Loop computation

$$\mathcal{A}^{1-loop} = \sum_{i} \frac{d_{i}}{d_{i}} \operatorname{Box}_{i} + \sum_{i} \frac{c_{i}}{r_{i}} \operatorname{Triangle}_{i} + \sum_{i} \frac{b_{i}}{b_{i}} \operatorname{Bubble}_{i} + \sum_{i} \frac{a_{i}}{r_{i}} \operatorname{Tadpole}_{i} + \frac{R}{r_{i}}$$

- Box, Triangle, Bubble and Tadpole are known scalar integrals
- Loop computation = find the coefficients
 - Unitarity
 - Multiple cuts
 - Tensor reduction (OPP)

Automated computation for BSM

FeynRules in a nutshell

Feynman rules outputs

FeynRules outputs can be used directly by event generators

UFO : output with the full information used by several generators

Feynman Rules

UFO

- Generic output with the full model information
 - coupling_orders.py, parameters.py, particles.py, write_param_card.py, __init__.py,
 - vertices.py, couplings.py, lorentz.py

No basis, all the lorentz structures of the model

- decays.py
- CT_vertices.py, CT_couplings.py (For NLO)
- Python module used in MadGraph, Herwig, Gosam, Sherpa

model file

(**************** This is a template model file for FeynRules **********)

```
IndexRange[ Index[Generation] ] = Range[3]
```

IndexFormat[Generation, f]

```
(***** Parameter list *****)
```

```
M$Parameters = {
```

(***** Gauge group list *****)

```
M$GaugeGroups = {
```

```
(***** Particle classes list *****)
```

```
M$ClassesDescription = {
```

Definition of variables in Mathematica syntaxe

Model information

```
M$ModelName = "my_new_model";

M$Information = {

    Authors -> {"Mr. X", "Ms. Y"},

    Institutions -> {"UC Louvain"},

    Emails -> {"X@uclouvain.be", "Y@uclouvain.be},

    Date -> "01.03.2013",

    References -> {"reference 1", "reference 2"},

    URLs -> {"http://feynrules.irmp.ucl.ac.be"},

    Version -> "1.0"

    };
```

Good practice for credit, issue(s) tracking

Indices definition

Indices definition

Indices definition

Predefined indices: Lorentz, Spin, Spin1, Spin2


```
M$Parameters = {
    param1 == { options1 },
    param2 == { options2 },
    ...
};
```


In the SM :QCDthe power of g_s QEDthe power ofe

```
aEWM1 == { ...
InteractionOrder -> {QED,-2},
Description -> "Inverse of the EW coupling constant at the Z pole"
},
```

```
vev == {...
InteractionOrder -> {QED,-1},
Description -> "Higgs vacuum expectation value"
},
```


In the SM :QCDthe power of g_s QEDthe power ofe

```
aEWM1 == { ...
InteractionOrder -> {QED,-2},
Description -> "Inverse of the EW coupling constant at the Z pole"
},
```



```
In the SM : QCD the power of g_s
              QED the power of e
vev == {...
  InteractionOrder -> {QED,-1},
  Description -> "Higgs vacuum expectation value"
 },
yu == {...
  InteractionOrder -> {QED, 1},
  Description -> "Up-type Yukawa couplings"
 },
                    Such that masses have QED=0
          However y_t is not a small parameter!
```

M\$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2}};

$$\begin{split} \text{M}\$ \text{InteractionOrderHierarchy} = \{ \begin{array}{l} \{\text{QCD}, 1\}, \\ \{\text{QED}, 2\}\}; \\ \\ \mathcal{L} = \mathcal{L} + \sum_i \frac{1}{\Lambda^2} \mathcal{O}_i + \mathcal{O}\left(\Lambda^{-4}\right) \\ \\ \text{NP} \quad \text{the power of } \Lambda^{-2} \\ \end{array} \end{split}$$

M\$InteractionOrderHierarchy = { {QCD, 1}, $\{QED, 2\}\};$ $g_s \sim e^2$ $\mathcal{L} = \mathcal{L} + \sum_{i} \frac{1}{\Lambda^2} \mathcal{O}_i + \mathcal{O}\left(\Lambda^{-4}\right)$ the power of Λ^{-2} NP $,\{NP,2\}$

M\$InteractionOrderLimit = { {NP,1 } };

Max power per diagram of Λ^{-2} is 1

M\$ClassesDescription = {
 spin1[1] == { options1 },
 spin1[2] == { options2 },
 spin2[1] == { options3 },
 ...}


```
\label{eq:F[3] == { ClassName -> uq, \\ ClassMembers -> {u, c, t}, \\ Indices -> {Index[Generation], Index[Colour]}, \\ FlavorIndex -> Generation, \\ SelfConjugate -> False, \\ Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, \\ Width -> {0, 0, {WT,1.50833649}}, \\ QuantumNumbers -> {Q -> 2/3}, \\ PDG -> {2, 4, 6}, \\ \end{array}
```


$F[3] == \{ ClassName -> uq,$	Generation index distinguishes the class members
ClassMembers \rightarrow {u, c, t},	
Indices -> {Index[Genera	tion] Index[Colour]},
FlavorIndex -> Generation,	
SelfConjugate -> False,	
Mass -> {Mu, {MU, 2.55	*^-3}, {MC,1.27}, {MT,172}},
Width $-> \{0, 0, \{WT, 1.50833649\}\},$	
QuantumNumbers $\rightarrow \{Q \rightarrow 2/3\},\$	
PDG $-> \{2, 4, 6\},$	

. . .

 $\label{eq:F[3] == { ClassName -> uq, \\ ClassMembers -> {u, c, t}, \\ Indices -> {Index[Generation], Index[Colour]}, \\ FlavorIndex -> Generation, \\ SelfConjugate -> False, \\ Mass -> {Mu, {MU, <math>2.55*^{-3}$, {MC,1.27}, {MT,172}}, \\ Width -> {0, 0, {WT,1.50833649}}, \\ QuantumNumbers -> {Q -> 2/3}, \\ PDG -> {2, 4, 6}, \\ \end{tabular}


```
F[3] == \{ ClassName \rightarrow uq, \}
  ClassMembers \rightarrow {u, c, t},
  Indices -> {Index[Generation], Index[Colour]},
  FlavorIndex -> Generation,
  SelfConjugate -> False,
  Mass -> \{Mu, \{MU, 2.55^{*}, -3\}, \{MC, 1.27\}, \{MT, 172\}\},\
  Width \rightarrow \{0, 0, \{WT, 1.50833649\}\},\
  QuantumNumbers -> \{Q -> 2/3\},\
  PDG
              -> {2, 4, 6},
                       Not used in FR but by
                           following codes
```

Interaction eigenstates

Gauge Groups

```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G.
  StructureConstant -> f,
 Representations \rightarrow {T,Colour},
  SymmetricTensor -> dSUN
```

```
C. Degrande
```

Gauge Groups

C. Degrande
Gauge Groups

```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
 SU3C == {
 Abelian -> False,
  CouplingConstant -> gs,
  GaugeBoson -> G,
 StructureConstant -> f,
 Representations \rightarrow {T,Colour},
  SymmetricTensor -> dSUN
```

Gauge Groups

```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
  GaugeBoson -> G,
  StructureConstant -> f,
 Representations \rightarrow {T,Colour}
 SymmetricTensor ->dSUN
                              Associated index
             Generator label
```

Gauge groups

FS[A, mu, nu(, a)]
$$F_{\mu\nu}^a = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^a{}_{bc} A^b_\mu A^c_\nu$$
abelian

DC[phi, mu]
$$\square D_{\mu}\phi = \partial_{\mu}\phi - igA^{a}_{\mu}T_{a}\phi$$

Lagrangian

$$\mathcal{L}^{\mathcal{QCD}} \equiv -\frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + i \bar{d} D d$$

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a] + I dqbar.Ga[mu].DC[dq, mu]

FeynRules creates the "anti"-particle name

Dot to avoid commuting the fermions

dqbar Ga[mu] T[a].dq

 \rightarrow Ga[mu,s,r] T[a,i,j] dqbar[s,f,i].dq[r,f,j]

FeynRules restores the indices internally

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

All the model files should be loaded at once

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

 $\begin{array}{ccc} A & 1 \\ GP & 2 \\ GP^{\dagger} & 3 \end{array}, ie \left(\mathbf{p}_{2}^{\mu} \right)$ $\langle 0 | i \mathcal{L}_I | \text{fields} \rangle$

All momenta are incoming

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

 $\begin{cases} \begin{pmatrix} A & 1 \\ GP & 2 \\ GP^{\dagger} & 3 \end{pmatrix}, ie (p_2^{\mu 1} - p_3^{\mu_1}) \\ \dots \\ \langle 0 | i \mathcal{L}_I | \text{fields} \rangle \end{cases}$ All momenta are incoming

Checks

CheckHermiticity[L, options]

CheckDiagonalKineticTerms[L, options]

CheckKineticTermNormalisation[L, options]

$$\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^{2} \phi^{2} \qquad \frac{1}{2} \bar{\lambda} i \partial \!\!\!/ \lambda - \frac{1}{2} m \bar{\lambda} \lambda \qquad - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^{2} A_{\mu} A^{\mu} \\ \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^{2} \phi^{\dagger} \phi \qquad \bar{\psi} i \partial \!\!\!/ \psi - m \bar{\psi} \psi \qquad - \frac{1}{2} F^{\dagger}_{\mu\nu} F^{\mu\nu} - m^{2} A^{\dagger}_{\mu} A^{\mu}$$

CheckMassSpectrum[L, options]

Toolbox

ExpandIndices[L, options] GetKineticTerms[L, options] GetMassTerms[L, options] GetQuadraticTerms[L, options] GetInteractionTerms[L, options] SelectFieldContent[L, list]

Check your model in MG

check gauge/ permutation/ Lorentz + your process

play with coupling order, check the diagrams

check the behaviour of your model, high energy, resonance

BSM at one loop

- Why
 - LHC : QCD correction are larges
 - loop induced processes may dominate (DM DM to 2 photons, scalar production 'a la Higgs')
- How :
 - Automated based on development done in FeynRules and MadGraph5_aMC@NLO

 \mathbf{R}_2

$$ar{A}(ar{q}) = rac{1}{\left(2\pi
ight)^4} \int d^dar{q} rac{ar{N}(ar{q})}{ar{D}_0 ar{D}_1 \dots ar{D}_{m-1}}, \qquad ar{D}_i = (ar{q} + p_i)^2 - m_i^2$$

$$R_{2} \equiv \lim_{\epsilon \to 0} \frac{1}{\left(2\pi\right)^{4}} \int d^{d}\overline{q} \frac{\tilde{N}\left(\tilde{q}, q, \epsilon\right)}{\overline{D}_{0}\overline{D}_{1}\dots\overline{D}_{m-1}}$$

Finite set of vertices that can be computed once for all

Due to the ε dimensional parts of the denominators

Like for the 4 dimensional part but with a different set of integrals

$$\int d^{n}\bar{q}\frac{\tilde{q}^{2}}{\bar{D}_{i}\bar{D}_{j}} = -\frac{i\pi^{2}}{2}\left[m_{i}^{2}+m_{j}^{2}-\frac{(p_{i}-p_{j})^{2}}{3}\right] + \mathcal{O}(\epsilon),$$

$$\int d^{n}\bar{q}\frac{\tilde{q}^{2}}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} = -\frac{i\pi^{2}}{2} + \mathcal{O}(\epsilon),$$

$$\int d^{n}\bar{q}\frac{\tilde{q}^{4}}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{l}} = -\frac{i\pi^{2}}{6} + \mathcal{O}(\epsilon).$$

Only $R = R_1 + R_2$ is gauge invariant

UV

$$\bar{A}(\bar{q}) = \frac{1}{(2\pi)^4} \int d^d \bar{q} \frac{N(\bar{q})}{\bar{D}_0 \bar{D}_1 \dots \bar{D}_{m-1}} = K \frac{1}{\epsilon} + \mathcal{O}\left(\epsilon^0\right)$$

$$- \frac{1}{\sqrt{2}} \left(- \frac{1}{\sqrt{2}} \right) \left(- \frac{1$$

Relations fixed by the Lagrangian (finite part)

Finite set of vertices that can be computed once for all

Renormalization

Internal parameters are renormalised by replacing the external parameters in their expressions

How does it work?

Restrictions/Assumptions

- Renormalizable Lagrangian, maximum dimension of the operators is 4
- Feynman Gauge $\{\gamma_{\mu}, \gamma_5\} = 0$
- 't Hooft-Veltman scheme
- On-shell/complex mass scheme for the masses and wave functions
- MS by default for everything else (zero-momentum possible for fermion gauge boson interaction)

- tested* on the SM (QCD:P. Draggiotis et al. +QED:M.V. Garzelli et al)
- tested* on MSSM (QCD:H.-S. Shao, Y.-J. Zhang) : test the Majorana

*Analytic comparison of the expressions

UV Validation

- SM QCD : tested* (W. Beenakker, S. Dittmaier, M. Kramer, B. Plumper)
- SM EW : tested* (expressions given by H.-S. Shao from A. Denner)

*Analytic comparison of the expressions

Tests in event generators

- aMC@NLO
- The SM QCD has been tested by V. Hirschi (Comparison with the built-in version)
- The MSSM QCD and SM EW are tested by H. S. Shao and V. Hirschi
- 2HDM QCD is currently tested ($p p > S, H^+ t$)
 - gauge invariance
 - pole cancelation

=== Finite === Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result -1.2565695610e+01 -1.2565705416e+01 -1.2565696276e+01 3.9018817097e-07 Pass d d~ > w+ w- g === Born === Stored ML5 opt ML5 opt ML5 default Process Relative diff. Result d d~ > w+ w- g |.8518318521e-06 |.8518318521e-06 |.8518318521e-06 8.0617231411e-15 Pass === Single pole === Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result d d~ > w+ w- g -1.9397426502e+01 -1.9397426502e+01 -1.9397426504e+01 5.5894073017e-11 Pass === Double pole === Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result === Summary === I/I passed, 0/I failed=== Finite === Stored MadLoop v4 ML5 opt Process ML5 default Relative diff. Result -5.3971186943e+01 -5.3971193753e+01 -5.3971189940e+01 6.3091071914e-08 Pass d~d>agg === Born === Process Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result $d \sim d > a g g$ 6.4168774056e-05 6.4168764370e-05 6.4168764370e-05 7.5467680882e-08 Pass === Single pole === Stored MadLoop v4 ML5 opt ML5 default Relative diff. Process Result -3.7439549398e+01 -3.7439549398e+01 -3.7439549397e+01 6.8122965983e-12 Pass d~d>agg === Double pole === Stored MadLoop v4 ML5 opt ML5 default Relative diff. Result Process d~ d > a g g === Summary === I/I passed, 0/I failed=== Finite === Stored MadLoop v4 ML5 opt ML5 default Process Relative diff. Result -5.3769573669e+01 -5.3769573347e+01 -5.3769566412e+01 6.7475496780e-08 Pass d~d>zgg

	=== Born ==	=					
Process	Stored MadLoop v4 ML5 opt	ML5 default Relative diff. Result					
$d \sim d > z g g$	3.1531233900e-04 3.1531235770e-04	3.1531235770e-04 2.9654886777e-08 Pass					
0 0							
	=== Single pole	===					
Process	Stored MadLoop v4 ML5 opt	ML5 default Relative diff. Result					
d~ d > z g g	-3.7464897007e+01 -3.7464897007e+01	-3.7464897007e+01 4.2333025503e-12 Pass					
	=== Double pole	2 ===					
Process	Stored MadLoop v4 ML5 opt	ML5 default Relative diff. Result					
d~ d > z g g	-8.66666666667e+00 -8.666666666667e+00	-8.666666666667e+00 2.1316282073e-14 Pass					
	=== Summary =	===					
	<pre>1/1 passed, 0/1 failed==</pre>	= Finite ===					
Process	Stored MadLoop v4 ML5 opt	ML5 default Relative diff. Result					
d~ d > z z g	-5.9990384275e+00 -5.9990511729e+00	-5.9990379587e+00 1.1013604745e-06 Pass					
Process	Born Stored Madl oop v4 MLE opt	 MIE dofoult - Polativo diff - Popult					
$d \sim d > 7.7 g$	224149971240 04 224170004490 04	2.2417000449a 04 7.3450344524a 09 Pass					
u~ u ~ z z g	2.2010771202-00 2.20170004472-00	2.20170004478-00 7.34303663268-06 Fass					
	=== Single pole	===					
Process	Stored MadLoop v4 ML5 opt	ML5 default Relative diff. Result					
$d \sim d > z z g$	-1.5469587040e+01 -1.5469587040e+01	-1.5469587040e+01 1.5226666708e-11 Pass					
0							
	=== Double pole	e ===					
Process	Stored MadLoop v4 ML5 opt	ML5 default Relative diff. Result					
d~ d > z z g	-5.66666666667e+00 -5.666666666667e+00	-5.66666666667e+00 2.6645352591e-15 Pass					
	=== Summary	===					
	I/I passed, 0/I failed=== Finite ===						
Process	Stored MadLoop v4 ML5 opt	ML5 default Relative diff. Result					
g g > h t t~	2.9740187004e+01 2.9740187005e+01	2.9740187036e+01 5.3265970697e-10 Pass					

	=== Born ===						
Process	Stored MadLoop v4 ML5 opt ML5 default	Relative diff. Result					
g g > h t t~	1.1079653971e-07 1.1079653974e-07 1.1079653974e-0	07 1.3190849004e-10 Pass					
=== Single pole === Presses							
$\sigma \sigma > h t t \sim$	$-7.0825709000_{0}+00$ $-7.0825709000_{0}+00$ -7.0825709000_{0}	$+00 = 5.0901237085_{-1}3 = P_{255}$					
88, 1100	-7.00237070000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·					
=== Double pole ===							
Process	Stored MadLoop v4 ML5 opt ML5 default	Relative diff. Result					
g g > h t t~	-6.00000000e+00 -6.00000000e+00 -6.00000000e	+00 1.7023419711e-15 Pass					
	-						
=== Summary ===							
Dragon	I/I passed, U/I falled Finite	Polotivo diff Popult					
$\sigma \sigma > 7 t t \sim$	$3 6409017466_{e}+01 3 6409021125_{e}+01 3 6409021117_{e}+$	-01 = 5.0242920154e-08 Pass					
88,710	5.01070171000-01 5.01070211250-01 5.01070211170	01 5.02 1272015 1C-00 1 ass					
=== Born ===							
Process	Stored MadLoop v4 ML5 opt ML5 default	Relative diff. Result					
g g > z t t~	7.0723041711e-07 7.0723046101e-07 7.0723046101e-0	07 3.1039274206e-08 Pass					
Dragon	=== Single pole === Stored Medi cos v4 MLE cost MLE default	Polotivo diff Pooult					
$\sigma \sigma > \tau t t \sim$	$-7 9480868 2_{0}+00 -7 948086773_{0}+00 -7 948086773_{0}$	$+00 - 2.7349789963_{0-1}0 = 0.055$					
88-211	-7.174000012e+00 -7.1740000773e+00 -7.1740000773e	100 2.7547707705E-10 Tass					
=== Double pole ===							
Process	Stored MadLoop v4 ML5 opt ML5 default	Relative diff. Result					
g g > z t t~	-6.00000000e+00 -6.00000000e+00 -6.00000000e	+00 2.5165055225e-15 Pass					
	-						
=== Summary ===							
Dracass	I/I passed, U/I falled=== Finite === Stored MLE opt MLE opt MLE default	Polativo diff Posult					
$d d \sim > w + w_{-} \sigma$	$-12565695610_{0}+01 -12565705416_{0}+01 -12565696776$	$h_{0} + 0 = 3.90 + 88 + 70.97 = -0.7$					
αα · ·······δ		C. 01 3.7010017077C-07 1833					

=== Born === ML5 default Process Stored ML5 opt ML5 opt Relative diff. Result $d d \sim w + w - g$ [.85]83]852]e-06 [.85]83]852]e-06 [.85]83]852]e-06 8.06]723]4]]e-15 Pass === Single pole === Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result -1.9397426502e+01 -1.9397426502e+01 -1.9397426504e+01 5.5894073017e-11 Pass d d~ > w+ w- g === Double pole === Stored ML5 opt ML5 opt ML5 default Relative diff. Process Result === Summary === I/I passed, 0/I failed=== Finite === Process Stored ML5 opt ML5 opt ML5 default Relative diff. Result $d \sim d > a g g$ -1.1504816412e+01 -1.1504816557e+01 -1.1504815497e+01 4.6089385415e-08 Pass === Born === Stored ML5 opt ML5 opt Process ML5 default Relative diff. Result $d \sim d > a g g$ 2.3138920858e-06 2.3138920858e-06 2.3138920858e-06 4.3012538015e-15 Pass === Single pole === Stored ML5 opt ML5 opt ML5 default Relative diff. Result Process -2.8637049838e+01 -2.8637049838e+01 -2.8637049838e+01 1.5718407645e-13 Pass d~ d > a g g === Double pole === ML5 default Process Stored ML5 opt ML5 opt Relative diff. Result d~d>agg === Summary === I/I passed, 0/I failed=== Finite === Stored ML5 opt ML5 opt ML5 default Relative diff. Result Process -1.0306105482e+01 -1.0306105654e+01 -1.0306102645e+01 1.4600800434e-07 Pass d~d>zgg

+7/3

EFT at NLO

 $f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $\varphi^{\dagger} \varphi G^{A}_{\mu\nu} G^{A\mu\nu}$

More momenta: higher rank of the integral numerator

Additional gamma and colour algebra

 $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$

Axial anomaly

SM:

$$g_A^u = g_A^c = g_A^t = -g_A^d = -g_A^s = -g_A^b$$

SMEFT:
 $g_A^u \neq g_A^c \neq g_A^t \neq -g_A^d \neq -g_A^s \neq -g_A^b$

+ modification of quarks-gluon vertex (chromo)

EFT at NLO

Evanescent operators:

 $O_{ut}^{(8)} = \left(\bar{u}\gamma^{\mu}T^{A}u\right)\left(\bar{t}\gamma_{\mu}T^{A}t\right)$

 $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{R}\otimes\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{R} = E + (16 - 4a\varepsilon)\gamma^{\mu}P_{R}\otimes\gamma_{\mu}P_{R}$ $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{R}\otimes\gamma_{\rho}\gamma_{\nu}\gamma_{\mu}P_{R} = -E + [4 - (12 - 4a)\varepsilon]\gamma^{\mu}P_{R}\otimes\gamma_{\mu}P_{R}$

Extra R2 (gauge invariant) Change the UV matching

4F to 2F R2

Connected by gauge invariance and operator to

 C.D., G. Durieux, F. Maltoni, K. Mimasu, E Vryonidou, C. Zhang, 2008.11743

Tutorial

Notation	Spin	Mass	SU(3)	SU(2)	U(1)
Φ_1	0	M_1	1	1	0
Φ_2	0	M_2	1	1	0
U	1/2	M_U	3	1	2/3
	1/2	M_E	1	1	-1

 $M_U > M_2 > M_L > M_1$

$$\mathcal{L}_{\text{s.m.}} = -\frac{m_1^2}{2}\phi_1^2 - \frac{m_2^2}{2}\phi_2^2 - m_{12}^2\phi_1\phi_2$$

+Gauge kinetic term

 $\mathcal{L}_{\rm f.m.} = M_U \bar{U} U + M_E \bar{E} E$

 $\mathcal{L}_{\text{Yuk}} = \lambda_1 \phi_1 \bar{U} P_R u + \lambda_2 \phi_2 \bar{U} P_R u + \lambda_1' \phi_1 \bar{E} P_R e + \lambda_2' \phi_2 \bar{E} P_R e$

 $pp \to \bar{U}U$

 $U \to u\Phi_1$,

 $U \to u\Phi_2, \quad \Phi_2 \to eE, \quad E \to e\Phi_1$

Step 0

- Download FeynRules 2.0 from
 - <u>https://feynrules.irmp.ucl.ac.be</u>
- Copy the SM directory in feynrules/models and rename it Tutorial
- Create a model file Tutorial.fr (text file)

Step 1 : Model information

```
M$ModelName = "Tutorial";
M$Information = {Authors -> {"C.
Degrande"},
Version -> "1.0",
Date -> "21. 07. 2014",
Institutions -> {"UCLouvain"},
Emails ->
{"celine.degrande@uclouvain.be"}
};
```

Step 2 : parameters

- 9 new external parameters :
 - m1, m2, m12, MU, ME, λ1, λ2, λ1', λ2'
 See
 Step 3

M\$Parameters = {

```
MM1 == {
ParameterType -> External,
Value -> 200},
```

};

Step 2 : parameters

- 9 new external parameters :
 - m1, m2, m12, MU, ME, λ1, λ2, λ1', λ2'
 See
 Step 3

M\$Parameters = { •••

ParameterType _> External,

Value -> 200},

• • •

 $MM1 == {$

};

InteractionOrder ->{NP, 1},

Step 2 : parameters

• 3 internal parameters : M1, M2, ϑ

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$$
Interaction
Mass
incidentiates
eigenstates
eigenstates
eigenstates

- ParameterType is Internal
- Value is a Mathematica expression
Step3 : fields

Step 3 : fields

U	E	ϕ_1	ϕ_2	Φ_1	Φ_2
uv	ev	pi1	pi2	p1	p2

```
S[100] == {
ClassName -> pi1,
SelfConjugate -> True,
Indices -> {},
Unphysical -> True,
Definitions -> {pi1 -> - Sin[th] p1 +
Cos[th] p2}
},
```

Step 4 : Lagrangian

\$FeynRulesPath =
SetDirectory["~/feynrules"];
<< FeynRules`</pre>

SetDirectory[\$FeynRulesPath <> "/Models/ Tutorial"]

LoadModel["SM.fr", "Tutorial.fr"]
LoadRestriction["DiagonalCKM.rst",
"Massless.rst"]

Step 4 : Lagrangian

```
1/2 del[pi1, mu]del[pi1, mu] - 1/2 MM1^2 pi1^2
Lint:=lam1 pi1 uvbar.ProjP.t
HC[Lint]
```

I uvbar.Ga[mu].DC[uv, mu] - Muv uvbar.uv

Step 4 : Lagrangian

Step 5 : run FeynRules

vertices = FeynmanRules[LNew]; CheckMassSpectrum[LNew] ComputeWidths[vertices]; PartialWidth[{uv, t, p1}] TotWidth[uv] BranchingRatio[{uv, t, p1}] SetDirectory["~/mg5amcnlo/models"]; WriteUF0[LSM + LNew];

Step 6 : run in MadGraph

run checks!

Run your process as in the SM

Check diagrams, distributions, ...

Step 7 : NLO

Lren = OnShellRenormalization[LSM + LNew, QCDOnly -> True, FlavorMixing -> False]; // Timing

```
SetDirectory["~/FeynArts-3.8/Models"];
WriteFeynArtsOutput[Lren, GenericFile -> False,
Output -> "Tutorial"]; // Timing
```

Quit[]

```
SetDirectory["~/FeynArts-3.xx"];
<< FeynArts`
SetDirectory["~/feynrules-current"]
<< NLOCT`</pre>
```

```
SetDirectory["~/feynrules-current/Models/tutorial"]
WriteCT["Tutorial/Tutorial", "Lorentz", QCDOnly -> True,
Exclude4ScalarsCT -> True,
ZeroMom -> {{aS, {F[14], V[4], -F[14]}}}]// Timing
```

Step 7 : NLO

Quit[]

SetDirectory["~/feynrules-current/Models/tutorial"] Get["Tutorial.nlo"]

SetDirectory["~/mg5amcnlo/models"]; WriteUFO[LSM + LNew, Output -> "Tutorial_NLO", R2Vertices -> R2\$vertlist, UVCounterterms -> UV\$vertlist]

More information

Tutorial of MC4BSM 1209.0297v1

FeynRules manual

NLOCT manual : 1406.3030