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1 Introduction: what is dark matter?

Before delving into the main part of these lectures, it’s useful to spell out explicitly what

their topic will be. Dark matter is an – as of yet – unidentified (in the sense that we do

not know what it’s made of) form of matter that permeates the Universe and which

• Affects the motion of stars in galaxies.

• Affects the propagation of light emitted by distant objects.

• Affects the formation of structures in our Universe.

These three points constitute, in a sense, the “definition” of dark matter: observations

related to these three elements are the reason why dark matter was introduced in the first

place.

There are a few more things that we know about dark matter
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• It does not emit light (hence, “dark”), and it does not interact with it (at least not

too much, in the sense that if it does, it does so extremely weakly).

• Most of it is cold, i.e. its velocity is small compared with the speed of light.

• It is quite stable, in the sense that the lifetime of dark matter “particles” is longer

than the age of the Universe.

• It accounts for ∼ 27% of the matter-energy content of the Universe.

• It cannot be made up of Standard Model particles. Note that there is one notable

caveat to this assertion (here we have in mind primordial black holes) but, even if no

exotic elementary particle is added to the Standard Model of particle physics, some

form of New Physics must exist.

Hopefully, most of these introductory remarks will be made clear during these lectures.

In order to understand dark matter it is essential to be familiar with a few concepts

from Cosmology (which studies why and how the Universe came to have the characteris-

tics that we observe) and particle physics (which studies the fundamental constituents of

matter and their interactions). In the first lecture, we will remind some important notions

from cosmology. Then, we will sketch the main observational arguments that lead to the

introduction of dark matter. Afterwards, we will study in some more detail some of the

most popular scenarios which aim at explaining why the Universe appears to contain as

much dark matter as we observe. Finally, we will describe two of the most important

strategies that have been (and are being) pursued in order to detect dark matter through

its non-gravitational interactions.

2 Useful background on cosmology

More often than not, during our undergraduate studies as physicists we solve exercises

(explicitly or implicitly) “ignoring gravity”. Well, cosmology is one of these cases in which

we cannot do this: gravity is completely essential in order to understand the structure

and the evolution of most apsects of the Universe at large scales. And, until disproven by

experiment, gravity is described by the General theory of Relativity (GR).

In General Relativity gravity is understood as a deformation of spacetime. All objects

move and interact within this spacetime (as well as with this spacetime), and the way

they move is dictated by the geometry of this spacetime (which, in turn, is dictated by its

matter/energy content). The fundamental object which describes such a geometry is the

metric tensor, gµν , from which we can compute the line element ds2

ds2 = gµνdx
µdxν (2.1)

where µ, ν ∈ {0, 1, 2, 3}. It obeys the Einstein field equations

Rµν −
1

2
gµνR+ Λgµν = 8πGNTµν (2.2)
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where Rµν and R are the Ricci tensor and scalar, respectively, Λ is called the cosmological

constant and Tµν is the stress-energy tensor.

But what is gµν for our Universe? In order to constrain its form, we need on the one

hand to take into account a few experimental observations. On the other hand, we also need

to realize that although at small scales (e.g. at the level of individual solar systems) the

Universe does look almost desperately complicated, if we consider scales at which the local

fluctuations in the matter/energy density can be averaged out the situation changes quite

drastically. In particular, the observations show that, at large enough scales, the Universe

is homogeneous (there are translational symmetries from one spatial point to another) and

isotropic (the Universe looks the same in all directions). Now, it is very important to note

that both of these properties refer to the spatial part of spacetime. However, the geome-

try of spacetime can be a function of time. And, indeed, observations also show that the

Universe is expanding (and at an accelerated rate).

This situation can be described by the Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
(2.3)

where k can, in principle, take any real value, but can always be chosen (through appro-

priate redefinitions) to take the values

• k = 1 for a closed, finite volume Universe (like a sphere).

• k = 0 for a flat, infinite volume Universe1.

• k = −1 for an open, infinite volume one (like a hyperbolic surface).

Observationally, the Universe turns out to be approximately flat, so we will choose k = 0 in

everything that follows. a(t), on the other hand, is a quantity called the (time-dependent)

scale factor, describing the time-evolution of the spatial part of the metric. In particular,

and assuming k = 0, if an observer at the origin is separated, at t = 0, from another

observer by a radial distance r, after time t this distance will have evolved to a(t)r: the

scale factor describes the expansion of the Universe. It is dimensionless and, conventionally,

we set (where t0 is the present and in this context the 0 subscript refers to present-day

values)

a(t = t0) ≡ a0 = 1 (2.4)

For completeness, and although we will not use it too much during these lectures, let us

also introduce the cosmological redshift z

1 + z =
1

a
(2.5)

which implies z0 = 0.

1Note that spatial flatness does not imply that spacetime is flat! A flat spacetime would require both

k = 0 and a(t) = const.
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At a quantitative level, there is another parameter which is highly relevant for the

description of the expansion of the Universe, the Hubble parameter

H(t) ≡ ȧ/a (2.6)

where the overdot denotes differentiation with respect to proper time. In cosmology it

is assumed that, when averaged over large enough volumes, the matter-energy content of

the Universe behaves like a (homogeneous and isotropic) perfect fluid with energy density

ρ and pressure p. Under this assumption, the Einstein equations lead to the Friedmann

equations

H(t) =
1

MPl

√
8π

3
ρ(t) (2.7)

Ḣ +H2 = − 8π

6M2
Pl

(ρ+ 3p) (2.8)

where MPl = 1.22 · 1019 GeV is the Planck mass. The present-day value of the Hubble

parameter is

H0 =
100km

sec · pc × h =
h

9.78× 109yr
, h ≈ 0.7 (2.9)

Note also that for perfect fluids, the pressure is related to the energy density through

an equation of state p = wρ. By combining entropy conservation with the first law of

thermodynamics, dS = dU + pdV , we find that

a(t) = a0t
2

3(1+w) ⇒ H(t) =
2

3(1 + w)

1

t
(2.10)

Exercise: Prove equation (2.10).

We can now distinguish three cases:

• Non relativistic matter (ordinary + dark, “dust”) is characterized by w = 0, which

leads to pm = 0 and ρm ∼ 1/a3

• Relativistic matter (“radiation”) is characterized by w = 1/3, which leads to pr =

ρr/3 and ρr ∼ 1/a4

• Dark energy is characterized by w = −1, which leads to pΛ = −ρΛ and ρΛ ∼ const.

Let us forget about dark energy for now. The scaling behaviour of the dust energy density

as a function of the scale factor can be understood intuitively by thinking about the energy

density of a number of non-relativistic particles in an expanding box: as long as the total

number of particles is constant, if the box doubles in size the density of particles will be

divided by a factor two, i.e. the number density is inversely proportional to the volume of

the box. In the case of radiation (let’s say photons), on the other hand, one also needs to
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consider the fact that all wavelengths are stretched along with the expansion of spacetime:

all photons are redshifted. Hence, an additional factor of 1/a is needed.

Let us note that the case k = 0 (spatially flat Universe) in (2.3) corresponds to a

specific (“critical”) value for the matter/energy density of the Universe

ρ = ρc ≡
3H2

8πG
(2.11)

The Universe is composed of all three components described previously (dust, radiation,

dark energy). The energy densities of the three components i are conventionally reported

as

Ωi =
ρi
ρc

(2.12)

Now, since the energy densities of the three components scale differently with a, the relative

contribution of the three components to the total matter-energy content of the Universe

changes with time. We distinguish, in particular, three periods: radiation dominiation,

matter domination and, eventually, dark energy domination. This is depicted in figure 1.
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Figure 1: Evolution of the different components of the Universe. Figure taken from [1].

In the majority of dark matter models, most of the action takes place during the radia-

tion domination era. The reason for this is that from CMB observations we know that dark

matter must behave as (non-relativistic) matter before matter-radiation equality. This, in

turn, leads to most dark matter production mechanisms operating during the radiation

domination era.

Let us now gradually start discussing particles. Let’s assume a particle species i in the Uni-

verse, following a phase space distribution function fi. For each set of particles in kinetic

equilibrium, i.e. forming a thermal bath, we can define a temperature T . The number (n)

and energy (ρ) density of i per unit volume is given by

ni =
gi

(2π)3

∫
fi(p⃗)d

3p⃗ (2.13)
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ρi =
gi

(2π)3

∫
Ei(p⃗)fi(p⃗)d

3p⃗ (2.14)

where gi is the number of internal degrees of freedom of the particle species and p⃗, E are

the particle 3-momenta and energy respectively, with E =
√
p⃗2 +m2. Particles in kinetic

equilibrium with a thermal bath follow the usual Fermi-Dirac/Bose-Einstein distributions

fi =
1

exp(Ei − µi)/T ± 1
(2.15)

where the plus sign applies to fermions and the minus sign to bosons.

Note that in general, if kinetic equilibrium is lost it is much trickier to define a notion

of temperature. Moreover, if there exist different sets of particles in kinetic equilibrium

within each set but not among sets, we can define multiple thermal baths each with each

own temperature.

As we already mentioned, most of what we’ll discuss in these lectures will be taking place

during the radiation domination epoch. Hence, let’s write down a few additional useful

relations that hold in such a Universe. In the same manner as we defined the energy density

of some component of the Universe, ρ, we can also define an entropy density s. To these,

we associate the effective numbers of degree of freedom, geff and heff , respectively, through

ρr(T ) =
π2

30
geff(T )T

4, sr(T ) =
2π2

45
heff(T )T

3 (2.16)

From total entropy (S) conservation, dS/dt = 0, we further obtain

ds

dt
= −3Hs (2.17)

From this equation, we can also deduce a relation between cosmic time and temperature

dt = − dT

H̄(T )T
(2.18)

where

H̄(T ) =
H(T )(

1 + 1
3
d log(heff)
d log(T )

) (2.19)

Exercise: Prove equation (2.18).

This relation allows us to compute the time that it takes for the Universe to cool from

an initial temperature T1 to a final temperature T2

t =

∫ T1

T2

dT

H̄(T )T
(2.20)
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This concludes our small recap of useful notions and relations in cosmology. It goes

without saying that there are numerous excellent textbooks and sets lecture notes which

one can use in order to get a much more complete picture concerning the early phases of

the Universe, including additional effects which we do not have time to even mention, cf

e.g. [].

3 Evidence for dark matter

Let us now turn to the reasons that lead to the introduction of the notion of dark matter

in the first place. There are actually multiple pieces of evidence supporting the existence

of dark matter. There have also been competing approaches in order to ”explain away”

some of the observational anomalies that could be explained through dark matter. One of

the most crucial reasons, however, for which dark matter is very widely accepted to exist

is due to the fact that the various pieces of evidence concern wildly different astrophysical

systems and, in particular, wildly different physical scales.

3.1 Galaxies: Galactic rotation curves

The first class of observations is concerned with spiral galaxies. Spiral galaxies rotate

around their vertical axes and, by observing the Doppler shift of the light emitted by their

visible components (e.g. stars and gas), in many cases it is possible to deduce the circular

velocity vc with which each component rotates as a function of its distance from the galactic

centre. This is called a galactic rotation curve.

At the same time, by employing spectroscopic methods it is possible to determine the

mass of a galaxy. Or, more accurately, it is possible to determine the part of its mass that

emits light.

For simplicity, let us consider a star of mass m living at a distance r from the galactic

centre, somewhere in the (visible) outskirts of a spiral galaxy. Let’s also assume that the

(visible) mass of the galaxy has been measured to beM . Then, we can estimate its circular

velocity by equating the centripetal and the gravitational force exerted on the star

mv2c (r)

r
= G

mM

r2
⇒ vc(r) =

√
GM

r
(3.1)

In other words, one would expect that stars which are further away from the galactic centre

should rotate slower than those which are closer. This, however, is not what is observed.

Indeed, actual rotation curves look much more like the one in figure 2. Contrary to

expectation, towards the outskirts of galaxies rotation curves tend to flatten out. We can

envisage two possible ways out of this situation

• Either the theory that we used in order to compute vc is wrong/inadequate (note

that even a full-blown GR calculation would lead to a result similar to the naive

Newtonian result that we just obtained). This is the approach of modified gravity.

• Or the quantities that we used in these equations are wrong. In other words, this

would mean that our estimate of the galaxy’s mass based only on luminous matter is
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Figure 2: Rotation curve of NGC6503. Figure taken from [].

wrong. Yet in other words, there could be some form of “invisble” or “dark” matter

that we haven’t accounted for, and which extends well beyond the region in which

we observe the galaxy’s visible component. This is the approach of dark matter.

It should be noted that at this level, both approaches work equally well (in fact, modified

gravity theories tend to work even better at reproducing observations; after all, they are

often actually constructed exactly in order to do so). It is also worthwhile noting that,

in different contexts, both approaches have worked historically: observations of anomalies

in the orbit of Uranus lead astronomers to hypothesize the existence of a new planet in

the solar system during the 19th century, which turned out to be Neptune. When this

approach was replicated in order to explain away anomalies in the orbit of Mercury, by

postulating the existence of a planet named “Vulcan”, it actually failed; the solution came

with the introduction of General Relativity, a modified theory of gravitation with respect

to Newtonian mechanics.

3.2 Galaxy clusters: Weak gravitational lensing vs X-ray spectroscopy

Additional - and perhaps even more compelling - evidence for the existence of dark matter

appears once we move to the scale of galaxy clusters. The most characteristic example

in this class of observations concerns the “Bullet cluster”. The Bullet cluster is located

around 3.7 Gyr away from us, and it is the result of the collision of two galaxy clusters.

Most of its visible mass is comprised of hot baryonic gas, which can be observed through

X-ray spectroscopy. Its spatial distribution is represented by the coloured regions in figure

3.

There is, however, another method which allows the reconstruction of the total mass of

the cluster: weak gravitational lensing. Gravitational lensing in general relies on the fact

that photons move along geodesics, the form of these geodesics is dictated by the geometry

of spacetime and the latter is determined by its matter-energy content. If there were no
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Figure 3: Bullet cluster visible (coloured regions) and total (green contours) mass distri-

butions [2].

matter intervening between us (the observers) and a distant star, then the light emitted

by a distant star would travel until us in a straight line. If some amount of matter is

interjected between the source and the observer, then spacetime will be curved, and so will

the geodesics. This can lead to distant objects appearing as multiple images (in limiting

cases, even entire rings, called “Einstein rings”). Such extremely favourable conditions lead

to so-called “strong lensing”. In most cases, the lensing effect is not strong enough and has

to be inferred using statistical methods (“weak lensing”). Long story short, this method

can be used in order to reconstruct the mass of (visible or invisible) objects interjected

between us and distant light sources. It has also been used for the bullet cluster and its

result is represented by the green contours in figure 3.

Clearly, the two measurements tell a different story. The baryonic component of the

clusters is mostly located around the brightest regions in figure 3, clearly separated from

the bulk of their mass, which lies further away. This behaviour is consistent with the

clusters being mostly composed of some non-luminous (dark) form of matter, which is

essentially collisionless and, hence, much less impacted by the collision of the two clusters2.

Their visible components, on the other hand, interact with each other (through the usual

interactions that we are aware of) and is substantially slowed down due to dissipation of

energy. This leads to a clear separation of the two components which, by the way, is also

observed in other galaxy clusters.

This kind of observations constitutes one of the strongest arguments for the existence

of dark matter: modified gravity theories cannot really explain this spatial separation since,

be it in GR or in alternative theories of gravitation, gravity affects all forms of matter in

the same manner.

2In passing, note that this type of observations also allows us to set limits on the dark matter self-

interaction cross-section!
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3.3 The observable Universe: the Cosmic Microwave Background

Perhaps the most celebrated argument for the existence of dark matter comes from ob-

servations of the Cosmic Microwave Background (CMB). Properly introducing the CMB

would merit a set of lectures on its own. Here, we will contend ourselves with a very brief

qualitative description.

As we have already said, at early enough times the Universe was small and hot, with

photons, electrons and baryons being in thermal equilibrium. During this period, photons

could not travel freely: they scattered on baryons and electrons. However, once the tem-

perature of the Universe dropped sufficiently, electrons started binding with nuclei forming

atoms, photons could no longer scatter with such neutral objects and the Universe became

transparent.

At the same time, the initial distribution of matter was not completely homogeneous.

Small fluctuations did exist, which lead to fluctuations of the total gravitational field felt by

cosmic photons. This in turn, lead to the existence of small anisotropies in the temperature

of the photon field. After recombination the photons could travel unobstructed throughout

the Universe, giving rise to a relic radiation which we call CMB. In this sense, the CMB

gives us (among other pieces of information) a snapshot of the Universe at the time around

recombination.

The most recent version of the CMB power spectrum can be seen in figure 4 [3].
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Figure 4: The CMB power spectrum [4].

Very roughly speaking, the scale of the first peak of the CMB power spectrum provides

information concerning the curvature of the Universe, whereas the following ones (and,

in particular, their mutual relation) are most useful in order to quantify the different
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components of the Universe3. For dark matter, in particular, the Planck 2018 results [3]

yield

Ωmh
2 = 0.1430± 0.0011 (68%) (3.2)

ΩCDMh
2 = 0.1200± 0.0012 (68%)

Ωbh
2 = 0.02237± 0.00015 (68%)

ΩΛh
2 = 0.3107± 0.008 (68%)

i.e. the Universe contains ∼ 5 times more dark matter than ordinary matter.

4 Dark matter candidates

In the previous lecture we reviewed some basic facts about the Universe and its evolution

and we presented the main observational arguments that lead to the introduction of dark

matter. However, we have not said too much about what dark matter could be.

One of the most important pieces of information that we have concerning dark matter

is its cosmic abundance. The reason why it is so important is because it is an actual mea-

surement (as opposed, e.g., to an upper/lower limit constraint). In fact, it is so important

that, we could say, it sets a defining point for every dark matter model: most existing dark

matter models set as their primary goal to explain why there is as much dark matter in

the Universe as we observe.

Our goal today is to introduce one of the most popular mechanisms that exist in order

to explain the dark matter cosmic abundance, the so-called freeze-out mechanism. Time

permitting, we would also like to briefly mention a few alternative dark matter generation

mechanisms, knowing that it’s impossible to do them justice in such a short time.

4.1 Thermal freeze-out

For reasons of simplicity, let us assume that dark matter is composed of a single type of

particle species χ which interact in pairs with pairs of Standard Model particles through

reactions of the type

χχ↔ SM SM (4.1)

Let us also assume that the dark matter particles are heavier than all SM ones.

Let’s first try to figure out qualitatively what we expect to happen. If the interactions

between dark matter and SM particles are strong enough, it reasonable to expect (and

can be verified numerically) that at early enough times, when the Universe was dense

and hot, the reactions of the type (4.1) were in equilibrium, i.e. that the reaction rate

was the same in both directions (annihilation/production). During this period, the dark

matter and the SM particles form a common thermal bath with a unique well-defined

temperature, whereas the number density of dark matter particles per unit of comoving

3In practice, the CMB power spectrum is fitted – along with other observables – with full-blown cos-

mological models, with multiple parameters varying simultaneously. Once again, in these lecture we can

barely scratch the surface of this beautiful topic, which is covered in most Cosmology textbooks.
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spacetime volume is expected to stay constant. Note that the temperature provides us

with a measure of the mean kinetic energy of particles which, in turn, determines whether

a reaction is kinematically allowed or not.

Now, as the Universe expands, its temperature drops and, at some point, it drops

below the dark matter mass. Around this time (not exactly, since particle energies follow a

distribution with a certain spread), dark matter particles can no longer be produced from

annihilations of SM ones, since the reaction becomes kinematically disfavoured: most SM

particles are simply not energetic enough to produce a pair of dark matter particles. After

this point, dark matter particles start annihilating away and their number density starts

dropping exponentially. However, as the Universe continues to expand all particles become

more and more dilute. Then, as this process goes on, we can imagine that after a certain

point the probability that two dark matter particles meet in order to annihilate becomes so

small that, in effect, the reaction stops taking place. After this point, the number density

of dark matter particles remains constant. This process is called (thermal) freeze-out.

Let’s now see how all this picture works quantitatively. Let us at first keep the discus-

sion quite general, and consider four types of particles, 1, 2, 3 and 4, in the early Universe,

which can interact through reactions of the type 1 + 2 ↔ 3 + 4. Let’s also assume that

each particle species follows a phase space distribution function fi and let’s try to figure

out the time(/temperature) evolution of the number density of species 1. The phase space

distribution of species 1 obeys the Boltzmann equation which, in full generality, can be

written as

L[f1] = C[f1] (4.2)

where L is called the Liouville operator, and C is called the collision operator. Let’s ex-

amine them one-by-one. This classic computation can, e.g., be found in [5].

The Liouville operator

The Liouville operator describes the time evolution of the phase space distribution function.

In General Relativity, it reads

L[f ] =
df

dτ
=

∂f

∂xµ
dxµ

dτ
+

∂f

∂pµ
dpµ

dτ
(4.3)

By using the geodesic equation

d2xµ

dτ2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
= 0 (4.4)

and the fact that the canonical momentum is given by pµ = dxµ/dτ , we arrive at

L[f ] =
∂f

∂xµ
pµ − Γµ

ρσ p
ρpσ

∂f

∂pµ
(4.5)

where Γµ
ρσ are the Christoffel symbols. They can be computed by taking derivatives of the

metric tensor gµν as

Γµ
ρσ =

1

2
gµλ (∂σgρλ + ∂ρgσλ − ∂λgσρ) (4.6)
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Applying this to the FLRW metric with k = 0, we obtain

L[f ] = E
∂f

∂t
−H |p⃗|2 ∂f

∂E
(4.7)

Exercise: Prove equation (4.7). If you are unfamiliar with the computation of Christoffel

symbols, you can use Γ0
00 = Γ0

0i = Γ0
i0 = 0 and Γ0

ij = ȧaδij . But it’s always a good exercise

to compute them yourselves!

Now, the full phase space distribution function of dark matter encodes a lot of useful

information, e.g. it is essential in order to properly determine the structure formation

phenomenology of dark matter. However, in the context of explaining the dark matter

abundance in the Universe, we are typically just interested in the time evolution of the

total number density of dark matter particles. In this sense, it is enough for our purposes

to only consider the integral of the Boltzmann equation over phase space. By integrating

the expression that we just found over the entire phase space, after some algebra we obtain

g

∫
L[f ]

d3p

(2π)3
=

1

a

d

dt
(na3) =

dn

dt
+ 3Hn (4.8)

where we have also used the relation between the number density and the phase space

distribution. Note that when there are no reactions taking place, i.e. C[f ] = 0 in (4.2),

this equation informs us that na3 remains constant.

The Collision operator

Let us now turn to the collision operator C[f ], which quantifies the number of reactions

taking place per unit phase space volume. The latter includes all interactions between our

particle species of interest and the other particle species (including itself) that may alter

the phase-space density. Depending on the nature of the allowed interactions, it can take

a more or less complicated form. Since, as we said, we are interested in the integral of the

Boltzmann equation, we can write for the collision term for particle 1, and always referring

to interactions of the form 1 + 2 ↔ 3 + 4 [5]

g1

∫
C[f1]

d3p1
(2π)3

= −
∑
spins

∫ [
f1f2(1± f3)(1± f4)|M12→34|2 − f3f4(1± f1)(1± f2)|M34→12|2

]
×(2π)4δ4(p1 + p2 − p3 − p4) dΠ1 dΠ2 dΠ3 dΠ4 , (4.9)

where gi and fi are the spin degrees of freedom and phase-space densities, respectively, for

particle i, and Mx→y is the matrix element for the reaction x→ y. Factors of the form (1±
f) represent Pauli blocking (minus sign) and Bose enhancement (plus sign). They reflect

the fact that it is easier(harder) for a boson(fermion) to transition to a state that already

contains a boson(fermion). The delta function imposes four-momentum conservation, and
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the dΠi factors denote phase-space integration factors

dΠi =
d3pi

(2π)3 2Ei
.

Let us now introduce some simplifying assumptions. Depending on the dark matter model,

one (or more) of them may fail. However, in most freeze-out models, they hold.

• All particle species are in kinetic equilibrium and so their phase-space distributions

take on the Fermi-Dirac or Bose-Einstein forms.

• The temperature of each species satisfies Ti ≪ Ei − µi, where µi is its chemical

potential, so that they follow the Maxwell-Boltzmann distribution. In this case, the

statistical mechanical factors in the calculation can be ignored and (1± f) ∼ 1.

• The Standard Model particles in the interaction are in thermal (kinetic + chemical)

equilibrium with the photon bath.

Now, the usual unpolarized cross section σij for the reaction ij → kl is given by

σij =
1

4 gigj
√
(pi · pj)2 − (mimj)2

×
∑
spins

∫
|Mij→kl|2 × (2π)4δ4(pi + pj − pk − pl) dΠk dΠl

(4.10)

Substituting this back into the collision term, and identifying the Moller velocity

(vMøl)ij =

√
(pi · pj)2 − (mimj)2

EiEj
(4.11)

for the ij → kl process, we obtain

g1

∫
C[f1]

d3p1
(2π)3

= −
∫

{(σvMøl)12 dn1dn2 − (σvMøl)34 dn3dn4} (4.12)

Because σvMøl varies slowly with changes in the number density of the initial and final-state

particles, it can be factored out of the integrand to give

ṅ1 + 3Hn1 = −⟨σvMøl⟩12n1n2 + ⟨σvMøl⟩34n3n4 . (4.13)

where we defined the velocity-averaged cross-section

⟨σv⟩ =
∫
σv dneq1 dneq2∫
dneq1 dneq2

=

∫
σv e−E1/T e−E2/T d3p1 d

3p2∫
e−E1/T e−E2/T d3p1 d3p2

(4.14)

where ⟨σv⟩ = ⟨σv⟩12.

Putting everything together

Let us now focus on the specific case in which two dark matter particles with number

density n annihilate into two Standard Model ones and vice versa. We assume (and this is
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calculable) that the latter are in thermal equilibrium with the photon bath. If, moreover,

there is no CP violation involved in the reaction, we have

|Mij→kl|2 = |Mkl→ij |2 (4.15)

and

f1f2 = f eq1 f eq2 = e−
E1+E2

T = e−
E3+E4

T = f eq3 f eq4 (4.16)

where we have also used energy conservation between the initial and final states. As long

as the dark matter particles are also in thermal equilibrium with the Standard Model bath,

the principle of detailed balance leads to

⟨σv⟩12 n2eq = ⟨σv⟩34 neq3 neq4 ,

which can be used to rewrite the second term of (4.13) in terms of the dark matter number

density and its annihilation cross-section. Then, our Boltzmann equation acquires the

simpler form

ṅ+ 3Hn = ⟨σv⟩
(
n2eq − n2

)
, (4.17)

Already at this stage, we see that we have a differential equation for the time evolution of

the number density n which can be solved, at least numerically. In practical calculations,

it is customary to work with slightly different variables. In particular, we define

x ≡ m/T (4.18)

as well as the abundance

Y ≡ n/s (4.19)

From these definitions, we have

dY

dt
=

d

dt

(n
s

)
= · · · = 1

s

(
3Hn+

dn

dt

)
(4.20)

dx

dt
= H̄(T )x

dY

dt
=
dY

dx

dx

dt
=
dY

dx
H̄x

where in the first equation we used ds/dt = −3Hs and in the second one the time-

temperature relation that we wrote down when we discussed cosmology as well as the

defition of x. Substituting back in the Boltzmann equation, we obtain

dY

dt
= ⟨σv⟩s

(
Y 2
eq − Y 2

)
(4.21)

which, eventually, leads to
dY

dx
= −s⟨σv⟩

xH̄

(
Y 2 − Y 2

eq

)
. (4.22)
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Exercise: Starting from Eq.(4.17), derive Eq.(4.22).

Note that quite frequently, the H̄ factor in the denominator of the last differential equation

is approximated by the Hubble parameter because the entropy effective number of degrees

of freedom varies slowly with temperature, at least far from phase transitions. In any case,

this is a more precise form of the Boltzmann equation for the dark matter abundance, see

also [6]. The result of a numerical resolution of the Boltzmann equation for varying values

of ⟨σv⟩ can be seen in figure 5.
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Figure 5: Temperature evolution of the dark matter relic density according to the freeze-

out mechanism. Figure taken from [6].

A few further manipulations can be performed in order to render the Boltzmann equa-

tion more practical for concrete dark matter models. After some change of variables and

some tedious algebra we can, moreover, rewrite ⟨σv⟩ as [5]

⟨σv⟩ = 1

8m4TK2
2 (m/T )

∫ ∞

4m2

σ(s̃)(s̃− 4m2)
√
s̃ K1(

√
s̃/T ) ds̃ (4.23)

where Ki are modified Bessel functions of the ith order and s̃ = 2m2 + 2E1E2 − 2p⃗1 · p⃗2.

The cross section can be expanded in x in the non-relativistic limit

⟨σv⟩ ≈ b0 +
3

2
b1x

−1 + · · · (4.24)
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where b0,1 are calculable coefficients. The case where b0 dominates is referred to as s-wave

annihilation. The case where the second term dominates is called p-wave annihilation.

There is no analytic solution for equations like (4.22); in the general case, it has to

be solved numerically. However, using our initial qualitative discussion, there are a few

interesting limits that we can consider in order to gain some intuition. As we already

mentioned, as long as the interactions of dark matter particles with the Standard Model

are strong enough, at early enough times we expect equilibrium to be established. Once the

temperature drops below the dark matter mass it still traces its equilibrium distribution

and its abundance is exponentially suppressed. Lastly, once Hubble expansion superseeds

the annihilation rate its density freezes out. In equation form, we can write

Y (x ≲ xf ) ≃ Yeq(x) and Y (x ≳ xf ) ≃ Yeq(xf ) ,

where xf is the freeze-out time. Note that after freeze-out, the dark matter abundance

becomes larger than its equilibrium abundance. Therefore, beyond this point we can ignore

the second term in the RHS of the Boltzmann equation and, assuming that ⟨σv⟩ is either
s- or p-wave dominated, we can pull out all dependence on x and write

dY

dx
≃ − λ

xn+2
Y 2 , where λ =

⟨σv⟩0s0
H̄

.

Taking n = 0 as an example, we can solve for the DM abundance today:

1

Ytoday
− 1

Yf
=

λ

xf
−→ Ytoday ≃ xf

λ
,

where the last step uses the fact that the abundance at freeze-out, Yf , is typically greater

than its value today.

Finally, we are in position to plug in some numbers in order to estimate the dark

matter density today. Making an educated guess, we will assume that freeze-out occurs

around x ∼ 10. In this case, we have

Ωχ =
mstoday Ytoday

ρcr
−→ Ωχh

2 ∼ 10−26 cm3/s

⟨σv⟩ ≃ 0.1

(
0.01

α

)2 ( m

100 GeV

)2
(4.25)

taking ⟨σv⟩ ∼ α2/m2. Assuming a weakly interacting DM particle with α ∼ 0.01 and

mass mχ ∼ 100 GeV gives the correct abundance today as measured by Planck. This is

called the “WIMP miracle” and, during many years (in fact, to this day), it motivated the

most widely pursued dark matter detection strategies. However, it should be noted that

in (4.25) what is really constrained is the ratio of the squared coupling to the mass. It is,

then, possible to open up a wider band of allowed masses for thermal DM by taking α≪ 1

while keeping α2/m2 fixed.

Question: How would the dark matter relic density be impacted if the couplings were

weaker/stronger?

Question: Consider a population of WIMPs in the early Universe, with a mass of 100 GeV.

Assume also that at a temperature of ∼ 100 TeV, an additional population of dark matter

– 17 –



is somehow introduced in the Universe (with the total energy content remaining, again

somehow, constant). How would the dark matter abundance today be impacted?

Question: In our discussion we completely ignored reactions of the type χ+SM ↔ χ+SM.

Why?

4.2 Alternative mechanisms

The thermal freeze-out picture that we described previously dominated dark matter physics

for more than two decades. The reasons are multiple, ranging from theory-motivated

arguments (e.g. a hope that cosmic dark matter production could be related to a resolution

of the Hierarchy problem or, at least, be somehow related with the electroweak scale - after

all, we know that a lot of interesting physics happens around this scale!) up to the fact

that it provides hope that dark matter could be detected non-gravitationally. However,

already since the 1980s alternative dark matter genesis frameworks have been proposed.

Here we will provide a very short (mostly qualitative) description of a few of them.

4.2.1 Freeze-in

One of the first assumptions (which can, nonetheless, be checked on a model-by-model

basis) that we made in our discussion about thermal freeze-out was that dark matter inter-

acts sufficiently strongly with the Standard Model such that the two sectors attained and

maintained, at least at high enough temperatures, thermal equilibrium. If the interactions

are weaker then, for a given dark matter mass, equilibrium will be lost earlier than it would

for WIMPs and the relic abundance would be larger.

But what would happen if these interactions were really weak (“feeble”)? One might

be tempted to answer that the predicted relic abundance would keep increasing. However,

if we take such a logic to its extreme, this would mean that a nearly-decoupled dark matter

sector would have the maximal abundance. This logic cannot hold.

The answer lies with the fact that, if the interactions are weak enough, then the dark

and visible sectors will simply never reach thermal equilibrium. Now, in the standard freeze-

out case (i.e. when the dark matter - Standard Model interactions are strong enough), the

value that we choose for the initial dark matter abundance is somewhat irrelevant: a proper

numerical resolution of the Boltzmann equation reveals that very rapidly the dark matter

abundance reaches its equilibrium value and, subsequently, follows the usual freeze-out

behaviour. In other words, at least in the most standard of cases, equilibrium erases all

memory of early Universe physics; standard freeze-out regulates its own initial conditions.

This can be viewed as good (because the result does not depend on physics which is,

currently, quite poorly understood) or bad (because we do not gain any insight whatsover

about the physics of the very early Universe) depending on one’s perspective.

Long story short, in the absence of equilibrium, in the case of freeze-in there is a

residual dependence on the initial conditions. But then, what was the initial dark matter
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abundance? A plausible option would be to set it to zero: a feebly interacting massive

particle (FIMP) was, likely, absent from the initial plasma4.

Given the previous discussion, it is reasonable to expect that FIMPs follow a different

temperature evolution than the one we saw previously. The important thing to note is

that the dark matter annihilation rate scales as n2χ⟨σv⟩. Then, if dark matter is only feebly

interacting and with a negligible initial abundance, both of these factors are extremely

small. And, in particular, they are much smaller than the rate of the inverse reaction,

which scales as n2SM⟨σv⟩, where the Standard Model particles track their equilibrium dis-

tributions. This observation already draws a picture of what will happen: dark matter

can be produced from annihilations of SM particles (or, eventually, annihilations and/or

decays of any particle species that is in thermal equilibrium with the Standard Model ther-

mal bath), but it does not annihilate back. Note that in this scenario the dark matter

production rate is necessarily sub-Hubble, otherwise an enormous amount of dark matter

would be produced, eventually rendering dark matter annihilations efficient enough such

that the two directions of the reaction would equilibrate and we would fall back to the

freeze-out case.

This is the main idea behind the so-called “freeze-in” dark matter production mecha-

nism. Mathematically, we could write in full generality

ṅχ + 3Hnχ =
∑
A,B

(ξB − ξA)N (A→ B) (4.26)

where A and B denote generic initial and final states containing ξA,B particles of type χ

respectively and N (A → B) is the integrated collision term corresponding to the reaction

A → B, i.e. the number of A → B reactions taking place in the thermal bath per unit

space-time volume.

Since, in the case of freeze-in, we can ignore backreactions, we can omit the ξA term

and, eventually, write

Y 0
χ =

TR∫
T0

dT

TH(T )s(T )

(
N (bath→ χX) + 2N (bath→ χχ′)

)
, (4.27)

where X stands for any bath particle and χ′ for any dark sector FIMP, which we assume

to (eventually) decay into a DM particle along with a visible sector one. We stress that the

abundance will depend on the value of the reheating temperature when this temperature

is of the same order as the mediator or DM mass, or when the collision term is dominated

by high temperatures.

The result can be seen figure 6, taken from reference [7]5. It is represented by the

dashed lines and compared with the corresponding result from freeze-out (solid lines).

Note that this behaviour corresponds to a choice of a very high reheating temperature and

renormalizable interactions.

4Note that the validity of this assumption can, nonetheless, be highly debated.
5Incidentally, the term “freeze-in” was first introduced in this reference, even though the mechanism was

known quite long before [8].
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Figure 6: Freeze-out vs freeze-in. Figure taken from [7].

Exercise: Can you write down the integrated collision term for the case of dark matter

production through decays of heavier bath particles? In the case of annihilation?

Question: Why do we focus here on “parent” particles from the thermal bath? If the

parent particles were themselves FIMPs, can you imagine how dark matter production

could proceed?

4.2.2 Asymmetric dark matter

Another assumption that we semi-implicitly made during our discussion on freeze-out is

that dark matter is either its own antiparticle or that dark matter particles and antiparticles

exist in equal amounts and annihilate with equal rates. However, we know that this doesn’t

happen in the case of several SM particles. And, indeed, in the Universe’s visible we observe

much more matter than antimatter. The leading idea about how this asymmetry came to

be is that matter and antimatter existed in the Universe in equal amounts and then an

asymmetry appeared due to the nature of the underlying interactions. There is a set

of celebrated conditions in order to generate such an asymmetry, known as the Sakharov

conditions [9], which state that the interactions must violate some symmetries of the theory

(B and C/CP ) and that they must be out of equilibrium.

So, what if something similar happened with dark matter? This scenario is called

asymmetric dark matter. The general logic resembles that of freeze-out: dark matter

particles and antiparticles annihilate into Standard Model ones, typically at a rate which
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is larger than the one required for successful freeze-out. In the symmetric case, this would

lead to too small a relic abundance. If, however, some asymmetry is generated during this

process, even if the subleading component annihilates away entirely, in the end there will

be a net excess of dark matter particles over antiparticles. The sum of the symmetric and

the asymmetric contribution determines the final abundance.

From a model-building perspective, in these sxenarios the name of the game is to figure

out a dynamical mechanism through which such an asymmetry can be generated. Note,

also, that quite frequently the asymmetric dark matter framework is also combined with a

baryogenesis mechanism. For a review of asymmetric dark matter scenarios cf [10].

4.2.3 Parenthesis: stability of dark matter particles

As final remark, let us note that dark matter must be either stable or posess a lifetime

which is of the order of, or even many orders of magnitude larger than the age of the

Universe6. But how can we stabilize dark matter?

The most standard technique in order to ensure dark matter stability is inspired by

the reasons leading to the stability of some particles in the Standard Model: the photon is

stable because it’s the massless gauge boson of an unbroken gauge symmetry, U(1)EM. The

electron is stable because it’s the lightest particle charged under this symmetry whereas the

lightest neutrino is stable because it’s the lightest fermion (i.e. due to Lorentz invariance).

Lastly, the proton is stable because the Standard Model turns out to possess an accidental

baryon number conservation and the proton is the lightest baryon. In this spirit, in order

to ensure that there are no interactions leading to dark matter decay, we can try mimicking

the reason why some of the Standard Model particles are stable: dark matter could be the

lightest particle charged under some symmetry.

Consider the simplest imaginable extension of the Standard Model, in which we simply

add a gauge-singlet real scalar field s, which we hope to play the role of a dark matter

candidate, to its particle content. The most general, renormalizable Lagrangian that we

can write down reads

L = LSM − µ2s
2
s2 +

A

3!
s3 +

λs
4!
s4 +B(H†H)s+ λhs(H

†H)s2 (4.28)

If this were the end of the story then, clearly, s could not be a dark matter candidate,

at least not for general values of the various couplings. Indeed, in such a model s can

decay, e.g. through processes of the type s → h(∗)h(∗), unless the relevant couplings were

extremely small.

Consider, now, imposing an additional symmetry to this model, namely a discrete Z2

symmetry under which all the Standard Model fields transform trivially (Z2-“even”, i.e.

under Z2 they transform as ϕSM → ϕ
′
SM = ϕSM) whereas s transforms as s → s′ = −s

(Z2-“odd”) and demand that L remains invariant under this symmetry both classically and

6The precise constraint is model-dependent and depends on the potential dark matter decay modes. If,

for instance, dark matter can decay into final states producing photons, then indirect detection experiments

that will be described in the following impose limits which are indeed several orders of magnitude larger

than the age of the Universe.
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at the quantum level. Then, the terms proportional to A,B vanish, whereas imposing that

Z2 remains unbroken means that s does not acquire a vaccuum expectation value. Within

such a framework, it indeed turns out that s is indeeed exactly stable.

This is the most usual way to ensure dark matter stability in dark matter model-

building. Note that much more sophisticated symmetries can be imposed, also depending

on the field content of each model, ranging from discrete global symmetries such as ZN

(for N > 2 we actually also get additional interesting dark matter annihilation channels),

continuous global or, eventually, gauge symmetries. An interesting relavant discussion,

which also provides some hints as to the potential UV origin of low-energy stabilizing

symmetries can be found in [11].

5 Dark matter detection

What do we mean when we talk about dark matter detection? In a sense one could argue

that dark matter has, indeed, been detected: we have “seen” it through its effects in galax-

ies, galaxy clusters and, eventually, the entire Universe. However, all of these observations

share a common characteristic: they rely on the gravitational interactions of dark matter.

This has (at least) two consequences: first, it is impossible to exclude alternative explana-

tions such as potential modifications of gravity. Indeed, although essentially all modified

gravity theories do fail to explain all the observational evidence that we attribute to dark

matter, it is not inconceivable that we have simply “not found the right model”. Secondly,

gravity treats all forms of matter equally. In this sense, it cannot say much concerning

the nature of dark matter7. To put it simply, if dark matter possesses non-gravitational

interactions, we would like to be able to detect it through their effects.

During the previous we examined in more detail one of the possible dark matter gen-

eration mechanisms that have been proposed and briefly sketched a few others. There are

still more which we did not have time to present. The diverse character of these different

ideas illustrates one point, which will also become clearer in the following: there is no

universal dark matter detection strategy. Each dark matter model can feature dark matter

interacting in different ways with the Standard Model particles which, in turn, can lead to

different ideas about how dark matter could be detected.

But then, is dark matter detection a model-specific endeavour? That would be quite

unfortunate, because there are hundreds, if not thousands of dark matter models which have

been proposed in the literature. If dark matter detection were entirely model-specific, then

for every dark matter model we would need to employ a different dark matter detection

technique. Furtunately, the situation is a bit better: different dark matter generation

mechanisms (which can accomodate multiple dark matter models) do tend to hint towards

some concrete detection strategies. Exceptions can be written down, in the sense that

it is frequently possible to write down a model that evades this or that constraint. But

i) quite often another “generic” detection strategy might offer complementary constraints

7With the potential exception of macroscopic-size dark matter candidates, such as primordial black

holes.
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and ii) these models tend to constitute exceptions, in the sense that they do require a bit

of engineering.

With these remarks in mind, we will focus mostly on the three dark matter detection

techniques around which most of the existing experimental campaigns have developped:

direct detection, indirect detection and collider searches. All of them were mostly motivated

by the thermal freeze-out picture, in a relatively simple manner.

Figure 7: Principle of WIMP-inspired dark matter detection techniques.

In figure 7 we sketch how, keeping all external states the same, modifying the direction

of the time arrow leads to different types of processes which can be exploited in order to

detect dark matter. Moreover, the fact that in freeze-out scenarios dark matter is required

to interact relatively strongly with the Standard Model particles implies that all of these

processes could happen at non-negligible rates. Let’s see how this fact can be exploited in

practice.

5.1 Direct detection

The principle of direct detection was proposed in the mid-80s [12], long before the majority

of today’s dark matter models were formulated. The general idea is, actually, fairly simple:

since our galaxy consists primarily of dark matter, we expect that the dark matter particles

constantly reach the Earth. As they are expected to interact quite weakly with ordinary
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matter, most of the time they should just traverse it8. But every now and then, it could

be that some of the them actually interact with the Earth’s materials. Then, if a large

detector were built and exposed for a sufficiently large amount of time to this cosmic flux,

some of the dark matter particles might actually interact with the target material.

There is a large number of experiments worldwide that pursue this goal. They are

typically built underground in order to reduce the background which can result from the

scattering of Standard Model cosmic rays off the detector material. Depending on the

specific technology employed by each experiment, a large number of different observables

can be measured in order to deduce that it was, indeed, a dark matter particle that scattered

off the detector material. In almost all cases however, the basic principle remains the same.

Dark matter particles could interact with the nuclei and/or the electrons of the target,

causing them to recoil, get excited or ionize and this is an in principle measurable effect.

Let us first consider scattering off nuclei. The differential event rate, i.e. the number

of scattering events taking place per unit time per unit detector mass per unit of nuclear

recoil energy ER is given by

dR

dER
=

ρχ
mχ

1

mA

〈
v
dσ

dER

〉
(5.1)

where R is the event rate, nχ is the local dark matter number density, mA is the nucleus

mass, v is the dark matter velocity and the brackets denote averaging (which stems from

the fact that not all dark matter particles have the same velocity. In a more explicit form,

we write
dR

dER
=

ρχ
mχmA

∫ vmax

vmin

d3v vf̃(v⃗, t)
dσ

dER
(5.2)

where f̃ is the dark matter velocity distribution in the detector rest (lab) frame. The

velocities vmin and vmax correpond to the minimal required velocity that can give rise to a

recoil energy ER and to the Milky Way escape velocity, respectively. The latter is of the

order of 550 km/sec whereas the former is given by

vmin =

√
mAER

2µ2A
, µA =

mAmχ

mA +mχ
(5.3)

What about the dark matter velocity distribution in the lab frame? It can be found from

the corresponding velocity in the galactic rest frame, by performing a Gallilean boost of

the dark matter velocity distribution in the galactic rest frame, f (⃗t) :

f̃(v⃗) = f(v⃗ + v⃗obs) , vobs(t) = v⃗⊙ + v⃗⊕(t) (5.4)

where v⊙ corresponds to the rotation velocity of the Sun in the galactic rest frame, and v⊕
to the velocity of the earth in the solar system.

Several comments are in order
8One interesting, and slightly counter-intuitive, exception to this rule is actually the case in which dark

matter particles interact too strongly with ordinary matter. In this case, the dark matter particles may be

stopped at the top of the Earths atmosphere without ever reaching the Earth. Notice, moreover, that
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• The dark matter velocity distribution is, in the general case, unknown. It constitutes

one of the systematic/theoretical uncertainties in dark matter direct detection. The

most commonly adopted assumption (including in the vast majority of experimental

papers) is that dark matter folows the so-called “standard halo model”.

• Both the escape velocity and the local dark matter density (∼ 0.3 GeV/cm3) are only

known with a finite accuracy.

• Typical materials that are used in existing direct detection experiments are Xenon,

Argon, Hydrogen, Germanium and different alloys.

• The typical momentum transfer is of the order of 100 MeV. This means that, for a

100 GeV particle scattering off a Xenon nucleus, we can expect nuclear recoil energies

of the order of a few keV or higher.

• The cross-section entering the differential event rate refers to dark matter - nucleus

(not single-nucleon or parton) scattering.

• As the earth moves around the Sun, its velocity changes with respect to the wind of

dark matter particles received by the solar system (the galactic disk – which contains

the Solar system – rotates within an almost non-rotating dark matter galactic halo).:

the wind attains maximum speed around June (as in June the Earth moves faster

in the direction of the disk rotation) and minimum speed in December (when the

Earth moves fastest opposite to the disk rotation). This leads to a modulation of

the expected dark matter scattering rate, called annual modulation. The majority

of dark matter direct detection experiments aim at detecting the bulk of the signal.

However, a number of such experiments aims at detecting exactly this modulation

effect.

Without going into details, in order to compute theoretical prediction within concrete

dark matter models we initially compute the cross-section in the usual way (i.e. between

dark matter and quarks/gluons), afterwards mapping the relevant operators to dark mat-

ter - nucleon ones. The experimental collaborations, on the other hand, fundamentally

constrain the dark matter - nucleus scattering cross-section. The results are, then, trans-

lated into constraints on the dark matter - nucleon scattering cross-section, by employing

appropriate form factors. Note that not all dark matter models, even some which operate

at quite strong coupling, predict sizeable signals in direct detection experiments.

In figure 8 are summarized the leading constraints on the dark matter - nucleon spin-

independent scattering cross-section. Note that this quantity is certainly not the end of

the story. First, there can be other types of interactions between dark matter particles and

nuclei which can be relevant, or even leading, depending on the structure of the underlying

theory (e.g. the Lorentz structure of the relevant interactions). Secondly, “traditional”

direct detection experiments lose sensitivity for dark matter masses below a few GeV (al-

though techniques have been proposed in order to overcome the threshold barriers imposed

by the technologies used by the experimental collaborations, cf e.g. [13]). In addition, dark
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Figure 8: Summary of direct detection constraints on the spin-independent dark matter

- nucleon scattering cross-section, circa 05/2024. Figure taken from [1].

matter may even not interact with quarks/gluons at all.

In this spirit, during the last decade there has been substantial effort in order to

• Develop alternative dark matter direct detection strategies, which try to exploit the

interactions of dark matter with objects different than the nucleus. These can range

from standard scattering off atomic electrons in conventional, existing detectors (for

relatively heavy dark matter) up to completely new techniques that rely, e.g., on

radiative processes [13], superconducting [14] and/or superfluid [15] materials. In

short, in the low (sug-GeV, or even sub-MeV) mass regime the name of the game

is to find processes which can take place even if very small momentum transfer is

involved (e.g. Cooper pair breaking in the case of superconducting detectors).

• Develop the necessary formalism in order to compute the predicted signals in such

experimental setups. Note that the problem can become highly non-trivial: even in

the case of scattering off atomic electrons, the situation is quite involved.

So, how do these constraints map onto actual dark matter models? The answer is, of

course, model-dependent. For illustration, in figure 10 we show a recent result obtained

in [16] for the singlet scalar dark matter model. The usual freeze-out Planck-compatible

parameter space is depicted by the solid violet line, to be compared with recent results

from the XENON1T and LZ experiments. The quasi-vertical lines, on the other hand,

correspond to freeze-in scenarios with a low reheating temperature, which require relatively

large values of the dark matter - Higgs boson coupling in order to reproduce the observed

relic abundance. Interestingly, even though they were first inspired by thermal freeze-out,

we observe that direct detection experiments can also constrain freeze-in scenarios under

such non-standard cosmological assumptions.
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5.2 Indirect detection

Indirect detection relies on the exact same process that is operational during thermal

freeze-out: dark matter annihilation. The idea is that dark matter particles in the Milky

Way halo (or, eventually, other galaxies) can annihilate into Standard Model ones which,

subsequently, could be detected by earth-bound or airborne telescopes. Besides, as we

already mentioned, indirect detection can be extremely efficient in constraining models of

decaying dark matter.

There are four main types of “messengers” that are used for indirect detection of

dark matter: gamma-rays, positrons, antiprotons and neutrinos. Out of them, in these

lectures we will only briefly comment on the former; the dark matter - induced positron and

antiproton flux at the Earth is subject to substantial astrophysical uncertainties, stemming

from the fact that, since they are charged particles, they are affected by multiple processes

such as diffusion, convection, reacceleration etc which, in turn, are affected by considerable

uncertainties. Neutrinos, in turn, are typically produced through dark matter annihilations

in the Sun and in general provide subleading constraints.

Gamma-rays, on the other hand, travel in straight lines and can be produced abun-

dantly upon dark matter annihilation. This means that they retain the directional in-
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formation concerning the place where they were produced, allowing telescopes to target

specific regions of higher dark matter concentration where annihilation is expected to be

much more probable. In principle, the ideal target would be the centre of the Milky Way.

Unfortunately, it turns out that the Galactic Centre is a complicated environment, with

multiple astrophysical processes contributing to the production of high-energy gamma-

rays. One frequently employed solution is to actually mask the centre of the galaxy, along

with the galactic plane, and rather focus on the regions around the masked area where

the dark matter density remains relatively large but the astrophysical backgrounds are

substantially reduced. However, currently the most robust constraints stem from the ob-

servation of dwarf spheroidal galaxies. Dwarf spheroidals are galaxies with a very high

mass-to-light ratio, since they are believed to have been stripped off their baryons and are

mostly composed of dark matter. Moreover, given their larger distance from the Earth,

telescopes typically observe them as a whole, i.e. the dark matter - induced gamma-ray

flux is integrated over the entire galaxy and is, thus, less sensitive to the uncertainties of

the dark matter distribution in their inner regions.

The photon flux expected from dark matter annihilation within a cone spanning a solid

angle ∆Ω reads

dΦ

dEγ
(Eγ , ψ) = η

1

4π

∑
i

⟨σiv⟩
2m2

χ

dNi

dEγ

∫
∆Ω

dΩ

∫
l.o.s.

dℓρ[r(ℓ, ψ)]2 (5.5)

where η = 1, 1/2 depending on whether dark matter is Majorana-like or Dirac-like, respec-

tively, ℓ is the line-of-sight distance oriented at an angle ψ away from the galactic plane

and all the astrophysics is encoded in the so-called J-factor

J =
1

∆Ω

∫
∆Ω

dΩ

∫
l.o.s.

dℓρ[r(ℓ, ψ)]2 (5.6)

But what is ρ? In other words, how is dark matter distributed in galaxies? The main

method that is employed in order to answer this question is by deploying large-scale N -

body simulations. To date, most of these simulations essentially include dark matter only,

although a few more recent ones try to include the effects of the presence of baryons on the

dark matter spatial distribution. Most dark matter - only simulations appear to converge

towards the so-called Navarro-Frenk-White profile [17], which is described by

ρNFW =
ρ0

r/rs(1 + r/rs)2
(5.7)

where ρ0 is the local dark matter density and rs = 20 kpc is the “scale radius”. Other

functional forms have been proposed in the literature, among which e.g. the so-called

Einasto profile.

ρEin = ρ0 exp

[
−2

γ

((
r

rs

)γ

− 1

)]
(5.8)

where rs = 20 kpc and γ = 0.17. Both of these profiles are quite “cuspy”, i.e. steep,

towards the inner regions of the galaxy. Whether or not they constitute a good description

of galactic dark matter haloes is still a matter of debate, with several observations favouring
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rather “cored” (less steep) profiles. Such modifications could be due to more exotic physics

such as dark matter self-interactions, however, standard astrophysical processes such as

baryonic feedback can also have an important impact on the structure of dark matter

haloes. The inclusion of baryons in N -body simulations is highly non-trivial, but during

the last decade substantial efforts have been made in this direction.

A summary of existing constraints from gamma-ray searches can be seen in figure ??.

These constraints assume a specific dark matter annihilation channel, namely annihilation
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Figure 10: Summary of constraints from searches for dark matter annihilation - induced

gamma-rays assuming annihilation into bb̄, circa May 2024. Figure taken from [1].

into a bb̄ final state.

6 Conclusions

Dark matter is a topic which combines elements from different fields: cosmology, astro-

physics, particle physics. In these lectures we tried to give a short introduction to some

aspects of dark matter physics. The material presented is by no means complete: the

goal was to introduce a few notions and, hopefully, provide motivation for further study.

Much more material can be found in different existing reviews, cf e.g. [18, 19] or [1], and

textbooks [20, 21].
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