

Short review of Dark Matter Tools

VSOP 2024, Quy Nhon

Andreas Goudelis LPC – Clermont Ferrand

A bit of history: automation

In the early 2000's, if you wanted to compute the dark matter abundance predicted by your favourite model, you had to:

- \cdot Write down your Lagrangian.
- \cdot Extract all vertices.
- \cdot Figure out which processes are relevant for dark matter production/depletion.
 - *e.g.* in the MSSM \sim 2800 processes

- \cdot Compute all the cross-sections.
- \cdot Write down the relevant Boltzmann equations.
- \cdot Code all these expressions and numerically solve your Boltzmann equations.

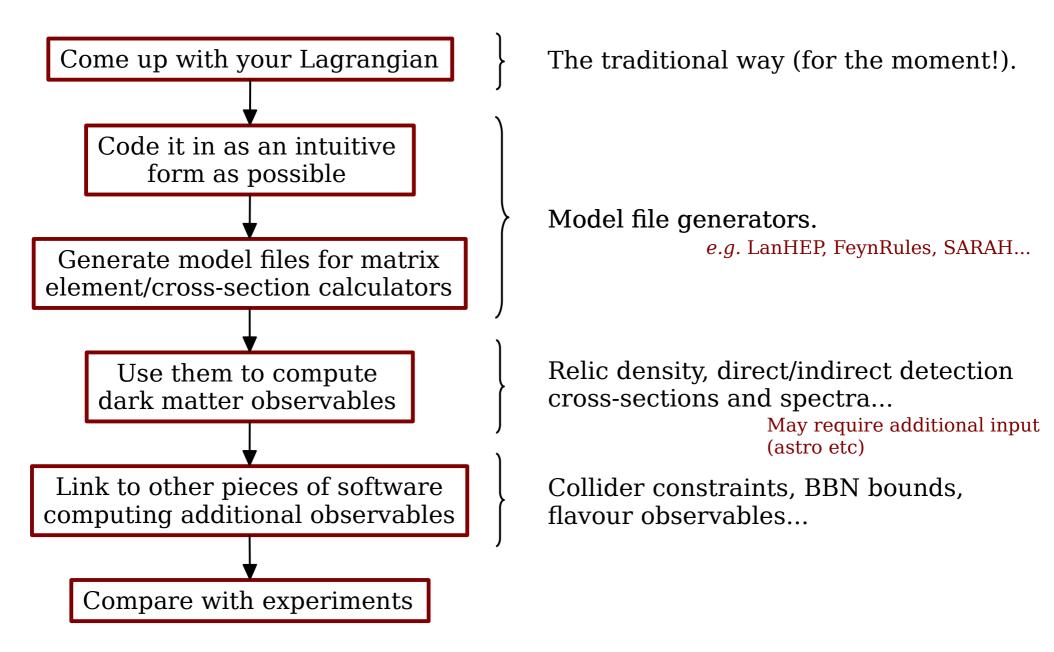
A bit of history: automation

In the early 2000's, if you wanted to compute the dark matter abundance predicted by your favourite model, you had to:

- \cdot Write down your Lagrangian.
- \cdot Extract all vertices.
- \cdot Figure out which processes are relevant for dark matter production/depletion.
- \cdot Compute all the cross-sections.
- \cdot Write down the relevant Boltzmann equations.
- \cdot Code all these expressions and numerically solve your Boltzmann equations.

these tend to be the most time-consuming *and prone to human error*.

A bit of history: automation


In the early 2000's, if you wanted to compute the dark matter abundance predicted by your favourite model, you had to:

- \cdot Write down your Lagrangian.
- \cdot Extract all vertices.
- \cdot Figure out which processes are relevant for dark matter production/depletion.
- \cdot Compute all the cross-sections.
- \cdot Write down the relevant Boltzmann equations.
- \cdot Code all these expressions and numerically solve your Boltzmann equations.

these tend to be the most time-consuming *and prone to human error*.

Can we make our lives a bit easier?

A phenomenologist's wishlist

+ Do all of that reasonably fast.

So which are the dark matter tools?

For the sake of the presentation, let's split them into two categories:

Tools that compute the DM relic abundance (but which may also serve other purposes!)

 \cdot micrOMEGAs: Generic BSM models.

- · DarkSUSY: Generic BSM models.
- · SuperIso Relic: MSSM/NMSSN.
- \cdot MadDM: Generic BSM models.

So which are the dark matter tools?

For the sake of the presentation, let's split them into two categories:

Tools that compute the DM relic abundance (but which may also serve other purposes!)

 \cdot micrOMEGAs: Generic BSM models.

· DarkSUSY: Generic BSM models.

· SuperIso Relic: MSSM/NMSSM.

 \cdot MadDM: Generic BSM models.

Tools that don't compute the DM relic abundance

(and which definitely serve other purposes!)

· Direct detection: DirectDM, RunDM, RAPIDD, DaMaSCUS, DDCalc...

EFT matching, RGE evolution, scattering in the earth...

 Indirect detection: GALPROP, DRAGON, USINE, CLUMPY, PPPC4DMID, HDMSpectra...
Cosmic ray propagation,

Cosmic ray propagation, annihilation spectra...

· Additional functionalities: DarkBit, DarkHistory...

So which are the dark matter tools?

For the sake of the presentation, let's split them into two categories:

Tools that compute the DM relic abundance (but which may also serve other purposes!)

 \cdot micrOMEGAs: Generic BSM models.

· DarkSUSY: Generic BSM models.

· SuperIso Relic: MSSM/NMSSM.

· MadDM: Generic BSM models.

NB: All of these codes also perform (at least) the most standard calculations for direct/indirect detection.

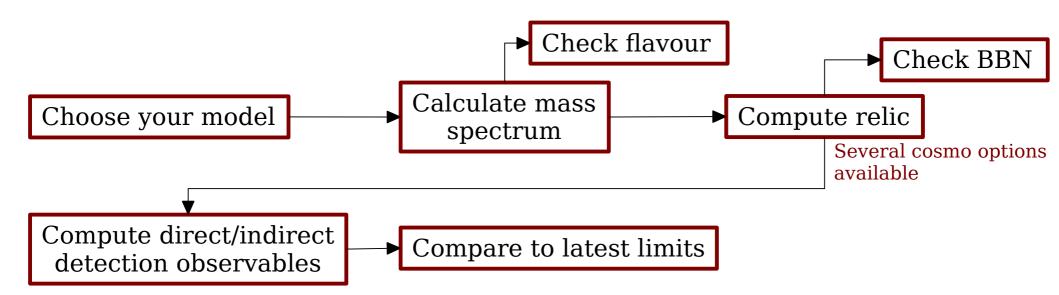
Tools that don't compute the DM relic abundance

(and which definitely serve other purposes!)

• Direct detection: DirectDM, RunDM, RAPIDD, DaMaSCUS, DDCalc...

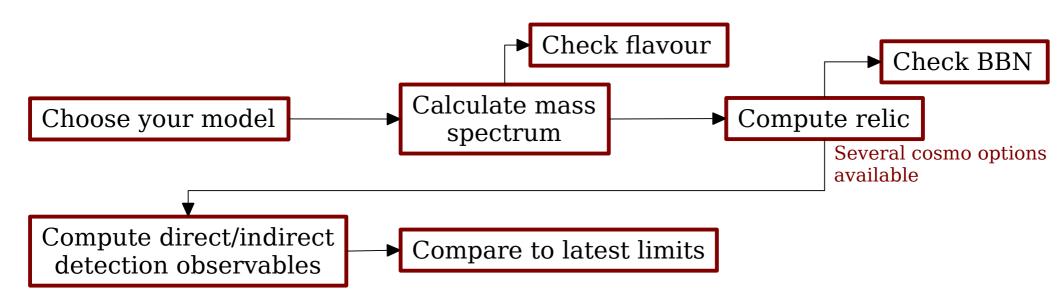
EFT matching, RGE evolution, scattering in the earth...

 Indirect detection: GALPROP, DRAGON, USINE, CLUMPY, PPPC4DMID, HDMSpectra...
Cosmic ray propagation,


Cosmic ray propagation, annihilation spectra...

· Additional functionalities: DarkBit, DarkHistory...

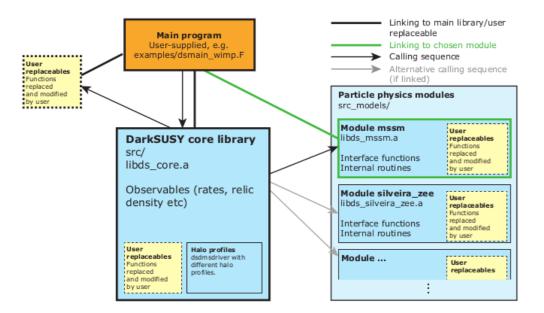
NB: Some of these codes are/can be linked to relic abundance calculation codes.


SuperIso Relic

A mixed C/Fortran code to compute numerous dark matter observables in the MSSM/NMSSM (current version: v4).

SuperIso Relic

A mixed C/Fortran code to compute numerous dark matter observables in the MSSM/NMSSM (current version: v4).


- \cdot Comprehensive framework for analysis of neutralino dark matter in (N)MSSM.
- \cdot Possibility to modify several cosmological assumptions.
- \cdot Readily linked with AlterBBN to compute BBN observables.
- \cdot Readily linked with SuperIso to check flavour constraints.

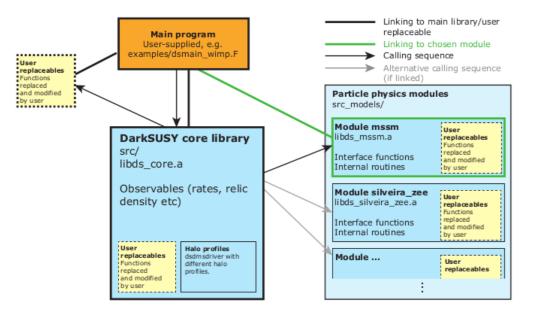
DarkSUSY

https://darksusy.hepforge.org/

A Fortran code to compute numerous dark matter observables for different dark matter candidates (current version: v6).

 \cdot Underwent *major* upgrade a few years ago, no longer SUSY-specific.

 Freeze-out, freeze-in, direct detection, indirect detection (under different astro assumptions).


 \cdot Possibility to link to other, model-specific packages.

DarkSUSY

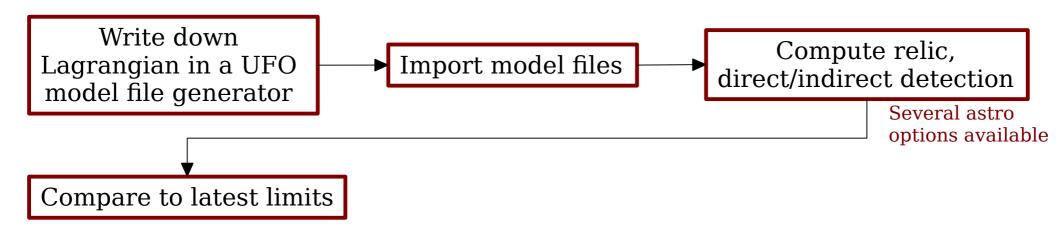
https://darksusy.hepforge.org/

A Fortran code to compute numerous dark matter observables for different dark matter candidates (current version: v6).

- \cdot Underwent *major* upgrade a few years ago, no longer SUSY-specific.
- Freeze-out, freeze-in, direct detection, indirect detection (under different astro assumptions).
- Possibility to link to other, modelspecific packages.

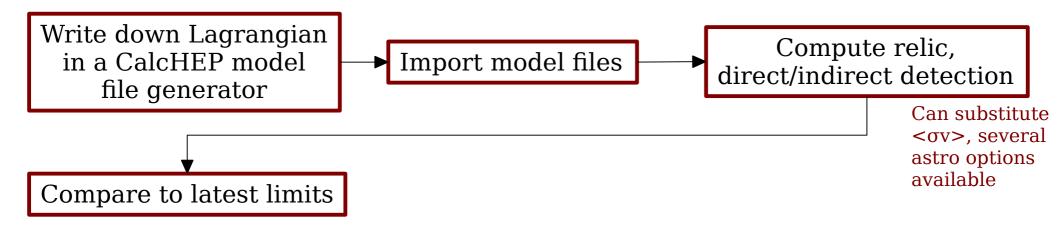
- \cdot Very modular.
- \cdot Dark freeze-out computations w/ different sector temperatures.
- \cdot Possibility to account for late kinetic decoupling, Sommerfeld enhancement.
- \cdot Possibility to compute self-interaction effects.

MadDM


A Fortran/Python code to compute dark matter observables for generic dark matter candidates (current version: v3).

MadDM

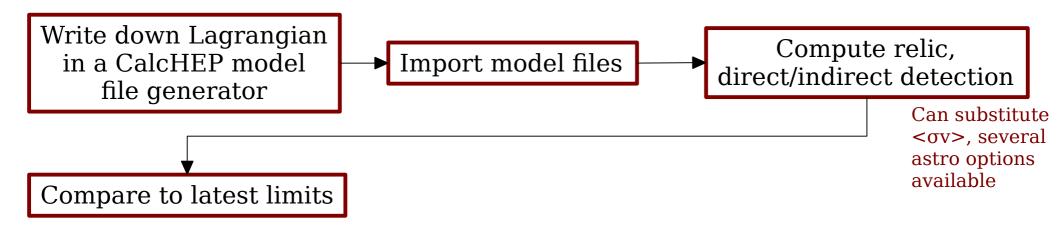
A Fortran/Python code to compute dark matter observables for generic dark matter candidates (current version: v3).



- \cdot Handles generic extensions of the SM, no need to compute cross-sections by hand.
- \cdot Relies on MG5_AMC, extensively used in collider physics.
- \cdot Readily linked with numerous HEP packages.
- \cdot Possibility to compute 2 \rightarrow n/loop-induced processes for ID via MadLoop.

micrOMEGAs

MicrOMEGAs


A C/Fortran code to compute dark matter observables for generic dark matter candidates (current version: v6).

micrOMEGAs

MicrOMEGAs

A C/Fortran code to compute dark matter observables for generic dark matter candidates (current version: v6).

- \cdot Can handle multi-component dark matter models.
- · Includes semi-annihilations.
- · Freeze-in.
- \cdot Readily linked with numerous HEP packages.

Summary and outlook

 \cdot Dark matter tools have evolved significantly during the last few years, and they continue doing so.

• They are now capable of dealing with issues such as: generalized cosmological settings, self-interactions, loop-induced processes, alternative dark matter generations mechanisms, generic dark matter models.

 \cdot Which tool you should use really depends on what exactly it is that you're trying to do. Apart from a common core, each code may offer specific functionalities which might be best suited for your purposes.

 Specialized tasks may require specialized codes. Each code has its limitations! *cf* codes that don't compute the DM abunance

 \cdot All of these tools have been developed by people from within our community and they evolve thanks to the feedback from the community.

Thank you!