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1 Lecture III : Renormalisation

The problem

In this section, we will scout out superficially the quantum aspect of Quantum

field theory. To start with, let us imagine that we want to compute the second order

in perturbation of a QCD process, let us say the scattering of quarks of different

flavour qi q̄i → qk q̄k. Among all the diagrams, let us pick one, the following

�

k

k-q

What is new, in this diagram is the loop inside the gluon propagator. In the rest of

this section, we will focus on this part, disregarding the physical initial and final

states.

UV divergences

Let us try to compute this part of the diagram. From the left to the right, a

virtual incoming gluon with a colour a, a Lorentz index µ and a 4-momentum

q (q2 6= 0) splits into a quark – anti-quark pair which annihilates itself into a

outgoing virtual gluon with colour b, Lorentz index ν and 4-momentum q (because

of the global energy-momentum conservation).
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�

k

k-q

a, µ
q

b, ν
q

Note that the energy-momentum conservation at each vertex does not fix the four-

momentum of the quark and the anti-quark propagators. We thus have to sum over

all the possibilities, i. e. integrate over the four-momentum k.

P(1)
µν (q) ≃

∫
d4k

(2π)n
Tr

[

γµ
6k +m

(k2 −m2 + iλ)
γν

( 6k − 6q) +m

((k − q)2 −m2 + iλ)

]

There is a problem with this integration over k, indeed, we have to integrate up

to infinity every component of the four-momentum k, let us study the behaviour

of the integrand when k → ∞. Here, we have to be careful because k lies on a

Minkowski space, that is to say k2 = k20 − |~k|2 and it is not guarantee that if k0
and |~k| go to infinity, k2 goes to infinity too!. To do the things correctly, we have

to apply a "Wick rotation" to go from a Minkowski space (k) to an Euclidean one

(k̄) (change k0 into i k0)

∫

d4k
kµ kν
k4

∼
∫

∞

0

d|k̄| |k̄| → ∞ UV divergence

The behaviour of the integrand is such that the integral over k diverges when the

components of k go to infinity! This is an example of a Ultra-Violet divergence :

there is a divergence when the frequency associated to the particles running into

the loop goes to infinity.

Origin

What does that mean ? The mathematical origin of this divergence is that

distributions have been handled without precautions (treated like functions). But

above that, there is also a physical origin which is the following.

We are getting a contribution from intermediate states involving q q̄ pairs but

the energy of these intermediate states is arbitrarily high! We have no idea what

the interaction of gluons with arbitrarily high momentum quarks is.

We made the assumption, at the very beginning, that the q − g interaction is

point-like (−i g T a γµ). But we cannot test at such high energies that the interac-

tion q − g is like that
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Regularisation

What can we do ?

Firstly, give a meaning to the expression of P(1)
µν (q) by regularising the inte-

gral.

- cut-off
∫ Λ

0
dk̄ f(k̄) = F (Λ)→ breaks some symmetries of the Lagrangian,

not a good idea!

- dimensional regularisation d4k → dnk, preserves Lorentz and gauge sym-

metry

Note that the dimensional regularisation also breaks some symmetries of the La-

grangian, scale invariance for example but they are minor ones

Back to our example:

∫
∞

0

|k̄|n−1 d|k̄| |k̄|−2 =

[ |k̄|n−2

n− 2

]∞

0

convergent for n < 2

Regularisation

The question one can ask is: Is it an isolated case? The answer is no, other

Green functions have UV divergences at one loop, for example:

�

∫

d4k
kµ kν
k6

→
∫

∞

0

d|k̄|
|k̄| logarithmic UV divergence

∫
∞

0

d|k̄| |k̄|n−5 converge for n < 4

But how many Green functions diverge?

1.1 Superficial degree of divergence

A Simple tool
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To answer this last question, we can build a simple tool based on the power

counting of k, let us define

ω(G) : superficial degree of divergence of a Feynman diagram G. For an

arbitrary diagram :

• EF external fermions

• EB external bosons

• IF fermion propagators

• IB boson propagators

• ni number of vertices of type i, N =
∑

i ni the total number of vertices.

Some vertices may be derivative coupling di power of k coming from the

vertex i, for instance

�

di = 1
�

di = 0

• L the number of independent four-momenta (number of loops), each term

corresponds to k4 (d4k)

Thus

A Simple tool

ω(G) = 4L− IF − 2 IB +
∑

i

ni di (1)

But this formula is not very handy since it depends on the number of internal lines!

But we have the following relations:

• L = IB + IF − (N − 1) because the number of independent four-momenta

L is equal to the number of momenta, one per internal lines (IF +IB) minus

the number of constrains coming from the energy-momentum conservation

(N − 1) (it is N − 1 and not N because of the global energy-momentum

conservation)
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• EF + 2 IF =
∑

i ni fi where fi is the number of fermions attached to the

vertex of type i

• EB + 2 IB =
∑

i ni bi where bi is the number of bosons attached to the

vertex of type i

Thus, using these extra relations, the equation (1) becomes

ω(G) = 4− EB − 3

2
EF +

∑

i

ni

(

bi + di +
3

2
fi − 4

)

(2)

A Simple tool

But if the vertex of type i originates from a term in the Lagrangian of the type

gi ψ · · ·ψ
︸ ︷︷ ︸

fi

A · · ·A
︸ ︷︷ ︸

bi

∂ · · ·∂
︸ ︷︷ ︸

di

This term must have a dimension 4 as any element of the Lagrangian, introducing

[gi] the dimension of the coupling constant gi we have then that

[gi] + bi + di +
3

2
fi = 4

because the A field has dimension 1 as the derivative ∂µ and the dimension of the

ψ field is 3/2. Thus, the superficial degree of divergence can be written

ω(G) = 4− EB − 3

2
EF −

∑

i

ni [gi] (3)

Reminder about dimensional analysis. The system of unit used in high energy

is the system where ~ = c = 1. In this unit system, every quantity can be ex-

pressed in unit of energy : the energy has a dimension 1 [E] = 1 and a length

has a dimension -1 [L] = −1 because of the relation ∆p∆x ∼ ~. The action

S =
∫
d4xL(x) has no dimension [S] = 0, thus each term of the Lagrangian

must have a dimension 4. The kinetic term for the fermions must have the dimen-

sion 4 :

[ψ̄ ∂µ ψ] = 4 → 2 [ψ] + [∂µ] = 4 → 2 [ψ] + 1 = 4 → [ψ] =
3

2

the kinetic term for the gauge field have also a dimension 4 :

[∂µAν ∂
µ Aν ] = 4 → 2 [∂µ] + 2 [A] = 4 → [A] = 1
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For the QED like interaction term

[g ψ̄ 6Aψ] = 4 → [g] + 2 [ψ] + [A] = 4 → [g] = 0

thus a general interaction term with a coupling constant gi generates the following

relation



gi ψ · · ·ψ
︸ ︷︷ ︸

fi

A · · ·A
︸ ︷︷ ︸

bi

∂ · · ·∂
︸ ︷︷ ︸

di



 = 4

→ [gi] + fi [ψ] + bi [A] + di [∂µ] = 4

→ [gi] +
3

2
fi + bi + di = 4

Be careful that these dimensions depend on space-time dimension. In a space-

time of dimension n, the action given by S =
∫
dnxL(x) is still dimensionless,

thus:

[ψ̄ ∂µ ψ] = n→ [ψ] =
n− 1

2

[∂µAν ∂
µ Aν ] = n→ [A] =

n− 2

2

[g ψ̄ 6Aψ] = n→ [g] =
4− n

2

Exercise

1)Rederive the formula for the superficial degree of divergence in a space-time

of dimensions n

2) Consider the following Lagrangian

L =
1

2
(∂µ Φ(x)) (∂

µ Φ(x))− m2

2
Φ2(x)− λ

4!
Φ4(x)

where Φ(x) is a scalar field. Determine for which value of n, this theory is super

renormalisable, renormalisable, non renormalisable.

QCD case
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In the case of QCD, there is only one type of coupling constant whose dimen-

sion is zero! But the ghosts must be included, thus

ω(G) = 4− (EB + EG)−
3

2
EF (4)

Note that eq. (4) depends uniquely on the number of external particles! It is rather

remarkable and made this tool very handy

• w(G) < 0 convergent Green function

• w(G) = 0 Green function with a logarithmic divergence

• w(G) = 1 Green function with a linear divergence

• w(G) = 2 Green function with a quadratic divergence

•
...

2-points, 3-points

�

ω(G) = 2

�

ω(G) = 1

�

ω(G) = 2

	

ω(G) = 1




ω(G) = 0

�

ω(G) = 1

4-points
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�

ω(G) = 0



ω(G) = -1

Æ

ω(G) = -2

�

ω(G) = 0

�

ω(G) = 0

If the number of external legs (whatever its type) is greater than or equal to 5,

the superficial degree of divergence becomes negative.

Renormalisation

There is a finite number of Green functions which diverge (9). Note that due

to the symmetries of the Lagrangian (Lorentz symmetry, gauge symmetry), the

real degree of divergence is less severe, it is in fact 0 for any divergent Green

functions : all the divergences are of logarithmic types. Due to the residual gauge

symmetry at quantum level all these nine divergent Green functions are not in-

dependent, there are relations among them : this is the Slavnov-Taylor identities

(generalisation of Ward identities in QED). Since the number of divergent Green

functions is finite, we can expect to absorb theses divergences into a redefinition

of the parameters of the Lagrangian.

The Lagrangian, at quantum level, is expressed in terms of the bare quanti-

ties L(ψB, AB, ηB, mB, gB). All these bare parameters are not physical (they are

infinite!). By a multiplicative renormalisation, the Lagrangian can be expressed

in terms of the renormalised parameters (the renormalised parameters differ from

the physical one by finite transformations).

ψB(x) = Z
1/2
2 ψ(x), Aa

B µ(x) = Z
1/2
3 Aa

µ(x), ηaB(x) = Z̃
1/2
3 ηa(x),

mB =
Z0

Z2
m, gB =

Z1F

Z2 Z
1/2
3

g′ =
Z1

Z
3/2
3

g′ =
Z̃1

Z̃3 Z
1/2
3

g′, ξB = Z3 ξ
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Note that, because of the Slavnov-Taylor identities, only 7 renormalised constant

are required It will clear later why I named the renormalised coupling by g′. Thus

the Lagrangian can be expressed in terms of the renormalised quantities

L(ψ,A, η,m, g′) = −1

4
Z3

(

∂µA
a
ν(x)− ∂ν A

a
µ(x) +

Z1

Z3

g′ fabcAb
µ(x)A

c
ν(x)

)2

+ Z̃3 (∂µ η
⋆ a(x))

(

δab ∂µ −
Z̃1

Z̃3

g′ fabcAc
µ(x)

)

ηb(x)

+ Z2 ψ̄j(x)

[

i

(

∂µ − i
Z1F

Z2
g′Ab

µ(x) T
b
ji

)

γµ −m

]

ψi(x)

− Z0m ψ̄i(x)ψi(x)−
1

2 ξ

(
∂µAa

µ(x)
)2

But remember that all the couplings must be equal even the renormalised ones,

this is a consequence of the gauge invariance, thus

Z1F

Z2

=
Z1

Z3

=
Z̃1

Z̃3

This is what the Taylor-Slavnov identities tell us! For matter of convenience, we

introduce

Zi = 1 + δZi, Z̃i = 1 + δ Z̃i

The Lagrangian can be expanded in terms of the δ Zi and δZ̃i under the fol-

lowing form

L(ψ,A, η,m, g′) = −1

4
F a
µν(x)F

aµν(x) + (∂µ η⋆a(x))Dab
µ ηb(x)− 1

2 ξ

(
∂µAa

µ(x)
)2

+ ψ̄j(x) (i6Dji −m)ψi(x)−
1

4
δZ3

(
∂µA

a
ν(x)− ∂ν A

a
µ(x)

)2

+ δZ̃3 (∂µ η
⋆ a(x)) (∂µ η

a(x)) + i δZ2 ψ̄i(x) 6∂ ψi(x)

− 1

2
δZ1 g

′
(
∂µA

a
ν(x)− ∂ν A

a
µ(x)

)
fabcAb

µ(x)A
c
ν(x)

− 1

4
(2 δZ1 − δZ3) g

′ fabcAb
µ(x)A

c
ν(x) f

adeAdµ(x)Ae ν(x)

− δZ̃1 g
′ (∂µ η

⋆ a(x)) fabcAc
µ(x) η

b(x)

+ δZ1 g
′ ψ̄j(x) 6Aa(x) T a

ji ψi(x)
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Leading to

L(ψB, AB, ηB, mB, gB) = L(ψ,A, η,m, g′) + δL(ψ,A, η,m, g′)

Note that in the expansion, there are leftover terms, indeed, this renormalisation

procedure works order by order in the coupling constant expansion, that is to

say that δZi =
∑

k g
′ 2 k δZ

(k)
i , only terms with the lowest degree in g′ has been

retained, especially

Z2
1

Z3

=
(1 + δZ1)

1 + δZ3

≃ (1 + 2 δZ1) (1− δZ3) ≃ 1 + (2 δZ1 − δZ3)

Note also that since we are working in a space time of dimensions n, the dimen-

sion (in term of energy) of the coupling constant g′ is not zero! Indeed

[L] = 4 [g′] = 0 [m] = 1
[L] = n [g′] = 2− n

2
[m] = 1

g′ → g µ2−n/2 with [g] = 0 and [µ] = 1

To absorb the change of the dimension of the coupling constant, a new energy

scale µ is introduced.

The way this scale appear seems a bit artificial and seems to be related to the

dimensional regularisation, but whatever the way we regularise, the renormalisa-

tion procedure makes the appearance of this energy scale. Indeed, if we have used

a cut-off Λ to regularise the divergent integrals, we would have got a result for a

divergent Green function of the type

A ln

(
Λ

Q

)

+B

where Q is typical energy scale and A and B are two coefficients independent of

Λ. We want to absorb the dependence on the regulator into a renormalisation of

parameters of the Lagrangian. But because of the logarithmic dependence, this

procedure is ambiguous! Indeed, an arbitrary energy scale can be introduced in

such a way that

A ln

(
Λ

µ

)

+ A ln

(
µ

Q

)

+B
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In the old textbooks on Quantum Field Theory, the scale µ is the scale at which

the UV divergences are subtracted. Note the key role plays by the fact that the

UV divergences are logarithmic divergences!

In addition, with the logarithmic dependence on the regulator, one can also

absorb some finite terms (even not logarithmic), this defines the renormalisation

scheme.

�

a b

q

δZ3 i δ
ab (qµ qν − q2 gµν)

�

a b

q

δZ̃3 i δ
ab q2

�

i j

q

δZ2 i δij 6q

�

i j

q

− δZ0 i δij m

�

a, µ
q1

b, ν
q2

c, ρ
q3

δZ1 g
′ fabc Vµνρ(q1, q2, q3)

�

a, µ

i j

δZ1F g
′ T a

ji γ
µ

� c, q

δZ̃1 g
′ fabc qµ
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�

(2 δZ1 − δZ3) g
2 µ2 ε V̄ abcd

µνρσ

1.2 A specific example

One loop corrections to the gluon propagator

Let us treat an example : the corrections to the gluon propagator at one loop.

To do that, it requires to compute the following contributions. Note that it can

be shown that only the 1 particle irreducible diagrams have to be considered : a

digram which cannot be separated in two by cutting only one line.

�

k

k-q

a, µ
q

b, ν
q

�

k

a, µ
q

b, ν
q

�

k

k-q

a, µ
q

b, ν
q

�

k

k-q

a, µ
q

b, ν
q

The way to compute these one loop diagrams is rather standard and can be find

in textbooks, some notes are available in the directory. Applying the technics, we

get

Results (Feynman gauge ξ = 1)

P
(1) gg
µν (q) =

1

ε
N δab K(ε)

[

q2 gµ ν

(

19

12
+

29 ε

9

)

− qµ qν
(

11

6
+

67 ε

18

)]

P
(1) ggg
µν (q) = 0

P
(1)GG
µν (q) =

1

ε
N δab K(ε)

[

q2 gµ ν

(

1

12
+

2 ε

9

)

− qµ qν
(

−
1

6
−

5 ε

18

)]

P
(1) qq
µν (q) = −

1

ε
TF δab K(ε)

[

q2 gµ ν

(

4

3
+

20 ε

9

)

− qµ qν
(

4

3
+

20 ε

9

)]
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with TF = NF/2 and

K(ε) =
αs

4 π

(
4 π µ2

−q2 − i λ

)ε
Γ(1 + ε) Γ2(1− ε)

Γ(1− 2 ε)

≃ 1 + ε

(

ln(4 π)− γ + ln

(
µ2

−q2 − i λ

))

+O(ε2)

Γ is the so called Euler Gamma function which generalises the factorial to com-

plex variable : Γ(1 + z) = z Γ(z), more properties in [1] and ε = (4− n)/2

More results

Let us introduce P the sum of four contributions

P(1)
µν (q) = P(1) gg

µν (q) + P(1) ggg
µν (q) + P(1)GG

µν (q) + P(1) qq
µν (q)

The ghost contribution is necessary in order thatP(1)
µν (q) is transverse : qµP(1)

µν (q) =

qν P(1)
µν (q) = 0 as required by Slavnov-Taylor identities. Note that P(1)

µν (q) is not

the gluon propagator, it can be shown that

D−1
µν = D−1

µν − iP(1)
µν (5)

where D is the exact propagator (one loop in our case) and D the free propagator.

Counter term

We have to add the counter term

�

a,µ b,ν
q

− i δZ
(1)
3 δab

(
q2 gµν − qµqν

)

iP(1) tot
µν,ab = iP(1)

µν,ab − i δZ
(1)
3 δab

(
q2 gµν − qµqν

)

In the MS scheme and the Feynman gauge (ξ = 1)

δZ
(1)
3 =

αs

4 π

(
1

ε
+ ln(4 π)− γ

) (
5

3
N − 4

3
TF

)
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Other counter terms

Let us compute also the counter term associated to the quark wave function

�

i j +
�

i j

δZ2 = − αs

4 π
CF

(
1

ε
+ ln(4 π)− γ

)

as well as the counter term associated to the vertex quark – gluon

 

a, µ

i j

+

!

a, µ

i j

+

"

a, µ

i j

δZ1F = − αs

4 π
(CF +N)

(
1

ε
+ ln(4 π)− γ

)

1.3 The running coupling constant

The renormalised αs

Recalling the relation between the bare coupling constant gB and the renor-

malised one g′ ≡ g µε and the relation αs = g2

4π
, we have the following relation

between the bare αsB and the renormalised one αs

αsB = αs µ
2 ε Z2

1F

Z2
2 Z3

≡ αs µ
2 ε Zα (6)

where
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Zα ≃ 1 + 2 δZ1F − 2 δZ2 − δZ3 +O(α2
s)

= 1− αs

4 π

[
11

3
N − 2NF

3

] (
1

ε
+ ln(4 π)− γ

)

But remember that αsB does not depend on µ, the dependence on the scale µ ap-

pears once we expressed the Lagrangian in terms of the renormalised parameters,

thus

µ2 dαsB

dµ2
= 0

ξ dependence

For simplicity reason, we choose the Feynman gauge to present the different

results. Letting the xi parameter free, the results for the counter terms would have

been

δZ
(1)
3 =

αs

4 π

(
1

ε
+ ln(4 π)− γ

) (

N

[
13

6
− ξ

2

]

− TF
4

3

)

δZ
(1)
2 = − αs

(4π)
CF ξ

[
1

ε
− γ + ln(4π)

]

δZF
1 = − αs

4 π

(
1

ε
+ ln(4 π)− γ

) (

CF ξ +N

[
3

4
+
ξ

4

])

It is easy to verify that the ξ dependence drops out in Zα, This is expected because

Zα is related to a physical quantity.

But, in order that the relation (6) is fulfilled the renormalised quantity αs must

depend on µ

µ2 d

dµ2

(
αs µ

2 ε Zα

)
= 0

= β(αs)µ
2 ε Zα + ε αs µ

2 ε Zα + αs µ
2 ε µ2 dZα

dµ2
(7)

with

β(αs) = µ2 dαs

dµ2

15



But Zα does not depend explicitly on µ2 (note that this proper to MS scheme),

thus

µ2 dZα

dµ2
=
dZα

dαs

µ2 dαs

dµ2
= β(αs)

dZα

dαs

Plug-in this last result into the right hand member of equation (7) leads to

β(αs)

[

Zα + αs
dZα

dαs

]

+ ε αs Zα = 0

that is to say
β(αs) =

−ε αs

1 + αs

Zα

dZα

dαs

≃ −ε αs

(

1− αs
dZα

dαs

)

= −ε αs − α2
s κ(ε)

(
11N − 2NF

12 π

)

with κ(ε) = 1 + ε ln(4 π) − ε γ. Let us remark that β(αs) is not singular when

ε→ 0, we can take the limit ε→ 0, this yields

β(αs) = −α2
s b0 (8)

with

b0 =
11N − 2NF

12 π

The µ dependence of αs

To determine the µ dependence of αs, we have to solve the differential equa-

tion given by eq. (8). More generally, introducing an initial condition, the running

coupling constant obeys to the following differential equation

d αs(t)

dt
= β(αs(t)) with t = ln(µ2/µ2

0)

Note that the β function can be computed at any order in αs and has the following

perturbative expansion

β(αs(t)) = −b0 αs(t)
2 (1 + b1 αs(t) + · · · )

This kind of differential equation is an example of the renormalisation group

equations (RGE). These set of differential equations describe how a physical ob-

servable has to behave under a variation of the unphysical scale µ. Solving the

differential equation amounts to integrate the inverse of the β function
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t =

∫ αs(t)

αs(0)

dx

β(x)

Keeping only the first term of the perturbative expansion of the β function

gives

t =
1

b0

(
1

αs(t)
− 1

αs(0)

)

that is to say

αs(t) =
αs(0)

1 + b0 t αs(0)

This is the expression of running coupling constant at Leading Logarithmic (LL)

accuracy. Knowing the coupling constant at a certain energy scale µ2
0, this expres-

sion enables to compute the value of αs at a scale µ2

Discussions

Let us discuss the dependence on µ2 (t) of the running coupling constant.

Let us remark that this dependence is related to the sign of b0. Indeed, there is

two contributions in the expression of b0 : one positive proportional to N , i.e.

coming from the gluon self interaction and another one, negative, proportional to

NF coming from the quark – gluon interaction. If NF ≤ 16, then b0 > 0 and the

variation of αs with t is negative, thus αs(t) decreases when t increases, this is

called the asymptotic freedom.

If NF ≥ 16, b0 < 0 and the variation of αs with t is positive, thus αs(t)
increases when t increases, this the case of QED for example. The physical picture

is the following

In QED, b0 < 0 screening effect :

an electric charge is screened by the

virtual ± charge in the vacuum

In QCD, b0 > 0 anti-screening ef-

fect : an colour charge is screened

by the virtual q q̄ but anti-screened

by the g in the vacuum
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The parameter Λ
Note that the initial condition can be defined with the help of parameter Λ such

that

ln

(
µ2

Λ2

)

= −
∫ αs(µ2)

∞

dx

β(x)

Taking the first term of the β function, one gets

αs(µ
2) =

1

b0 ln
(

µ2

Λ2

) (9)

Λ : a scale which separate perturbative and non perturbative regime (Λ
depends on the renormalisation scheme)

Plot of αs(µ)
Let us plot the running coupling constant as given by eq. (9) as a function of

µ.
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1.4 Choice of the scale µ

The ration R
Let us consider the ratio R

R(µ2) ≡ σ(e+ e− → hadrons)

σ(e+ e− → µ+ µ−)

At lowest order, R(µ2) = RB = N
∑

i q
2
i . Let us define the quantity

R̄(µ2) =
R(µ2)− RB

RB

At one loop

R̄(µ2) =
αs(µ

2)

π

How to choose this scale µ?

Since all the final state is integrated over, the only scale is
√
S : the available

energy in the centre of mass frame e+ e− with S = (p1 + p2)
2, thus

R̄(S) =
αs(S)

π
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If another choice for the scale is made, say µ0, since the relation between αs(S)
and αs(µ

2
0) is known, the quantity R̄(S) can be expressed in terms of the scale µ0,

it yields

R̄(S) =
αs(µ

2
0)

π

[
1− αs(µ

2
0) b0 t+ α2

s(µ
2
0) (b0 t)

2 + · · ·
]

with t = ln(S/µ2
0). Thus,

R̄(S)− R̄(µ2) = O(α2
s(µ

2))

the difference between the two results is of order α2
s(µ

2), that is to say to

not calculated terms (remember that we only compute the αs correction). Nev-

ertheless, if µ ≃
√
S, αs(µ

2) t ≪ 1 none of the terms in the square bracket will

be large, the perturbative series is not expected to be spoiled. On the contrary,

if µ ≪
√
S (or µ ≫

√
S), αs(µ

2) t ≃ 1, the perturbative series will be badly

convergent.

To sum up, a good choice for the scale µ is around the "natural" scale
√
S,

more precisely "around" means that αs(µ
2) ln(S/µ2) is small compared to 1. A

choice where µ is very different of
√
S leads to unstable predictions, in the sense

that the higher order corrections to R̄(µ2) will be large. Note that the variation of

the scale µ around
√
S gives an error band for the theoretical prediction, the more

the number of terms of the perturbative series are included, the less this error band

will be.

Remarks

Note also that it can be understood why the formula, we got, for αs(µ
2) is

called at Leading Logarithmic (LL) accuracy. Indeed, it can be seen in the expres-

sion of R̄(S) in terms of µ2
0, that the series is in terms of (αs(µ

2) t)n, that is to say

that each power of αs is multiplied the same power of t. Including, the expres-

sion of the β function at two loop in the differential equation which drives the µ
dependence of αs(µ

2), solving it and expanding αs(S) in terms of αs(µ
2
0) would

have lead to a series which contains, besides the terms of the type (αs(µ
2) t)n,

terms like αs(µ
2)n tn−1. This expression of αs(µ

2) is called at Next to Leading

Logarithmic accuracy (NLL).

What we learnt in lecture III

• The loop calculation may generate UV divergences (when the 4-momentum

running in the loop goes to infinity)
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• In the QCD case, the number of divergent Green functions is finite (because

[g] = 0 in four-dimension space time)

• Due to the symmetries of the Lagrangian, all the divergences are logarithmic

• Renormalisation procedure : express the "bare" parameters of the Lagrangian

in terms of the renormalised (physical) one plus some counter terms. These

latter are adjusted to cancel the UV divergences. Work order by order in

perturbation.

• As the outcome of renormalisation, an arbitrary energy scale appears. The

renormalised parameters depend on it.

What we learnt in lecture III

• The independence of measurable quantities on this scale yields sets of dif-

ferential equations which drive the dependence of these renormalised pa-

rameters on this scale
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