fermion flavor index ranging from 1 to 3,

• Colour: fundamental color index ranging from 1 to 3,

• Gluon: adjoint color index ranging from 1 to 8,

• SU2W: adjoint SU(2)L index ranging from 1 to 3.

4. QuantumNumbers: a list of all U(1) charges carried by the field. In the SM implementation the following
U(1) charges are already defined

• Y: weak hypercharge,

• Q: electric charge.

M$ClassesDescription = {
...
F[100] == {
ClassName -> uv,
SelfConjugate -> False,
Indices -> {Index[Colour]},
QuantumNumbers -> {Y -> 2/3, Q -> 2/3},
Mass -> {Muv, 500},
Width -> {Wuv,1}
},
...
}

{MPe1, Internal}

S

Id # : Unique (Check in SM.fr)

Defined in SM.fr

M$ClassesDescription = {
...
F[100] == {
ClassName -> uv,
SelfConjugate -> False,
Indices -> {Index[Colour]},
QuantumNumbers -> {Y -> 2/3, Q -> 2/3},
Mass -> {Muv, 500},
Width -> {Wuv,1}
},
…
}

Unique ID (check in SM.fr)
S

{Mpe1, Internal}

Defined in SM

http://SM.fr

C. Degrande

Step 3 : fields

Celine Degrande

Step 3 : fieldsFeynRules Tutorial 4

U E φ1 φ2 Φ1 Φ2

uv ev pi1 pi2 p1 p2

Table 1: Symbols used for the fields in the FeynRules implementation.

M$ClassesDescription = {
...
F[100] == {

ClassName -> uv,
SelfConjugate -> False,
Indices -> {Index[Colour]},
QuantumNumbers -> {Y -> 2/3, Q -> 2/3},
Mass -> {Muv, 500},
Width -> {Wuv,1}

},
...

}

The meaning of this definition is as follows: each particle class has a name of the form X[i], where X is
related to the spin of the field (See Tab. 2), and i is an integer that labels the classes. Note that i can be
chosen freely, as long as there is no name clash with an already existing class (in this case, there could be a
name clash with the SM particles already defined in SM.fr). Each class has a series of options

1. ClassName: the symbol by which the particle will be represented in the Lagrangian.

2. SelfConjugate: a boolean variable, indicating whether the particle has an antiparticle (False) or
not (True). If the field is not selfconjugate, a symbol for the antiparticle is automatically defined by
appending “bar” to the name of the particle. In the above example the antiparticle associated to uv
will be denoted by uvbar. Note that in the case of fermions the symbol for the antiparticle refers to
the quantity Ū rather than U †.

3. Indices: All indices carried by the field. The available types of indices from the SM implementation
are

• Generation: fermion flavor index ranging from 1 to 3,

• Colour: fundamental color index ranging from 1 to 3,

• Gluon: adjoint color index ranging from 1 to 8,

• SU2W: adjoint SU(2)L index ranging from 1 to 3.

4. QuantumNumbers: a list of all U(1) charges carried by the field. In the SM implementation the following
U(1) charges are already defined

• Y: weak hypercharge,

• Q: electric charge.

S[100] == {
ClassName -> pi1,
SelfConjugate -> True,
Indices -> {},
Unphysical -> True,
Definitions -> {pi1 -> - Sin[th] p1 +
Cos[th] p2}
},

S[100] == {
ClassName -> pi1,
SelfConjugate -> True,
Indices -> {},
Unphysical -> True,
Definitions -> {pi1 -> - Sin[th] p1 +
Cos[th] p2}
},

C. Degrande

Step 4 : Lagrangian

$FeynRulesPath =
SetDirectory[“~/feynrules"];
<< FeynRules`

SetDirectory[$FeynRulesPath <> "/Models/
Tutorial”]

LoadModel["SM.fr", "Tutorial.fr"]
LoadRestriction["DiagonalCKM.rst",
"Massless.rst"]

C. Degrande

Step 4 : Lagrangian

1/2 del[pi1, mu]del[pi1, mu] - 1/2 MM1^2 pi1^2
Lint:=lam1 pi1 uvbar.ProjP.t
HC[Lint]
fined in SM.fr
I uvbar.Ga[mu].DC[uv, mu] - Muv uvbar.uv

C. Degrande

Step 4 : Lagrangian

1/2 del[pi1, mu]del[pi1, mu] - 1/2 MM1^2 pi1^2
Lint:=lam1 pi1 uvbar.ProjP.t
HC[Lint]
fined in SM.fr
I uvbar.Ga[mu].DC[uv, mu] - Muv uvbar.uv

Fermion anti-commute

C. Degrande

Step 5 : run FeynRules

vertices = FeynmanRules[LNew];
CheckMassSpectrum[LNew]
ComputeWidths[vertices];
PartialWidth[{uv, t, p1}]
TotWidth[uv]
BranchingRatio[{uv, t, p1}]
SetDirectory[“~/mg5amcnlo/models”];
WriteUFO[LSM + LNew];

C. Degrande

Step 6 : run in MadGraph

run checks!

Run your process as in the SM

Check diagrams, distributions, …

C. Degrande

Step 7 : NLO

Lren = OnShellRenormalization[LSM + LNew, QCDOnly -> True,
FlavorMixing -> False]; // Timing

SetDirectory["~/FeynArts-3.8/Models"];
WriteFeynArtsOutput[Lren, GenericFile -> False,
 Output -> "Tutorial"]; // Timing

Quit[]

SetDirectory["~/FeynArts-3.xx"];
<< FeynArts`
SetDirectory[“~/feynrules-current"]
<< NLOCT`

SetDirectory[“~/feynrules-current/Models/tutorial“]
WriteCT["Tutorial/Tutorial", "Lorentz", QCDOnly -> True,
 Exclude4ScalarsCT -> True,
 ZeroMom -> {{aS, {F[14], V[4], -F[14]}}}] // Timing

C. Degrande

Step 7 : NLO

Quit[]

SetDirectory[“~/feynrules-current/Models/tutorial“]
Get[“Tutorial.nlo"]

SetDirectory["~/mg5amcnlo/models"];
WriteUFO[LSM + LNew, Output -> "Tutorial_NLO",
 R2Vertices -> R2$vertlist, UVCounterterms -> UV$vertlist]

C. Degrande

More information

Tutorial of MC4BSM 1209.0297v1

FeynRules manual

NLOCT manual : 1406.3030

