
Warning

• QCD is a vast subject which cannot be covered in four lectures! I had to

select some topics whose the main line is "QCD for LHC"

• The global outline will

– Lecture I : Pre QCD, quark model, parton model

– Lecture II : QCD as gauge theory

– Lecture III : Renormalisation

– Lecture IV : Soft/Collinear divergences, the QCD improved parton

model

• I will not address the non perturbative regime of QCD, the low energy one

as well as many other subjects....

• For each lecture, there will be some slides as well as some more detailed

notes. They can be downloaded from this URL : https://mydrive.

lapth.cnrs.fr/s/rK9Qb6Nggfo78aT They are labelled, for lec-

ture X : note_cX.pdf and slide_cX.pdf where X ∈ [I, II, III, IV ]

Outline

Contents

1 Lecture I : The naive parton model 2

1.1 The hadrons are not elementary particles . . . . . . . . . . . . . . 2

1.2 The quark model . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The parton model . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The parton model in the deep inelastic . . . . . . . . . . . . . . . 13

1.4.1 The electron–parton cross section . . . . . . . . . . . . . 16

1.4.2 The electron–proton cross section . . . . . . . . . . . . . 16

1.4.3 Partons ≡ quarks + ... . . . . . . . . . . . . . . . . . . . . 18

1



1 Lecture I : The naive parton model

1.1 The hadrons are not elementary particles

Status of strong interaction

Hadrons particles sensitive to the strong interaction, ex. proton, neutron, · · ·
mesons : hadrons having integer spin baryons : hadrons with half-integer spin

Particle accelerators Before the 50’, people thought that hadrons were ele-

mentary particles

With the coming of accelerators, hundred of hadrons have been discovered!

(cf. Particle Data Book) Clearly not elementary...

1.2 The quark model

Isospin symmetry

A first attempt to classify The proton and the neutron undergo the same

strong interaction, their masses are similar, only the electric charge distinguishes

between them.

Isospin symmetry

p ≡ (I = 1/2 ; I3 = +1/2) isospin "up", proton

n ≡ (I = 1/2 ; I3 = −1/2) isospin "down", neutron

Only for the couple proton–neutron!

The idea of the quark model is to classify the hadrons.

Among all the hadrons, some of them have "strange" properties: they have an

"extremely" long live time. For example,

Σ− → nπ− τ ≃ 10−10s

∆− → nπ− τ ≃ 10−23s

with mΣ ≃ m∆ or

K(mK ≃ 500MeV) τ ≃ 10−8s

ρ(mρ ≃ 770MeV) τ ≃ 10−23s
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Those particles were produced by pair:

σ(π p → K Σ) ≃ σ(π p → ρ ∆)

A new additive quantum number is introduced: strangeness This quantum number

is conserved by the strong interaction as well as the electro-magnetic one. As an

example:

s = 0 π, ρ, · · · ,∆
s = 1 K+, K0

s = −1 Λ,Σ−,Σ0

Note that an anti-particle has a strangeness of opposite sign with respect to the

particle.

The quark model of Gell-Mann and Zweig

Three quarks are introduced with the following quantum numbers

quark saveur spin I I3 S B Y Q

u up 1/2 1/2 1/2 0 1/3 1/3 2/3
d down 1/2 1/2 −1/2 0 1/3 1/3 −1/3
s étrange 1/2 0 0 -1 1/3 −2/3 −1/3

The baryonic quantum number B is additive and can take the values

- B = 0 for mesons (hadrons with integer spin),

- B = 1 for the baryons (hadrons with half integer spin 1
2
, 3
2
, ...)

- B = −1 for the antibaryons. It has been introduced to "explain" why the

nucleon or more generally baryons do not decay in pions. There is also the

strangeness S and the hypercharge, Y , which is not independent because it sat-

isfies

Y = B + S

in such a way that with the choice B = 1
3

for the quarks, the sum of the hyper-

charge of the quark triplet members vanishes. Finally, the electric charge is related

to the other quantum numbers by

Q = I3 +
Y

2
.

3



The Hadrons

They are made of quarks and antiquarks in such a way that their charge and

their baryonic numbers have integer values.

The mesons which have a baryonic number equal to zero (B = 0) are bound

states quark–antiquark

M = (qi q̄j) i, j = u, d, s...

The baryons, which have a baryonic quantum number equal to 1, are made of

three quarks

B = (qiqjqk) i, j, k = u, d, s...

All the knowns hadrons (at that time!) were arranged in the irreducible repre-

sentations of SU(3)flavour

Weaknesses

Despite its success : prediction of a new resonance Ω = (sss), the quark

model has some weaknesses

• The symmetry described by the Lie group SU(3)flavour is not exact : mu ≃
md 6= ms

• Other quarks have been discovered : c, b and t. The symmetry group has to

be extended to SU(6) but huge mass difference mt/mu ∼ 104

• No information on the dynamic! How the quarks interact between them-

selves?

Colour

they are several indications that the quarks have to carry a new quantum num-

ber : the colour. The first indication is the following. Let us consider, for example,

the hadron∆++ = (uuu) and more precisely the ∆++ in a spin state sz =
3
2 (each

quarks has its spin up) this can be written in the quark model

∆++(sz =
3

2
) = (u↑u↑u↑)

and the ∆++ wave function is symmetric when exchanging two quarks in con-

traction with the Fermi-Dirac statistic which requires that the wave function is
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antisymmetric! To solve this problem, a new quantum number is introduced :

the colour. Each quark occurs with three type of colour i = R,G,B, in such way

that

u =




uR

uG

uB


 d =




dR
dG
dB


 s =




sR
sG
sB




Colour

To this new quantum number is associated a colour symmetry group SU(3)
(to be distinguished from SU(3)flavour). Each quark is a colour triplet and the

hadrons are colour singlets (their wave functions are invariant under this group of

transformation). In this way, the ∆++ wave function is

∆++ =
1√
6
ǫijk u

↑
iu

↑
ju

↑

k

=
1√
6

(
u↑

Ru
↑

Gu
↑

B − u↑

Ru
↑

Bu
↑

G + u↑

Bu
↑

Ru
↑

G − u↑

Bu
↑

Gu
↑

R + u↑

Gu
↑

Bu
↑

R − u↑

Gu
↑

Ru
↑

B

)

which is antisymmetric under the permutation of two elements. Note that the

baryon wave function is constructed in such a way that it is totally antisymmetric

in the colour space but totally symmetric with respect to the orbital momentum ⊗
spin ⊗ flavour.

The mesons are also colour singlet and their wave function, concerning the colour,

is written

M =
1√
3

3∑

i

q̄iq
′
i =

1√
3
(q̄Rq

′
R + q̄Gq

′
G + q̄Bq

′
B)

1.3 The parton model

The electron–nucleus scattering

�

P

k

q

k′

N

e−

X

e−
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In the laboratory frame (the frame in which the nucleon is at rest), the different

external 4-momenta can be parametrised as follows

P = (M,~0)

k = (ω, 0, 0, ω)

k′ = (ω′, ω′ sin θ, 0, ω′ cos θ)

we assume that the mass of the lepton is negligible with respect to the energy of

the initial lepton (ω ≫ m).

By energy-momentum conservation, q = k − k′, its components are

q = (ω − ω′,−ω′ sin θ, 0, ω − ω′ cos θ)

The virtuality of the exchanged photon Q2 is given by

Q2 = −q2

= −((ω − ω′)2 − ω′ 2 sin2 θ − (ω − ω′ cos θ)2)

= 4ω ω′ sin2 θ

2
> 0

The different scalar products are

P · q = M (ω − ω′),

P · k = M ω

Let us introduce some new variables :

ν ≡ ω − ω′

y ≡ 2P · q
2P · k =

ν

ω

x ≡ Q2

2P · q =
Q2

2M ν

The invariant mass of the hadronic final state M2
X ≡ (P + q)2 is given

M2
X = M2 +Q2 1− x

x

But M2
X ≥ M2, thus 0 ≤ x ≤ 1. In addition, the variable y also belongs to [0, 1].
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The photon–nucleon coupling

The problem here is that the coupling of the photon to the nucleon is unknown.

Indeed, the QED Feynman rules inform us about the coupling of a photon to a

point like fermion and the nucleon is not point like, it has a size! Thus, the photon

– nucleon coupling will have to be parametrised, but how? Let us start to split the

squared matrix element into a leptonic tensor Lµν and an hadronic one Wµν

∑

spin

|M |2 = e4

Q2
Lµν Wµν

The most general parametrisation in terms of the two independent 4-momenta

P and q

Wµν = V1 gµν + V2 PµPν + V3 (qµPν + qνPµ) + V4 (qµPν − qνPµ)

+ V5 qµqν + V6 ǫµνρσP
ρqσ

where the parameters Vi, i = 1, · · · , 6 are some functions of Q2, x and M2.

Constraints on the Vi parameters

But this a QED interaction thus the hadronic tensor is expected to be trans-

verse

qµWµν = qν Wµν = 0

These two constrains give rise to a set of four equations

V1 + P · q (V3 + V4) + q2 V5 = 0

V2 P · q + q2 (V3 − V4) = 0

V1 + P · q (V3 − V4) + q2 V5 = 0

V2 P · q + q2 (V3 + V4) = 0

Solving these equations leads to

V4 = 0

V5 = − 1

q2

(
V1 − V2

(P · q)2
q2

)

V3 = −V2
P · q
q2
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Note that the parameter V6 is not constraint by the fact that the hadronic tensor is

transverse because the coefficient in front of this parameter is always zero. But

the contraction of the tensor in front of V6 which is antisymmetric in µ ν with the

leptonic tensor which is symmetric in these indices is always zero! So there is no

need to take care of it.

Thus the hadronic tensor can be expressed in terms of two parameters only :

V1 et V2

Wµν = V1

(
gµν −

qµqν
q2

)
+ V2

(
Pµ − qµ

P · q
q2

) (
Pν − qν

P · q
q2

)

It is more convenient to introduce two other parameters W1 and W2 such that

W1 = −V2/(2M) and W2 = M/2 V2.

The amplitude squared

The leptonic tensor can be easily obtained using the standard QED Feynman

rules yielding

Lµν = 2 (kµk′ ν + kνk′µ − k · k′ gµν)

The contraction of the hadronic tensor with the leptonic one leads to

Lµν Wµν = 2

[
2M W1

(
2
q · k q · k′

q2
+ k · k′

)
+ 2

W2

M

(
2 k · P k′ · P

− 2 k · P k′ · q P · q
q2

− 2 k · q k′ · P P · q
q2

+ 2 k · q k′ · q
(
P · q
q2

)2

−k · k′

(
P 2 − (P · q)2

q2

))]

This formula can be simplified using that

k · k′ =
Q2

2

q · k = −Q2

2

q · k′ =
Q2

2
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this yields

The contraction of the leptonic and the hadronic tensors gives

Lµν Wµν = 2M

[
2Q2W1 +W2

(
4
k · P k′ · P

M2
−Q2

)]

In the laboratory frame :

Lµν Wµν = 8M ωω′

[
2W1 sin2 θ

2
+W2 cos2

θ

2

]

The cross section

The cross section is given by

σ =
1

4P · k

∫
d3k′

(2 π)3 2ω′

d4PX

(2 π)3
(2π)4 δ4(k + P − k′ − PX)

∑
|M |2

=
1

4M ω

∫
d3k′

(2 π)3 2ω′
2 π

e4

Q4
Lµν Wµν

= 4 π e4
∫

d3k′

(2 π)3 2ω′

ω′

Q4

[
2W1 sin2 θ

2
+W2 cos2

θ

2

]

Note that since the invariant mass MX is not fixed, the measure d4PX must be

used instead the traditional one d3PX/(2P
0
X). Furthermore, using spherical co-

ordinates d3k′ = ω′ 2 dω′ dcosθ dφ but Lµν Wµν does not depend on φ, thus the

integration on this variable gives a factor 2 π.

The differential cross section is given by

dσ

dω′ d cos θ
=

π α2

2ω2 sin4 θ
2

[
2W1 sin2 θ

2
+W2 cos2

θ

2

]

One can use also the variables Q2 and ν instead of ω and ω′, the new differential

cross section becomes

dσ

dQ2 dν
=

4 π α2

Q4

ω − ν

ω

[
2W1 sin2 θ

2
+W2 cos2

θ

2

]

Remarks

• The dynamic of the interaction γ∗N is encoded inside the functions W1,

W2.
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• The cross section decreases when ω or θ increases, or equivalently, when

Q, ν increases. Since the cross section to be measured is very small, it

requires high luminosity lepton beams to get some data at high ω, θ ⇔
high Q2, ν

• at fixed initial energy (ω), modifying ω′, θ, the variables x and Q2 varies

and W1(x,Q
2,M2), W2(x,Q

2,M2) can be extracted from experiment.

• the functions W1, W2 have the dimension of the inverse of an energy (in

GeV−1 for example), if the symbol [. . .] denotes the dimension in unit of

energy of a quantity, we have that

[
dσ

dQ2dν

]
=

[
1

M5

]
=

[
W1

M4

]
=

[
W2

M4

]
.

MW1, MW2, νW1 νW2 are then dimensionless. Considering only the func-

tions MW1 and νW2, which will play a role after, they can be expressed as

functions of dimensionless variables, thus we may write

MW1

(
x,

M2

Q2

)
= F1(x,

M2

Q2
), νW2

(
x,

M2

Q2

)
= F2(x,

M2

Q2
).

where MW1 and νW2 are the historical notations and F1 and F2 the modern

ones.

Results of the experiment

The experiment reveals two important facts :

1.

νW2

(
x,

M2

Q2

)
≡ νW2(x)

that it is to say, there is no explicit dependence on Q2, inside the exper-

imental error bars (see fig. 1). This is the property of scale invariance.

This property is verified for small value of Q as small as the proton mass

(∼ 1GeV. If we have a model taking into account the radius R of the proton,

we should expect a dependence of the type exp(−R2Q2) which is not the

case. Everything happens as if the virtual photon is insensible to the proton

size, in other words, the virtual photon which has a resolution power which

is better than the size of the proton, couple to point like proton constituents,

instead of the proton itself.
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2. The relation

2MW1(x) ≡
νW2(x)

x
=

P.q W2(x)

Mx

is satisfied experimentally (Callan-Gross relation). The last expression is

simply the invariant form of νW2(x)/x.
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The SLAC experiment

Figure 1: Results of the SLAC experiment in 1968, showing the scale invariance

of the function νW2 at the value of x = 1/ω = 0, 25.

Lorentz invariant form

It is useful to study the differential cross section in a form which is explicitly

Lorentz invariant. From preceding results, the cross section can be written as

σ =
1

4P.k

e4

(2π)2

∫
d3k′

2ω′

2M

(Q2)2

(
2W1Q

2 +W2

(
4(k.P )(k′.P )

M2
−Q2

))
.
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Let us introduce "Mandelstam variables" s, t, u of the electron proton scattering

(P + k)2 = s 2k.P = s−M2 2k.q = −Q2

(k − k′)2 = t = −Q2 (1)

(P − k′)2 = u 2k′.P = M2 − u 2k′.q = Q2,

where the mass of the lepton has been systematically neglected, the coefficient of

W2 becomes

−
(
(s−M2)(u−M2)

M2
+Q2

)

and, using the relation s+ t + u = M2
X +M2, ⇒ s + u = Q2/x+M2 ∼ Q2/x

when Q2 → ∞, we find

ω′dσ

d3k′
=

α2

s

2

Q4

{
Q2 (2M W1 −

W2

M

P.q

x
) +

W2

2M
(s2 + u2)

}
. (2)

Let us remark that the coefficient of the term in Q2 inside the curly brackets is

nothing else than the invariant form of 2M W1−ν W2/x which is zero (an exper-

imental fact), we thus get

ω′dσexp

d3k′
=

α2

s

(s2 + u2)

Q4

W2

M

which is the invariant cross section e−N → e−X ou µ±N → µ±X taking into

account the experimental constraint (2).

Note: The invariant form is necessary because the parton model is not formulated

in the laboratory frame but in a frame where P 0 = Enucléon → ∞.

1.4 The parton model in the deep inelastic

The parton model

Feynman has proposed to consider the proton (or nucleon) as made of par-

tons which are point like objects whose quantum numbers are a priori unknown

(charge, spin, etc) but which have to form an object with a definite spin, charge,

etc. Let us assume that the proton is made of parton of type i carrying a 4-

momentum pi.
pi = yiP

with
∑

i yi = 1 and P = (E, 0, 0, E) = the proton 4-momentum.
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All the momentum of the proton is carried by the partons. We stand in a frame

where the components of P → ∞ and we will neglect the mass of the proton and

the partons.

The fundamental postulate consists in describing the γ∗-hadron interaction in

terms of γ∗-parton interaction since the resolving power of the virtual photon is

large, it can "feel" constituents inside the proton. This can be symbolised by

the following diagram where the virtual photon is absorbed by the parton of 4-

momentum pi

�

A very intuitive reasoning

We can use a very intuitive reasoning to compare the time of the electromag-

netic interaction with the one characteristic of the interaction which binds the

parton inside the proton.

• The "life time of the virtual photon" in its rest frame is 1/
√
Q2 and in the

centre of mass frame photon-proton, it can be estimated to (q0/
√
Q2 being

the boost factor to go from the virtual photon rest frame to centre of mass

frame)

∆τem ∼ 1√
Q2

q0√
Q2

∼ 1√
Q2

,

where a multiplicative factor depending on x of order 1 has been neglected

∆τem can be considered as the time that the electromagnetic interaction lasts

in the centre of mass frame γ∗−proton and ∆τem → 0, when
√
Q

2 → ∞ ;

• The characteristic time of the strong interaction which binds the partons

inside the proton in the rest frame of the proton is 1/M (M , the proton

mass is the only energy scale!); in the frame γ∗−proton, it is given by

∆τstrong int. ∼
1

M

E

M
∼

√
Q2

M2

.
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If the characteristic times are compared, we get that

∆τem ∼ 1√
Q2

≪ ∆τstrong int. ∼
√

Q2

M2
.

A very intuitive reasoning

One can thus assume that during the time ∆τem that the γ∗pi interaction lasts,

one can neglect the hadronic interaction which lasts on a much larger time scale :

the partons seem free and independent. Well after the electromagnetic interaction

the partons combine themselves to from a hadron with a probability one since no

partons are observed in X system as shown by the following diagram

�

A very intuitive reasoning

The confinement interactions do not affect the interaction γ∗–parton, we thus

have to compute

�

and add in a incoherent manner the cross sections electron–parton to form the

cross section electron–proton.
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1.4.1 The electron–parton cross section

Squared amplitude γ∗–parton

The amplitude will be decomposed in the following way

| M |2epi=
q2i e

4

Q4
Lµν Ŵµν︸︷︷︸

γ∗-parton int.

.

where qi is the parton charge in unit of proton one e. Let assume that the spin

of the partons is 1/2 (some partons must have some half integer spin because the

proton has a spin 1/2). Let us also assume that the interaction photon–parton takes

the form qieγµ, this leads to

Ŵµν = 2 (piµ p
′
iν + piν p

′
iµ − pi.p

′
i gµν),

where the final parton 4-momentum is p′i = pi + q. Neglecting the parton mass,

we get

| M |2epi= 8
e4 q2i
Q4

(
(pi.k)

2 + (pi.k
′)2

)
= 2

e4 q2i
Q4

(
ŝ2 + û2

)
,

with the partonic invariants ŝ = (pi + k)2 et û = (pi − k′)2.

The cross section γ∗–parton

The cross section will be

σ̂ =
1

2ŝ

1

(2π)2

∫
d3k′

2ω′

d3p′i
2p

′0
i

δ(4)(k + pi − k′ − p′i) | M |2epi (3)

= 2
α2q2i
Q4

∫
d3k′

ω′
δ
(
2pi.q −Q2

) ŝ2 + û2

ŝ
. (4)

At the partonic level, the differential cross section will have the following

form
ω′dσ̂

d3k′
= 2

α2q2i
Q4

ŝ2 + û2

ŝ
δ(2pi.q −Q2). (5)

1.4.2 The electron–proton cross section

The cross section γ∗–proton

To get the hadronic cross section, the partonic cross sections will be summed

incoherently
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ω′dσ

d3k′
=

∑

i

∫ 1

0

dy Fi(y)
ω′dσ̂

d3k′

∣∣∣∣
pi=yP

, (6)

where the hadronic invariants are expressed in terms of the partonic invariants and

the fraction y of 4-momentum of the parton in the proton

ŝ = ys et û = yu, 2pi · q = y 2P · q. The quantities Fi(y) are the number of

partons of type i carrying a 4-momentum fraction y of the proton one. In our

model, the hadronic cross section is given by

ω′dσ

d3k′
= 2

α2

Q4

∑

i

e2i

∫ 1

0

dy

y
Fi(y) y

2s
2 + u2

s
δ(2yP.q −Q2)

= 2
α2

s

s2 + u2

Q4

︸ ︷︷ ︸
indep. yi

∑

i

e2i

∫ 1

0

dy Fi(y) y δ(2yP.q −Q2)

=
α2

s

s2 + u2

Q4

∑

i

q2i
x

P.q
Fi(x) (7)

with y = Q2/2Pq = x.

Comparison

Comparing with the formula given the differential cross section electron–

proton, one can identify

W2

M
(x,

M2

Q2
) =

∑

i

q2i
x

P.q
Fi(x) (8)

which is equivalent to (in the laboratory frame P.q = Mν)

1

x
νW2(x,

M2

Q2
) =

∑

i

e2i Fi(x) (9)

and since there is no term in Q2 in
ω′dσ

d3k′
(see eq. (2)), we also recover

2M W1(x,
M2

Q2
) =

1

x
νW2(x). (10)
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Remarks

• The parton model well reproduces the "scale invariance", that is to say

W2(x,M
2/Q2) = W2(x)

• The variable x = Q2/2P.q has the following physical meaning : this is

the normalised parton 4-momentum in the proton which scatters with the

virtual photon

• ν W2/x is the sum weighted by the squared charge q2i , of the probabilities

of finding a parton of type i being scattered by the photon with a x fixed.

• The relation 2M W1(x) = ν W2(x)/x is a direct consequence of the fact

that the partons interacting with the virtual photon has a spin 1/2.

Exercice : Show that for spin 0 partons (coupling to the γ given by qi (pi + p′i)
µ)

one has W1 ≡ 0.

1.4.3 Partons ≡ quarks + ...

Feynman partons I

It is tempting to identify the Feynman partons with the Gell-Mann and Zweig

quarks and to assume that the proton and the neutron, in the deep inelastic scatter-

ing can be expressed as in the quark model by

proton = (uud)
neutron = (udd).

This is the "valence" quarks and we coined uv(x) and dv(x) the u and d quarks

in the proton. The quantum number of the nucleon are carried by the "valence"

quarks. Using isospin symmetry, it exists some relations between partonic densi-

ties in the proton (p) and the neutron (n)

F p
u (x) = F n

d (x) = uv(x)
F p
d (x) = F n

u (x) = dv(x)

But the experimental results show that the proton and the neutron are more com-

plex than this "3 quarks" model, they contain also antiquarks. They are called

"sea" quarks whose distribution is um(x) = ūm(x), dm(x) = d̄m(x).
The sum of the quantum number carried by this quarks is zero! Let us define
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Feynman partons II

u(x) = uv(x) + um(x)
d(x) = dv(x) + dm(x).

Neglecting the role of s, c and b quarks, we can write following the parton model

1

x
νW ep

2 =
4

9
(u(x) + ū(x)) +

1

9
(d(x) + d̄(x))

1

x
νW en

2 =
1

9
(u(x) + ū(x)) +

4

9
(d(x) + d̄(x)). (11)

where um = ūm = ū, dm = d̄m = d̄.

Feynman partons III

Moreover, it is possible to measure experimentally using the deep inelastic

scattering on an isoscalar target of deuterium = p+ n

1

x
νW ep+en

2 =
5

9

(
u(x) + ū(x) + d(x) + d̄(x)

)

and thus to compute the integral

9

5

∫ 1

0

dx νW ep+en
2 =

∫ 1

0

dx x
(
u(x) + ū(x) + d(x) + d̄(x)

)

which measures the total momentum, normalised to the proton one, carried by all

the quarks u, d, ū and d̄ in the nucleon. If the proton and the neutron were made

of quarks and antiquarks only, then the right hand member should be equal to 1,

but the result of this experiment is

〈x〉q+q̄ ≃ 0.45 6= 1. (12)

This means that the quarks carry half of the proton momentum, the other half is

carried by neutral partons.

The parton model: general formulation I

• Under certain conditions that will precise below, we consider that a hadron

is made of partons. We "work" in the infinite momentum frame. We have
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H = {pi} i = 1,∞
P =

∑
ipi where P, pi are resp. the hadron and partons 4-momenta.

All the masses (hadron and partons) are neglected, so we can write

pi = xiP avec
∑

i

xi = 1.

Partons are point like and their interactions is ignored inside the hadron

The parton model: general formulation II

• Interactions between hadrons reduce to interactions between partons fol-

lowing the diagram

�

H2

H1

j

i

σ̂ij

σ̂ij is the "hard" cross section describing the interactions between partons.

The hadronic cross section is a incoherent superposition of partonic cross sec-

tions, the probabilities are added, not the amplitudes!

The parton model: general formulation III

We can the write

σH1H2 =
∑

i,j

∫
dx1dx2 F

H1

i (x1) F
H2

j (x2) α
p
s σ̂ij(x1, x2, s).

The function FH
i (x) is the the partonic density, that is to say it is proportional to

the probability of finding in the hadron H a parton of type i carrying the fraction

x of the 4-momentum of the hadron. This function is "scale invariant", that is to

say independent of dimensional variables s, t, u. It contains the "long distance"

effects (confinement) and its x dependence is not predict by the perturbative the-

ory. The "short distance" effects are contained in the "hard" cross section σ̂ij . This
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factorisation between "long" and "short" distance is similar to the one realised in

the more rigorous, but less general, approach of the operator product expansion.

• The parton model is a valid postulate when all the dimensional variables

s, t, u are large compared to the proton mass (∼ 1GeV2).

What we learnt in lecture I

• The hadrons are not elementary particles. They can be classified following

the representations of SU(n)flavour (n = number of flavours = number of

quarks (spin 1/2 particles))

• These quarks have to carry a new quantum number : colour

• To describe the scale invariance (experimental fact), hadrons made of par-

tons such that a probe (γ∗), with a large momentum transfer, interacts with

them as if they were free

• partons ∈ [quarks,. . . ]

• No information on the dynamics between partons
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