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1 Lecture IV

1.1 Soft/collinear divergences

Other divergences!

When computing αs corrections to some processes, do we get rid of all the

divergent terms? the answer is unfortunately no!!!

Vertex example

let us consider the following loop diagram

�

p2 − kp1 − k

k

a, µ
q = p2 − p1

p1, i1 p2, i2

+

�

a, µ

i1 i2
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This diagram is computed in the Feynman gauge for simplicity and also by

taking the fermions on their mass shell:

p22 = p21 = m2 but q2 6= 0.

Vertex example I

Λ(1)
µ (p2, p1, q) = −i e2 µ(4−n)

∫

dnk

(2π)n
γα

6p2 − 6k +m

(p2 − k)2 −m2 + iλ
γµ

× 6p1 − 6k +m

(p1 − k)2 −m2 + iλ
γα 1

k2 + iλ

(

T b T a T b
)

i2i1
(1)

To compute this diagram, the Feynman trick is used : the product of denomi-

nator is traded for one denominator but which depends on parameters over which

we have to integrate, for example

1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2

This can be generalised to an arbitrary number of denominators.

Λ(1)
µ (p2, p1, q) = −i e2 µ(4−n)

∫ 1

0

2 y dy

∫ 1

0

dx

∫

dnk

(2π)n

× D

[(k − y (p2 x+ p1 (1− x)))2 − y2 (p2 x+ p1 (1− x))2 + i λ]3
.

Vertex example II

We make the following change of variable:

l = k − y (p2 x+ p1 (1− x)). (2)

The denominator can be written in a simpler way and Λ(1) becomes:

Λ(1)
µ (p2, p1, q) = −i e2 µ(4−n)

∫ 1

0

2 y dy

∫ 1

0

dx

∫

dnl

(2π)n

× D

[l2 − R2 + i λ]3
. (3)

with

R2 = y2 (m2 − q2 x (1− x)) (4)
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Vertex example III

The numerator D is a polynomial of degree one in l2:

D = a l2 + b.

Only the part in l2 will give an ultra-violet divergence, the part constant will

give an infrared divergence. So let’s write Λ(1) as the sum of a part which only

gives rise to ultraviolet divergences and part which only gives rise to infrared

divergences:

Λ(1)
µ (p2, p1, q) = Λ(1)UV

µ + Λ(1)IR
µ (5)

with

Λ(1)UV
µ = −i e2 µ(4−n)

∫ 1

0

2 y dy

∫ 1

0

dx

∫

dnl

(2π)n
a

l2

(l2 −R2 + i λ)3
(6)

Λ(1)IR
µ = −i e2 µ(4−n)

∫ 1

0

2 y dy

∫ 1

0

dx

∫

dnl

(2π)n
b

1

(l2 − R2 + i λ)3
(7)

Vertex example IV

The integration on the 4-momentum l gives us:

Λ(1)UV
µ = e2

µ(4−n)

(4 π)n/2
(n− 2)2

2
γµ Γ(2− n

2
)

×
∫ 1

0

dx (m2 − q2 x (1− x)− i λ)n/2−2

∫ 1

0

dy yn−3 (8)

and

Λ(1)IR
µ = − e2

µ(4−n)

(4 π)n/2
Γ(3− n

2
)

×
∫ 1

0

dx (m2 − q2 x (1− x)− i λ)n/2−3

∫ 1

0

dy yn−5 F (y)

with

F (y) = b0 + b1(x) y + b2(x) y
2 (9)
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Integration on the variable y is easy. For the UV part, we get:

Λ(1)UV
µ = e2

µ(4−n)

(4 π)n/2
n− 2

2
γµ Γ(2− n

2
)

×
∫ 1

0

dx(m2 − q2 x (1− x)− i λ)n/2−2 (10)

This integration will generate a divergence for the IR part because we have to

integrate something of the type:

∫ 1

0

dy (b0 y
n−5 + b1 y

n−4 + b2 y
n−3) =

b0
n− 4

+
b1

n− 3
+

b2
n− 2

. (11)

Soft divergence

The first term gives the divergence. As presented, the origin of this divergence

is not clear. It appears at y = 0, at this value of y k = l, we have to integrate over

l something like

∫

dnl

(2π)n
1

(l2 + i λ)3

Using Wick rotation (making a change of variable to go to an Euclidean space),

using the spherical coordinates to parametrise the l̄ integration and studying only

the radial part leads to
∫ +∞

0

dv v
n
2
−1−3

where v = l̄2.

This integral diverges at v = 0 if n = 4. Thus this divergence appears at y = 0
and l = 0, this means k = 0. In addition, it is crucial to realise that if one of

the external fermions is not on its mass shell, then the R2 term will not vanish at

y = 0 and thus the integrals on l (or k) will not diverge. To sum up, there will be a

soft divergence if a massless (spin 1) boson is exchanged between two lines which

are on their mass shell. It is not difficult to convince ourselves that the exchange

of a massless fermion will not do the job because the fermion propagator behaves

as 6k/k2 while the boson propagator behaves as 1/k2 but a spin 0 boson will work.

Collinear divergence

This soft divergence also appears in QED, but in QCD it is worse. Indeed,

coming back to the equation (7), the x integration also diverges if m = 0, this is
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not the case in QED where the fermions are massive but in QCD a virtual gluon

can be exchanged between two on shell gluon lines and in this case m = 0! What

is the origin of this divergence? Coming back to eq. (4) with m = 0 yields that

R2 vanishes at x = 0 and x = 1 in addition to the case y = 0. Let us fix y 6= 0
and look at the limit x = 0. Since in this limit, R2 = 0, the l integral will diverge

at l = 0 which means k = y p1 (the limit x = 1 would lead to k = y p2). The

divergences at x = 0 or x = 1 originate from the fact that k becomes collinear to

p1 or p2. These divergences are called collinear divergences. Note that there can

be a pile of divergences "soft + collinear" at y = 0 et x = 0 (x = 1). Note also

that, if the conditions are not gathered for having a soft divergence, there will be

no collinear one.

Simple tool

A very simple way to test if a loop integral diverges in the soft region is to

rescale the loop momentum and study the power of the rescaling parameter. As

an illustration, let us take our example again, the integral, stripped from all the

constants, was

Λ(1)
µ (p2, p1, q) ≃

∫

dnk
H(k)

((p2 − k)2 −m2) ((p1 − k)2 −m2) k2

≃
∫

dnk
H(k)

(k2 − 2 k · p2) (k2 − 2 k · p1) k2

Rescaling k by ρ leads to

Λ(1)
µ (p2, p1, q) ≃ ρn−4

∫

dnk
H(ρ k)

(ρ k2 − 2 k · p2) (ρ k2 − 2 k · p1) k2

In general, the integral will behave as ρβ . If β ≤ 0 the integral will diverge when

k becomes soft, if β > 0, the integral is convergent. It is easy to realise that

they will be an infinite number of diagrams which will diverge, we cannot apply

a renormalisation procedure.

Simple tool

How these divergences will disappear? To answer this question, it is important

to think about what needs to be included when computing the αs corrections to

a reaction. To fix the idea, let us consider the Drell-Yan production at LHC. At

lowest order, the associated partonic reactions are qi + q̄i → γ∗. But LHC is
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a hadronic collider, that means that one cannot expect to have events containing

only a lepton pair and that’s it! In this background, inclusive cross section is used.

To measure it, all the events containing at least a lepton pai are collected. At

theoretical level and at the order we work, one has also to consider reactions like

qi + q̄i → γ∗+ g or qi + g → γ∗+ qi. That is to say, that the αs corrections do not

come only from the loop corrections but also the so-called "real" emission where

an extra on shell parton is emitted.

1.2 Drell-Yan cross section

Notation

To begin with, the partons will be labelled by ik where k is an integer and have

a 4-momentum pk. These parton labels belong to the set Sp = {u, ū, d, d̄, . . . , g}.

All the cross section will be calculated in a space-time of dimension n. Let us

start to compute the lowest order. Relying on the parton model to relate hadronic

cross section to partonic one, the hadronic cross section is given by

σH =
∑

i1,i2∈Sp

∫

dx1 dx2 F
H1
i1

(x1)F
H2
i2

(x2) σ̂i1+i2→γ∗ (12)

It is implicitly assumed that the partonic cross section must fulfil conservation

laws, thus if the sum selects a choice of partons i1, i2 which violates these laws

the partonic cross section is set to zero, for example : the choice i1 = u and

i2 = g is not possible due to spin conservation, or the choice i1 = u and i2 = d̄
is ruled out because of the electric charge conservation,etc. Note also that, for a

couple of labels i1, i2 which verifies the conservation laws say d, d̄, the following

combinations has to take into account

FH1
d (x1)F

H2

d̄
(x2) σ̂d+d̄→γ∗

and

FH1

d̄
(x1)F

H2
d (x2) σ̂d̄+d→γ∗

Hadronic cross section

Neglecting all the fermion masses, the partonic cross section is given by

dσ̂i1+i2→γ∗

dQ2
=

1

4 p1.p2

∫

dn−1p3
(2 π)n−1 2E3

(2 π)n δn(p1 + p2 − p3) |MB|2
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|MB|2 is the squared amplitudeMB averaged over initial polarisations and colours

and summed on the final polarisation and colours.

The amplitude MB is described by the following Feynman diagram

�

k

q̄i1(p2)

qi1(p1)

MB
and from the Feynman rules, it can be written as

MB = −i e µε qi1 v̄j(p2) γ
µ uj(p1) ǫµ(p3)

where j represents the colour of the quarks (it is the same for the two lines since

the γ⋆ is colourless!) and qi1 the electric charge of the parton of type i1 in unit of

e. The squared matrix element is then given by

|MB|2 = e2 q2i1 µ
2 ε δjj Tr [6p2 γµ 6p1 γν]

(

−gµν +
pµ3 p

ν
3

Q2

)

= 8 (1− ε) e2 q2i1 δjj p1 · p2
with Q2 is the virtuality of the photon (this is also the invariant mass of the lepton

pair), Averaging over the initial colour and spin and summing over the final ones

leads

|MB|2 =
2

N
(1− ε) e2 q2i1 µ

2 ε p1 · p2

The integration over the phase space can be done very easily by trading dn−1p3/(2E3)
against dnp3 δ

+(p23 − Q2) and integrating on dnp3 using the energy-momentum

conservation δn(p1 + p2 − p3) yielding

dσ̂i1+i2→γ⋆

dQ2
=

1

4 p1.p2
(2 π) δ+((p1 + p2)

2 −Q2) |MB|2

Let introduce some new variables. The available energy in the partonic centre of

mass is
√
ŝ with ŝ = (p1 + p2)

2 = 2 p1 · p2, we define τ = Q2/s and z = Q2/ŝ =
τ/(x1 x2). In terms of these new variables, the partonic cross section reads

dσ̂i1+i2→γ⋆

dQ2
=

π

Q2

1

N
(1− ε) e2 q2i1 µ

2 ε δ(1− z)

≡ σ̂B(Q
2, ε) e2 q2i1 δ(1− z)
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Note that this reaction is over constraint, the remaining Dirac distribution will

disappear when integrating over x1 and x2. The hadronic cross section becomes

dσH

dQ2
=

∑

i1,i2∈Sp

∫

dx1 dx2 F
H1
i1

(x1)F
H2
i2

(x2) σ̂B(Q
2, ε) (e qi1)

2 δ(1− z)

= e2
σ̂B(Q

2, ε)

s

∑

i1,i2∈Sp

q2i1

∫ 1

Q2/S

dx1

x1

FH1
i1

(x1)F
H2
i2

(

Q2

x1 S

)

The lower bound of the x1 integration is determined by requiring that

x2 ≤ 1 → Q2

x1 S
≤ 1 → x1 ≥

Q2

S

1.3 αs corrections : q q̄ contribution

q q̄ contribution

Let us focus on the reaction qi + q̄i → γ∗ + g. It is described by two Feynman

diagrams

�

p2

p1

p3

p4

M1

+

�

p2

p1

p4

p3

M2

The different amplitudes read

M1 = K v̄(p2) γµ
( 6p1 − 6p4)

(p1 − p4)2 + i λ
γν u(p1) ǫ

µ(p3) ǫ
ν(p4)

M2 = K v̄(p2) γν
( 6p4 − 6p2)

(p4 − p2)2 + i λ
γµ u(p1) ǫ

µ(p3) ǫ
ν(p4)

Soft approximation

Because of the mass shell conditions, the different denominators simplify as

(p1 − p4)
2 = −2 p1 · p4

(p4 − p2)
2 = −2 p2 · p4
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so they both go to zero when p4 → 0. One can write a soft approximation of these

amplitudes by taking p4 = 0 in the numerator and using the Dirac equations obey

by the spinors u(p1) and v̄(p2), namely ( 6p1−m) u(p1) = 0 and v̄(p2) ( 6p2+m) =
0. One then gets

M1 soft = −K
p1 ν

p1 · p4
v̄(p2) γµ u(p1) ǫ

µ(p3) ǫ
ν(p4)

M2 soft = K
p2 ν

p2 · p4
v̄(p2) γµ u(p1) ǫ

µ(p3) ǫ
ν(p4)

that is to say

Mqq̄ soft ≡ M1 soft +M2 soft = κ

[

p2 · ǫ(p4)
p2 · p4

− p1 · ǫ(p4)
p1 · p4

]

MB

where MB is the amplitude for the lower order diagram

�

p2

p1

p3

MB

Squared amplitude

The square matrix element is the given in this approximation

Σ |M|2qq̄ soft = C
p1 · p2

p1 · p4 p2 · p4
|MB|2

Note that the full amplitude squared will have the following structure

Σ |M|2qq̄ =
[

H12(p4)
p1 · p2

p1 · p4 p2 · p4
+G(p4)

]

where the functions H12(p4) and G(p4) are regular when p4 → 0 (or p4
collinear to p1 or p2).It is clear, from this structure, that |Mt|2 is singular in the

soft limit (p4 → 0) and/or in the collinear limits (p4 = z1 p1 or p4 = z2 p2).
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Since the extra gluon is not observed (in the sense that the sum over all the

possibilities is taken). one has to integrate over the momentum p4. The cross

section is then given by

dσ̂qi+q̄i→γ∗+g

dQ2
=

1

4 p1.p2

∫

dn−1p3
(2 π)n−1 2E3

dn−1p4
(2 π)n−1 2E4

× (2 π)n δn(p1 + p2 − p3 − p4) Σ |M|2qq̄

At the hadronic level, the cross section is given by

dσH

dQ2
=

∑

i1,i2∈Sp

∫

dx1 dx2 F
H1
i1

(x1)F
H2
i2

(x2)
dσ̂qi+q̄i→γ∗+g

dQ2
(13)

The squared amplitude for q q̄ case

The computation of the diagrams can be done easily (cf. Notes on the Comp-

ton effect in QED)

Σ |M|2qq̄ = (eqi1µ
ε)2(gµε)2

CF

N
2 (1− ε)

[

(1− ε)(
t̂

û
+

û

t̂
) + 2

ŝ Q2

û t̂
− 2ε

]

,

Phase space integral I

In the centre of mass of initial partons, the parametrisation of the different 4-

momenta are

p1 = (
√

ŝ/2, 0, · · · ,
√

ŝ/2) ; p2 = (
√

ŝ/2, 0, · · · ,−
√

ŝ/2) ; p4 = E4 (1, · · · , cos θ1).
(14)

To evaluate the integration over the phase space, we proceed as usual, keeping

in mind that the virtual photon is massive

PS =

∫

dn−1p4
(2π)n−1 2E4

dn−1p3
(2π)n−1 2E3

(2π)nδ(n)(p1 + p2 − p3 − p4)

= (2π)2−n

∫

dn−1p4
2E4

δ+((p1 + p2 − p4)
2 −Q2)

=
(2π)2−n

4
√
ŝ

(

ŝ−Q2

2
√
ŝ

)n−3 ∫

dΩn−2. (15)
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Phase space integral II

To perform the angular integration, the following change of variable is in-

troduced cos θ1 = 2y − 1, this leads to

PS =
1

8π

(

4π

Q2

)ε
zε(1− z)1−2ε

Γ(1− ε)

∫ 1

0

dy y−ε(1− y)−ε, (16)

In terms of these dimensionless variables, the different invariants are

ŝ =
Q2

z
; (p1−p4)

2 = t̂ = −Q2

z
(1− y)(1− z) ; (p2−p4)

2 = û = −Q2

z
(1− z)y

(17)

Extraction of divergent terms I

What is interesting is the coefficient H12, it can be extracted by factorising

ŝ/(t̂ û), which is equal to E12, in the right hand side of eq. (??)

H12(y, z) = (eqi1µ
ε)2(gµε)2

CF

N
(1− ε)

[

(1− ε)
t̂2 + û2

ŝ
+ 2 Q2

]

In terms of the new variables y and z, we have

H12(y, z) = (eqi1µ
ε)2(gµε)2

CF

N
(1− ε)

Q2

z

{

(1− ε) (1− z)2
[

(1− y)2 + y2
]

+ 2 z
}

which can also be written as

H12(y, z) = (gµε)2CF |MB|2
1

z

{

(1− ε) (1− z)2
[

(1− y)2 + y2
]

+ 2 z
}

The eikonal factor E12 can be also expressed in terms of the variables y and z

E12 =
2

Q2

z

(1− z)2
1

y (1− y)

=
2

Q2

z

(1− z)2

[

1

y
+

1

1− y

]

≡ E
(1)
12 + E

(2)
12
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Extraction of divergent terms II

The key idea to extract the divergent parts is to write

H12(y, z)E12 = [H12(y, z)−H12(y, 1)]E12 +H12(y, 1)E12

The first term in squared bracket does not diverge when z → 1 but does diverge

when y → 0 or y → 1 ( Note that in this simple case H12(y, 1) does not depend

any more on y). To single out the y divergent parts, the product H12(y, z)E12 has

to be written as

H12(y, z)E12 = [H12(y, z)−H12(y, 1)−H12(0, z) +H12(0, 1)]E
(1)
12

+ [H12(y, z)−H12(y, 1)−H12(1, z) +H12(1, 1)]E
(2)
12

+H12(y, 1)E12 + [H12(0, z)−H12(0, 1)]E
(1)
12

+ [H12(1, z)−H12(1, 1)]E
(2)
12

Using the fact that H12(y, 1) = H12(0, 1) = H12(1, 1), the last equation can be

simplified

H12(y, z)E12 = [H12(y, z)−H12(0, z)]E
(1)
12

+ [H12(y, z)−H12(1, z)]E
(2)
12

+H12(y, 1)E12 + [H12(0, z)−H12(0, 1)]E
(1)
12

+ [H12(1, z)−H12(1, 1)]E
(2)
12

The two first terms will give finite terms after the phase space integration, let us

disregard them and focus on the divergent pieces. The phase space integration

will lead to

PS Σ |M|2qq̄ = PS {H12(y, 1)E12 + [H12(0, z)−H12(0, 1)]E
(1)
12

+ [H12(1, z)−H12(1, 1)]E
(2)
12 }+ finite pieces

= PS {H12(0, z)E
(1)
12 +H12(1, z)E

(2)
12 }+ finite pieces

Let us first evaluate the function H12 with the different arguments

H12(0, z) = (gµε)2CF |MB|2
1

z

[

1 + z2 − ε (1− z)2
]

= H12(1, z)

12



Let us compute the different pieces

PS H12(0, z)E
(1)
12 = H12(0, 1)PS E12

=
1

4 πQ2

(

4 π

Q2

)ε

z1+ε (1− z)−1−2 εH12(0, z)

×
(

−1

ε

)

Γ(1− ε)

Γ(1− 2 ε)

"Plus" distributions I

Note that the integration over z does not show up because we are differential

with respect to Q2 but there is a problem at z = 1 due to the term (1 − z)−1−2 ε.

Nevertheless, we can make the pole in ε related to the singularity at z = 1 appear.

For that, we have to realise that (1 − z)−1−2 ε at the limit ε = 0 is a distribution,

remember that the Dirac distribution can be obtained as

δ(x) = lim
ε→0

1

ε
√
π
e−(

x
ε )

2

Thus, to discuss its property we have to apply it to a test function. Let us introduce

a test function F (z) which is regular at z − 1

∫ 1

0

dz F (z) (1− z)−1−2 ε

=

∫ 1

0

dz (F (z)− F (1)) (1− z)−1−2 ε + F (1)

∫ 1

0

dz (1− z)−1−2 ε

=

∫ 1

0

dz
F (z)− F (1)

1− z

∞
∑

n=0

(−2 ε)n lnn(1− z)− F (1)
1

2 ε

"Plus" distributions II

Thus, in the distribution sense, we can write that

(1− z)−1−2 ε = − 1

2 ε
δ(1− z) +

1

(1− z)+
− 2 ε

(

ln(1− z)

1− z

)

+

+O(ε2)

where the "plus" distributions are defined as

∫ 1

0

dz (g(z))+ F (z) ≡
∫ 1

0

dz g(z) (F (z)− F (1)) (18)
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where g(z) is a function singular at z = 1 such that (1− z) g(z) is integrable and

F (z) is a regular one at the same point. Note that the lower bound 0 in the integral

is purely conventional.

Let us make a remark. Due to this convention (zero as lower bound), it is easy

to verify that
∫ 1

0

dz (g(z))+ = 0

To show that, choose a test function which is a constant! Sometimes, it appears,

because of the kinematics or the cuts, that the lower bound is different from zero,

thus we have to compute something like

∫ 1

a

dz F (z) (g(z))+

=

∫ 1

a

dz (F (z)− F (1)) g(z) + F (1)

∫ 1

a

dz(g(z))+

=

∫ 1

a

dz (F (z)− F (1)) g(z) + F (1)

[
∫ 1

0

dz (g(z))+ −
∫ a

0

dz (g(z))+

]

=

∫ 1

a

dz (F (z)− F (1)) g(z)− F (1)

∫ a

0

dz g(z)

Final result I

Let us set a
(n)
qq (z) ≡ CF (1+z2−ε (1−z)2), the phase space integration becomes

PSH12(0, z)E
(1)
12 =

αs

Q2

(

4πµ2

Q2

)ε
Γ(1− ε)

Γ(1 − 2 ε)
|MB |2

×

{

1

2 ε2
δ(1 − z) a

(n)
qq (1) −

1

ε

a
(n)
qq (z)

(1− z)+
−

a
(4)
qq (z)

(1− z)+
ln(z)

+ 2 a
(4)
qq (z)

(

ln(1 − z)

1− z

)

+

}

+O(ε2)

Since H12(0, z) = H12(1, z) and since the phase space is symmetric y ↔ 1− y,

the contribution which diverges at y = 1 will be equal to the one which diverges

at y = 0.
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Final result II

Thus, the total contributions will be given by

1

2 ŝ
PS

(

H12(0, z)E
(1)
12 +H12(1, z)E

(2)
12

)

= z
αs

2 π

(

4 πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)
σ̂B(Q

2, ε) e2 q2i Fqq̄(z, ε)

with

Fqq̄(z, ε) =
1

ε2
δ(1− z) a(n)qq (1)−

2

ε

a
(n)
qq (z)

(1− z)+
− 2

a
(4)
qq (z)

(1− z)+
ln(z)

+ 4 a(4)qq (z)

(

ln(1− z)

1− z

)

+

+ finite terms

Remarks

It is worthwhile to note that the coefficients in front of the divergences "fac-

torise", in the sense that they can be written as a function of z (or taken at z = 1)

times the cross section at lowest order. This factorisation takes place also in a

n dimensional phase space. The first term (proportional to 1/ε2) originates from

the soft region while the second term (proportional to 1/ε) has a collinear origin.

Note also that the variable z plays the role of a "collinear" variable. Indeed, let

us denote k1, the 4-momentum of the quark after the emission of the gluon of

4-momentum p4. The energy momentum conservation at each vertices impose

that

p3 = k1 + p2 (19)

p1 = p4 + k1 (20)

We get from equation (20) that k2
1 = −2 p1 · p4 = t̂ and from eq. (19) that Q2 =

k2
1 + 2 k1 · p2, combining these two equalities leads to

Q2 = −Q2

z
(1− z) (1− y) + 2 k1 · p2

At y = 1, Q2 = 2 k1 · p2, thus

ŝ = 2 p1 · p2 =
Q2

z
=

2 k1 · p2
z

15



implying that k1 = z p1. To sum up, when y = 1, p4 is collinear to p1 (p4 =
(1− z) p1) and the variable z represent the fraction of 4-momentum carried away

by the particle j1 (having a 4-momentum k1) from the particle i1 (having a 4-

momentum p1). Using a similar argument, it is easy to show that the variable z
plays a similar role when y = 0.

1.4 αs corrections : q g contribution

The squared amplitude for q g case

The amplitude squared can be obtained from the preceding case by exchanging

ŝ ↔ t̂ and multiplying by −1 because an anti-fermion of the initial state becomes

a fermion in the final state. Let us note that the colour factor changes because

there is a gluon in the initial state instead of a quark, so the averaged changes. To

get the right factor, we have to take the preceding one CF/N and multiplies it by

N/(N2 − 1)

CF

N

N

N2 − 1
=

N2 − 1

2N2

N

N2 − 1
=

1

2N

The squared amplitude for the reaction q + g → γ⋆ + q is then

Σ |M|2qg = (1− ε) (eeqµ
ε)2(gµε)2

1

2N
2

[

(1− ε)(− ŝ

û
− û

ŝ
)

− 2
t̂ q2

û ŝ
+ 2ε

]

Extraction of divergent terms I

In this case, the coefficient of the eikonal factor E12 can be easily extracted

and is given by

H12(y, z) = (1− ε) (e qi µ
ε)2 (g µε)2

1

2N

Q2

z
×
[

(1− ε) (1 + (1− z)2 y2) (1− y) (1− z)− 2 z (1− y) (1− z)2
]

Note that in this case, H12(y, 1) = 0 = H12(0, 1) = H12(1, 1) which is an ex-

pected result because, at lowest order, there is not such a initial state! Note also

that H12(1, z) = 0 telling us that there is no divergence when p4 is collinear to p1
in this case. The only divergence appears at y = 0

16



Extraction of divergent terms II

H12(0, z) = (1− ε) (e qi µ
ε)2 (g µε)2

1

2N

Q2

z
(1− z)

[

(1− z)2 + z2 − ε
]

Let us introduce a
(n)
qg (z) = 1/2 (1− z) [(1− z)2+ z2−ε], H12(0, z) becomes then

H12(0, z) = (g µε)2 |MB|2
Q2

z
a(n)qg (z)

As in the preceding case, we want to pick up only the divergent part, for that, what

we have to compute is the following

PSΣ |M|2qg = PSH12(0, z)E
(1)
12 + finite pieces

With the help of the results got in the preceding subsections, we obtain

PS H12(0, z)E
(1)
12 =

αs

Q2

(

4 πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)
|MB|2

×
{

−1

ε

a
(n)
qg (z)

(1− z)+
− a

(4)
qg (z)

(1− z)+
ln(z)

+ 2 a(4)qg (z)

(

ln(1− z)

1− z

)

+

}

+O(ε2)

Final result

Note that, as already seen, there is no divergence at z = 1, thus a
(n)
qg (1) must

be zero, in agreement with its definition, this the reason why there is no term

proportional to 1/ε2. But, we will keep the notation a
(n)
qg (z)/(1 − z)+ despite the

fact that the factor 1 − z cancels between the numerator and the denominator for

matter of uniformity.

1

2 ŝ
PS H12(0, z)E

(1)
12

= z
αs

2 π

(

4 πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)
σ̂B(Q

2, ε) e2 q2i Fqg(z, ε)

17



with

Fqg(z, ε) = −1

ε

a
(n)
qg (z)

(1− z)+
− a

(4)
qg (z)

(1− z)+
ln(z)

+ a(4)qg (z)

(

ln(1− z)

1− z

)

+

+ finite terms

1.5 The virtual term

Virtual cross section

The details of the computation of the virtual contribution is postponed in ap-

pendix A. The result is

Mv = MB
αS

4 π
CF

(

4 π µ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)

×
{

− 2

ε2
− 3

ε
− 8 +

2 π2

3
+ i π

{

−2

ε
− 3

}

}

(21)

Note that to take the same convention as for the real emission, we change εir =
−ε.

The virtual cross section is obtained by taking the interference between the

lowest order amplitude and the virtual one

σv =
1

4 p1.p2

∫

dn p3
(2 π)n−1

× (2 π)n δn(p1 + p2 − p3 − p4) δ
+(p23)

× 2Re(MB M∗
v ) (22)

equivalently

σv = σ̂B(Q
2, ε)

αs

2 π
CF

(

4 π µ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)

×
{

− 2

ε2
− 3

ε
− 8 +

2 π2

3

}

(23)
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Total contribution I

Collecting all the different pieces, the differential hadronic cross section can

be written as

dσH

dQ2
=
∑

i∈Sq

(e qi)
2

∫

dx1

x1

dx2

x2
FH1
qi

(x1)F
H2
q̄i

(x2)

{

σ̂B(Q
2, ε)

[

δ(1− z)

×
(

1 +
αs

2 π

(

4 π µ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)

{

−2CF

ε2
− 3CF

ε
+

a
(4)
qq (1)

ε2

}

)

− αs

2 π

(

4 π µ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)

2

ε

(

a
(a4)
qq (z)

(1− z)+

)]

+ finite pieces

}

− (FH1
qi

(x1) + FH1
q̄i

(x1))F
H2
g (x2)

× αs

2 π

(

4 π µ2

Q2

)ε
Γ(1− ε)

Γ(1− 2 ε)

1

ε

(

a
(4)
qg (z)

(1− z)+

)

+ finite pieces +

[

1 ↔ 2

]}

(24)

Disappearance of soft divergences

From the definition of a(4)(1) = 2CF , we see that the soft divergence (term

proportional to 1/ε2) in eq. (24) cancels between the real emission and the virtual

one. This is not specific to the example we treated, this is the "Lee – Kinoshita –

Naurenberg" theorem which states that the soft divergences drop out when adding

the real and virtual emission. Nevertheless, all the divergences do not disappear,

the collinear ones still remain after combining the real and the virtual emission,

so what to do?

Collinear contributions I

19



Let us re-write eq. (24)

dσH

dQ2
=
∑

i∈Sq

(e qi)
2 σ̂B(Q

2, ε)

∫

dx1

x1

dx2

x2

{[

FH1
qi

(x1)F
H2
q̄i

(x2)δ(1− z)

+
αs

2π

(

4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

(

FH1
qi

(x1)F
H2
q̄i

(x2)

(

−2

ε

)

Pqq(z)

+ (FH1
qi

(x1)F
H2
g (x2) + FH1

g (x1)F
H2
q̄i

(x2))

(

−1

ε

)

Pqg(z)

)

+finite pieces +

[

1 ↔ 2

]}

with

Pqq(z) = CF

[

1 + z2

(1− z)+
+

3

2
δ(1− z)

]

Pqg(z) = TR

[

z2 + (1− z)2
]

and TR = 1/2

Collinear contributions II

Let us focus on the divergent part only. By changing x2 (or x1) into τ/(x1 z)
(τ/(x2 z)), this divergent part can be written as

dσH div

dQ2
=
∑

i∈Sq

(eqi)
2 σ̂B(Q

2, ε)

{[

∫ 1

0

dx1

x1

FH1
qi

(x1)F
H2
q̄i

(

τ

x1

)

+

∫ 1

0

dx1

x1

FH1
qi

(x1)

(

−1

ε

)

αs

2π

(

4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

×
∫ 1

τ
x1

dz

z

(

FH2
q̄i

(

τ/x1

z

)

Pqq(z) + FH2
g

(

τ/x1

z

)

Pqg(z)

)

+

∫ 1

0

dx2

x2
FH2
q̄i

(x2)

(

−1

ε

)

αs

2π

(

4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

×
∫ 1

τ
x2

dz

z

(

FH1
qi

(

τ/x2

z

)

Pqq(z) + FH1
g

(

τ/x2

z

)

Pqg(z)

)

]

+

[

1 ↔ 2

]}

(25)
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Scale dependent PDF

From this formula, by introducing the scale dependent partonic density func-

tion (PDF)

FH
q (x,M2) = FH

q (x)− 1

ε

αs

2π

(

4πµ2

M2

)ε
Γ(1− ε)

Γ(1− 2ε)

×
∫ 1

x

dz

z

[

FH
q

(x

z

)

Pqq(z) + FH
g

(x

z

)

Pqg(z)
]

One can reabsorb the collinear divergences into a redefinition of the "bare" par-

ton densities (the ones with no scale) and up to terms of order α2
s, the divergent

term can be written as

dσH div

dQ2
=
∑

i∈Sq

(eqi)
2 σ̂B(Q

2, ε)

{
∫ 1

0

dx1

x1
FH1
qi

(x1,M
2)FH2

q̄i

(

τ

x1
,M2

)

+

[

1 ↔ 2

]}

(26)

The scale M2 is arbitrary, it has been introduced by writing

(

4πµ2

Q2

)ε

=

(

4πµ2

M2

)ε (
M2

Q2

)ε

≃
(

4πµ2

M2

)ε [

1 + ε ln

(

M2

Q2

)

+O(ε2)

]

Drell-Yan at αs

Thus the Drell-Yan cross section, including the αs corrections, can be written

as

dσH

dQ2
=
∑

i∈Sq

(e qi)
2 σ̂B(Q

2, ε)

{∫ 1

0

dx1

x1

∫ 1

0

dx2

x2
FH1
qi

(x1,M
2)FH2

q̄i

(

x2,M
2
)

+
αs

2π
[finite pieces] +

[

1 ↔ 2

]}

Note that the procedure to get rid of the collinear divergences is very similar to

the renormalisation procedure. As in the renormalisation, it exists RGE for the

PDF.
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RGE for PDF

Let us come back to the scale dependent PDF. the derivative of this function

with respect to M2 gives an expression which is finite when ε → 0. It is easy to

realise that by writing

1

ε

(

4πµ2

M2

)ε
Γ(1− ε)

Γ(1− 2ε)
=

1

ε
+ ln(4 π)− γ − ln

(

M2

µ2

)

+O(ε)

In addition, it can be shown that including the dominant contribution at each order

in perturbation theory for the collinear divergence that

M2
dFH

q (x,M2)

dM2
=

αs(M
2)

2 π

∑

j=q,g

∫ 1

0

dy

y
Pqj

(

x

y

)

FH
q (y,M2)

From the study of other processes, especially processes involving gluons in the

initial state at higher order, leads to the general RGE (called "DGLAP")

d

dt





FH
q (x, t)

FH
g (x, t)



 =
αs(t)

2 π

∫ 1

x

dy

y





P
(0)
qq (y) P

(0)
qg (y)

P
(0)
gq (y) P

(0)
gg (y)









FH
q (x/y, t)

FH
g (x/y, t)





where t = ln(M2/M2
0 ).

DGLAP kernels

We put a superscript on the kernel to say that they are computed in the lowest

order. Including more order in the calculation, leads to more complicated kernel

Pij(z) = P
(0)
ij (z) +

αs

2 π
P

(1)
ij (z) + . . .

The value of these kernels are

P (0)
qq (y) = CF

[

1 + y2

(1− y)+
+

3

2
δ(1− y)

]

P (0)
qg (y) =

NF

2

y2 + (1− y)2

y

P (0)
gq (y) = CF

[

1 + (1− y)2

y

]

P (0)
gg (y) = 2N

[

1

(1− y)+
+

1− y

y
+ y (1− y)

]

+ δ(1− y)
b0
2 π

with b0 = (11N − 2NF )/(12 π)
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violation of the "scale invariance"

It is interesting to note that using scale dependent PDF induces a violation of

the scale invariance

The QCD improved parton model

Taking into account the QCD interactions of the partons between themselves

leads to the "QCD improved" parton model. The formulation is the same as in the

"naive" parton model, indeed

σH1H2 =
∑

i,j

∫

dx1dx2 F
H1
i (x1,M

2) FH2
j (x2,M

2)αs(µ
2)p σ̂ij(x1, x2, s).
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where the evolved PDF obey to the DGLAP equations. They still have to be

extracted from experiments at a certain scale and can be used to another scale.

Higher order can be included

σ̂ij(x1, x2, s) = σ̂
(0)
ij (x1, x2, s) +

αs

2 π
σ̂
(1)
ij (x1, x2, s) + . . .

The terminology is the following:

Leading Order (LO) approximation : compute ˆσ(0)
ij(x1, x2, s) and use P

(0)
ij (y)

of the DGLAP evolution Next to Leading Order (NLO) approximation : com-

pute ˆσ(0)
ij(x1, x2, s) and ˆσ(1)

ij(x1, x2, s) and use P
(0)
ij (y) and P

(1)
ij (y) of the DGLAP

evolution ....

The more we include terms coming perturbative expansion, the more the the-

oretical results are precise : the uncertainty related to the renormalisation and

factorisation scale is reduced.
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What we learnt in lecture IV

• It exists other kinds of divergences than the UV ones : the soft diver-

gences when the energy of a massless boson goes to zero and the collinear

divergences when two massless partons becomes parallel

• The soft divergences cancel when adding virtual and real contributions

• The collinear divergences (in the initial state) are absorbed into a redefini-

tion of the PDF

• Leading to an evolution equation (similar to RGE) for the PDF

• The "QCD improved" parton model which take into account the interaction

between parton (to a certain approximation!) leads to a violation of the

scale invariance verified experimentally

• The "QCD improved" parton model to describe very well the LHC data

A Computation of the virtual contribution

�

q̄(p2)

q(p1)

Mv2

+

�

q̄(p2)

q(p1)

Mv3
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q̄(p2)

q(p1)

Mv6

+




q̄(p2)

q(p1)

Mv7

The amplitudes Mv1 et Mv2 are not "real" Feynman amplitudes, they represent

the correction to the quark and anti-quark wave functions. To compute them,

we need the residue of the pole of the one loop quark propagator given by (in

Feynman gauge)

Σ1 = − αs

(4π)
CF

[

1

εir
+ γ − ln(4π)

]

= − αS

(4π)
CF (4 π)−εir

Γ(1− εir)

εir
(27)

The wave function normalisation is
√

1/(1− Σ1) ≃ 1 + 1/2Σ1, thus the two

amplitudes Mv1 and Mv2 are given by

Mv1 = MB

[

− αS

(8 π)
CF

(

4 π µ2

Q2

)−εir (Q2

µ2

)−εir Γ(1− εir)

εir

]

(28)

Mv2 = MB

[

− αS

(8 π)
CF

(

4 π µ2

Q2

)−εir (Q2

µ2

)−εir Γ(1− εir)

εir

]

(29)

artificially, the energy scale Q has been introduced.

A.0.1 Vertex corrections

The computation of the diagram Mv3 is done with the help of the QED vertex

correction e− e+ γ. The limit m → 0 has to be taken, but, we have to be careful,

this limit must be taken before the development around εir = 0. In the note

blabla1, the following resuts have been obtained

Λ(1)UV
µ =

α

4 π
γµ

(

1

εuv
− γ + ln(4 π)

−1 − I3

)

(30)
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with

I3 =

∫ 1

0

dx ln

(

m2 − (q2 + i λ) x (1− x)

µ2

)

. (31)

and

Λ(1)IR
µ = − α

4 π

(

4 π µ2
)−εir Γ(1− εir)

×
∫ 1

0

dx (m2 − (q2 + i λ) x (1− x))−1+εir

{

(2m2 − q2)
γµ

εir

+ γµ
[

(m2 − (q2 + i λ) x (1− x))− 4

1 + 2 εir

(

2m2 − q2

2

)

]

+
4

1 + 2 εir

1

2
(p3 − p4)

µm−m (p3 − p4)
µ

}

(32)

With respect to the note blabla1, we have taken p1 = p3 et p2 = −p4. At the limit

m → 0, the integral I3 becomes

I3 = ln

(−(q2 + i λ)

µ2

)

− 2 (33)

and the equation (32) goes to

Λ(1)IR
µ = − α

4 π

(

4 π µ2
)−εir Γ(1− εir)

×
∫ 1

0

dx (−(q2 + i λ))−1+εir (x (1− x))−1+εir

{

−q2
γµ

εir

+ γµ
[

(−(q2 + i λ) x (1− x)) +
4

1 + 2 εir

q2

2

]

}

(34)

The x integral can be performed easily leading to

Λ(1)IR
µ = − α

4 π

(

4 π µ2
)−εir Γ(1− εir) (−(q2 + i λ))εir γµ

×
{

Γ2(εir)

Γ(2 εir)

(

1

εir
− 2

1 + 2 εir

)

+
Γ2(1 + εir)

Γ(2 + 2 εir)

}

(35)
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this result can be written neglecting terms which vanish when εir → 0

Λ(1)IR
µ = − α

4 π

(

4 π µ2
)−εir Γ(1− εir) Γ

2(1 + εir)

Γ(1 + 2 εir)

× (−(q2 + i λ))εir γµ

{

2

ε2ir
− 4

εir
+ 9

}

(36)

A colour factor must be added, it is given by

(T a T a)k l =
1

2

(

δk l δi i −
1

N
δk i δi l

)

= CF δk l, (37)

We have also to interchange α and αs and add a factor ei. Furthermore, the correct

counter term must be added (for the QCD correction to QED vertex) given by

Z(1) − 1 = CF
αS

4 π

(

1

εuv
− γ + ln(4 π)

)

(38)

The vertex correction is then given by

Λ(1)
µ = CF δk l ei

αS

α
(Λ(1)UV

µ + Λ(1)IR
µ )

= ei
αS

4 π
CF δk l

(

4 π µ2

Q2

)−εir (−q2 − i λ

Q2

)εir Γ(1− εir) Γ
2(1 + εir)

Γ(1 + 2 εir)

× γµ

{

− 2

ε2ir
+

4

εir
− 8− ln

(−q2 − i λ

µ2

)

}

(39)

where in the equation (39), again, here too, we have introduced the energy scale

Q. Thus the amplitude Mv3 is given by

Mv3 = MB
αS

4 π
CF

(

4 π µ2

Q2

)−εir Γ(1− εir) Γ
2(1 + εir)

Γ(1 + 2 εir)

×
{

− 2

ε2ir
+

4

εir
− 8− 2

εir
ln

(−q2 − i λ

Q2

)

+ 4 ln

(−q2 − i λ

Q2

)

− ln

(−q2 − i λ

µ2

)

− ln2

(−q2 − i λ

Q2

)

}

(40)
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where MB is the amplitude at the lowest order.

The virtual amplitude is the sum of the three amplitudes Mv1, Mv2 and Mv3,

it is given by

Mv = MB
αS

4 π
CF

(

4 π µ2

Q2

)−εir Γ(1− εir) Γ
2(1 + εir)

Γ(1 + 2 εir)

×
{

− 2

ε2ir
+

3

εir
− 8− 2

εir
ln

(−q2 − i λ

Q2

)

+ 4 ln

(−q2 − i λ

Q2

)

− ln

(−q2 − i λ

µ2

)

− ln2

(−q2 − i λ

Q2

)

+ ln

(

Q2

µ2

)

}

(41)

We have to be careful here too because the real part of the argument of the loga-

rithms is negative! At the limit λ → 0

ln

(−q2 − i λ

Q2

)

= −i π

ln2

(−q2 − i λ

Q2

)

= −π2

so the result becomes simpler

Mv = MB
αS

4 π
CF

(

4 π µ2

Q2

)−εir Γ(1− εir) Γ
2(1 + εir)

Γ(1 + 2 εir)

×
{

− 2

ε2ir
+

3

εir
− 8 + π2 + i π

{

2

εir
− 3

}

}

(42)

In order to have the same combination of Γ functions as for the real emission, we

have to expand around ε = 0 a factor Γ(1 + εir) Γ(1− εir)

Γ(1 + εir) Γ(1− εir) ≃ 1 +
π2

6
ε2ir

The virtual amplitude the becomes

Mv = MB
αS

4 π
CF

(

4 π µ2

Q2

)−εir Γ(1 + εir)

Γ(1 + 2 εir)

×
{

− 2

ε2ir
+

3

εir
− 8 +

2 π2

3
+ i π

{

2

εir
− 3

}

}

(43)
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