QCD Lectures

J.-Ph. Guillet

LAPTh CNRS/Université de Savoie

VSOP-30 presentation - Jully 2024

QCD is a vast subject which cannot be covered in four lectures! I
had to select some topics whose the main line is "QCD for LHC"

- QCD is a vast subject which cannot be covered in four lectures! I
 had to select some topics whose the main line is "QCD for LHC"
- The global outline will
 - Lecture I : Pre QCD, quark model, parton model
 - Lecture II : QCD as gauge theory
 - Lecture III : Renormalisation
 - Lecture IV : Soft/Collinear divergences, the QCD improved parton model

- QCD is a vast subject which cannot be covered in four lectures! I
 had to select some topics whose the main line is "QCD for LHC"
- The global outline will
 - Lecture I : Pre QCD, quark model, parton model
 - Lecture II : QCD as gauge theory
 - Lecture III : Renormalisation
 - Lecture IV : Soft/Collinear divergences, the QCD improved parton model
- I will not address the non perturbative regime of QCD, the low energy one as well as many other subjects....

- QCD is a vast subject which cannot be covered in four lectures! I
 had to select some topics whose the main line is "QCD for LHC"
- The global outline will
 - Lecture I : Pre QCD, quark model, parton model
 - Lecture II : QCD as gauge theory
 - Lecture III : Renormalisation
 - Lecture IV : Soft/Collinear divergences, the QCD improved parton model
- I will not address the non perturbative regime of QCD, the low energy one as well as many other subjects....
- For each lecture, there will be some slides as well as some more detailed notes. They can be downloaded from this URL :
 https://mydrive.lapth.cnrs.fr/s/rK9Qb6Nggfo78aT
 They are labelled, for lecture X : note_cX.pdf and slide_cX.pdf
 where X ∈ [I, II, III, IV]

Outline

Lecture I : The naive parton model

- The hadrons are not elementary particles
- The quark model
- The parton model
- The parton model in the deep inelastic
 - The electron-parton cross section
 - The electron–proton cross section
 - Partons \equiv quarks + ...

J.-Ph. Guillet (LAPTh)

2

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Status of strong interaction

Hadrons

particles sensitive to the strong interaction, ex. proton, neutron, ... mesons : hadrons having integer spin baryons : hadrons with half-integer spin

Status of strong interaction

Hadrons

particles sensitive to the strong interaction, ex. proton, neutron, ... mesons : hadrons having integer spin baryons : hadrons with half-integer spin

Particle accelerators

Before the 50', people thought that hadrons were elementary particles With the coming of accelerators, hundred of hadrons have been discovered! (cf. Particle Data Book) Clearly not elementary...

Isospin symmetry

A first attempt to classify

The proton and the neutron undergo the same strong interaction, their masses are similar, only the electric charge distinguishes between them.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Isospin symmetry

A first attempt to classify

The proton and the neutron undergo the same strong interaction, their masses are similar, only the electric charge distinguishes between them.

Isospin symmetry

$$p \equiv (I = 1/2; I_3 = +1/2)$$
 isospin "up", proton
 $n \equiv (I = 1/2; I_3 = -1/2)$ isospin "down", neutron

Image: A matrix and a matrix

Isospin symmetry

A first attempt to classify

The proton and the neutron undergo the same strong interaction, their masses are similar, only the electric charge distinguishes between them.

Isospin symmetry

$$p \equiv (I = 1/2; I_3 = +1/2)$$
 isospin "up", proton
 $n \equiv (I = 1/2; I_3 = -1/2)$ isospin "down", neutron

Only for the couple proton-neutron!

Strangeness

Strange properties

Some hadrons have "extremely" long lifetime

$$\Sigma^-
ightarrow n\pi^- \quad au \simeq 10^{-10}s$$

 $\Delta^-
ightarrow n\pi^- \quad au \simeq 10^{-23}s$

with $m_{\Sigma} \simeq m_{\Delta}$ or

$$egin{aligned} \mathcal{K}(m_{\mathcal{K}}\simeq500 {
m MeV}) & au\simeq10^{-8}s \
ho(m_{
ho}\simeq770 {
m MeV}) & au\simeq10^{-23}s \end{aligned}$$

Strangeness

Strange properties

Some hadrons have "extremely" long lifetime

$$\Sigma^-
ightarrow n\pi^- \quad au \simeq 10^{-10}s$$

 $\Delta^-
ightarrow n\pi^- \quad au \simeq 10^{-23}s$

with $m_{\Sigma} \simeq m_{\Delta}$ or

$$egin{aligned} & \mathcal{K}(m_{\mathcal{K}}\simeq 500 {
m MeV}) & au\simeq 10^{-8}s \ &
ho(m_{
ho}\simeq 770 {
m MeV}) & au\simeq 10^{-23}s \end{aligned}$$

Strangeness

New quantum number : strangeness, conserved by strong and E.M. interactions

J.-Ph. Guillet (LAPTh)

QCD Lectures

(日)

The quark model

The quark model of Gell-Mann and Zweig

quark	saveur	spin	I	l ₃	S	В	Y	Q
u	up	1/2	1/2	1/2	0	1/3	1/3	2/3
d	down	1/2	1/2	-1/2	0	1/3	1/3	-1/3
S	étrange	1/2	0	0	-1	1/3	-2/3	-1/3

(3)

The quark model of Gell-Mann and Zweig

quark	saveur	spin	I	l ₃	S	В	Y	Q
u	up	1/2	1/2	1/2	0	1/3	1/3	2/3
d	down	1/2	1/2	-1/2	0	1/3	1/3	-1/3
S	étrange	1/2	0	0	-1	1/3	-2/3	-1/3

- B = 0 for mesons (hadrons with integer spin),
- B = 1 for the baryons (hadrons with half integer spin $\frac{1}{2}, \frac{3}{2}, ...)$
- B = -1 for the antibaryons.

A B b 4 B b

Image: A matrix and a matrix

The quark model of Gell-Mann and Zweig

quark	saveur	spin	I	l ₃	S	В	Y	Q
u	up	1/2	1/2	1/2	0	1/3	1/3	2/3
d	down	1/2	1/2	-1/2	0	1/3	1/3	-1/3
S	étrange	1/2	0	0	-1	1/3	-2/3	-1/3

- B = 0 for mesons (hadrons with integer spin),
- B = 1 for the baryons (hadrons with half integer spin $\frac{1}{2}, \frac{3}{2}, ...)$
- B = -1 for the antibaryons.

The strangeness S and the hypercharge, Y, not independent

$$Y = B + S$$

The quark model of Gell-Mann and Zweig

quark	saveur	spin	I	l ₃	S	В	Y	Q
u	up	1/2	1/2	1/2	0	1/3	1/3	2/3
d	down	1/2	1/2	-1/2	0	1/3	1/3	-1/3
S	étrange	1/2	0	0	-1	1/3	-2/3	-1/3

- B = 0 for mesons (hadrons with integer spin),
- B = 1 for the baryons (hadrons with half integer spin $\frac{1}{2}, \frac{3}{2}, ...)$
- B = -1 for the antibaryons.

The strangeness S and the hypercharge, Y, not independent

$$Y = B + S$$

The electric charge is related to the other quantum numbers by

$$Q=I_3+\frac{Y}{2}.$$

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

4 3 > 4 3

Image: A matrix and a matrix

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

The **mesons** which have a baryonic number equal to zero (B = 0) are bound states quark–antiquark

$$M = (q_i \ \bar{q}_j) \qquad i, j = u, d, s...$$

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

The **mesons** which have a baryonic number equal to zero (B = 0) are bound states quark–antiquark

$$M = (q_i \ \bar{q}_j) \qquad i, j = u, d, s...$$

The **baryons**, which have a baryonic quantum number equal to 1, are made of three quarks

$$B = (q_i q_j q_k) \qquad i, j, k = u, d, s...$$

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

The **mesons** which have a baryonic number equal to zero (B = 0) are bound states quark–antiquark

$$M = (q_i \ \bar{q}_j) \qquad i, j = u, d, s...$$

The **baryons**, which have a baryonic quantum number equal to 1, are made of three quarks

$$B = (q_i q_j q_k) \qquad i, j, k = u, d, s...$$

All the knowns hadrons (at that time!) were arranged in the irreducible **representations** of $SU(3)_{flavour}$

(日)

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

- The symmetry described by the Lie group $SU(3)_{flavour}$ is not exact
 - $: m_u \simeq m_d \neq m_s$

(日)

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

- The symmetry described by the Lie group $SU(3)_{flavour}$ is not exact : $m_u \simeq m_d \neq m_s$
- Other quarks have been discovered : *c*, *b* and *t*. The symmetry group has to be extended to SU(6) but huge mass difference $m_t/m_u \sim 10^4$

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

- The symmetry described by the Lie group $SU(3)_{flavour}$ is not exact : $m_u \simeq m_d \neq m_s$
- Other quarks have been discovered : *c*, *b* and *t*. The symmetry group has to be extended to SU(6) but huge mass difference $m_t/m_u \sim 10^4$
- No information on the dynamic! How the quarks interact between themselves?

Let us consider, the hadron $\Delta^{++} = (uuu)$ in a spin state $s_z = \frac{3}{2}$ (each quarks has its spin up)

$$\Delta^{++}(s_z=\frac{3}{2})=(u^{\uparrow}u^{\uparrow}u^{\uparrow})$$

and the Δ^{++} wave function is **symmetric** when exchanging two quarks in contraction with the Fermi-Dirac statistic which requires that the wave function is **antisymmetric**!

Let us consider, the hadron $\Delta^{++} = (uuu)$ in a spin state $s_z = \frac{3}{2}$ (each quarks has its spin up)

$$\Delta^{++}(s_z=\frac{3}{2})=(u^{\uparrow}u^{\uparrow}u^{\uparrow})$$

and the Δ^{++} wave function is **symmetric** when exchanging two quarks in contraction with the Fermi-Dirac statistic which requires that the wave function is **antisymmetric**! To solve this problem, a new quantum number is introduced : the colour.

To this new quantum number is associated a **colour symmetry group** SU(3) (to be distinguished from $SU(3)_{flavour}$). Each quark is a colour triplet and the hadrons are colour singlets (their wave functions are invariant under this group of transformation).

(B)

To this new quantum number is associated a **colour symmetry group** SU(3) (to be distinguished from SU(3)_{flavour}). Each quark is a colour triplet and the hadrons are colour singlets (their wave functions are invariant under this group of transformation). In this way, the Δ^{++} wave function is

$$\Delta^{++} = \frac{1}{\sqrt{6}} \epsilon_{ijk} \, u_i^{\uparrow} u_j^{\uparrow} u_k^{\uparrow}$$

which is **antisymmetric** under the permutation of two elements.

The electron–nucleus scattering

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The electron-nucleus scattering

Kinematics $\omega \gg m$

$$P = (M, \vec{0})$$

$$k = (\omega, 0, 0, \omega)$$

$$k' = (\omega', \omega' \sin \theta, 0, \omega' \cos \theta)$$

- (E

$$Q^2 = -q^2 = -(k-k')^2 = 4 \omega \omega' \sin^2 \frac{\theta}{2} > 0$$

イロン イ理 とく ヨン イヨン

æ

$$Q^2 = -q^2 = -(k-k')^2 = 4 \omega \omega' \sin^2 \frac{\theta}{2} > 0$$

Let us introduce some new variables :

$$\nu \equiv \omega - \omega'$$

$$y \equiv \frac{2P \cdot q}{2P \cdot k} = \frac{\nu}{\omega}$$

$$x \equiv \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M\nu}$$

æ

$$Q^2 = -q^2 = -(k-k')^2 = 4 \omega \omega' \sin^2 \frac{\theta}{2} > 0$$

Let us introduce some new variables :

$$\nu \equiv \omega - \omega'$$

$$y \equiv \frac{2P \cdot q}{2P \cdot k} = \frac{\nu}{\omega}$$

$$x \equiv \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M\nu}$$

The invariant mass of the hadronic final state

$$M_X^2 \equiv (P+q)^2 = M^2 + Q^2 \frac{1-x}{x}$$
 $0 \le x \le 1$ and $y \in [0,1]$

J.-Ph. Guillet (LAPTh)

(日)

The photon–nucleon coupling

It is **unknown**! The nucleon is not **point like**, it has a size! need to be parametrised

$$\sum_{
m spin} |\pmb{M}|^2 = rac{\pmb{e}^4}{\pmb{Q}^2} \, \pmb{L}^{\mu
u} \, \pmb{W}_{\mu
u}$$

(日)

The photon–nucleon coupling

It is **unknown**! The nucleon is not **point like**, it has a size! need to be parametrised

$$\sum_{\mathrm{spin}} |\pmb{M}|^2 = rac{e^4}{Q^2} \, L^{\mu
u} \, \pmb{W}_{\mu
u}$$

 $L^{\mu\nu}$: the **leptonic** tensor; and $W_{\mu\nu}$: the **hadronic** one.

<ロ> <問> <問> < 回> < 回> 、

The photon–nucleon coupling

It is **unknown**! The nucleon is not **point like**, it has a size! need to be parametrised

$$\sum_{ ext{spin}} |\pmb{M}|^2 = rac{\pmb{e}^4}{\pmb{Q}^2} \, L^{\mu
u} \, \pmb{W}_{\mu
u}$$

 $L^{\mu\nu}$: the **leptonic** tensor; and $W_{\mu\nu}$: the **hadronic** one. The most general parametrisation in terms of *P* and *q*

$$egin{aligned} \mathcal{W}_{\mu
u} &= V_1\,g_{\mu
u} + V_2\,P_{\mu}P_{
u} + V_3\,(q_{\mu}P_{
u} + q_{
u}P_{\mu}) + V_4\,(q_{\mu}P_{
u} - q_{
u}P_{\mu}) \ &+ V_5\,q_{\mu}q_{
u} + V_6\,\epsilon_{\mu
u
ho\sigma}\mathcal{P}^{
ho}q^{\sigma} \end{aligned}$$

 V_i , $i = 1, \cdots, 6$: functions of Q^2 , x and M^2 .

14/37

Constraints on the V_i parameters

But this a **QED interaction** thus the hadronic tensor is expected to be **transverse**

$$oldsymbol{q}^{\mu} oldsymbol{W}_{\mu
u} = oldsymbol{q}^{
u} oldsymbol{W}_{\mu
u} = oldsymbol{0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constraints on the V_i parameters

But this a **QED interaction** thus the hadronic tensor is expected to be **transverse**

$$q^{\mu} W_{\mu
u} = q^{
u} W_{\mu
u} = 0$$

Thus the hadronic tensor can be expressed in terms of **two parameters** only : V_1 et V_2

$$W_{\mu
u} = V_1 \, \left(g_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight) + V_2 \, \left(P_\mu - q_\mu \, rac{P \cdot q}{q^2}
ight) \, \left(P_
u - q_
u \, rac{P \cdot q}{q^2}
ight)$$

Constraints on the V_i parameters

But this a **QED interaction** thus the hadronic tensor is expected to be **transverse**

$$q^{\mu} W_{\mu
u} = q^{
u} W_{\mu
u} = 0$$

Thus the hadronic tensor can be expressed in terms of **two parameters** only : V_1 et V_2

$$W_{\mu
u} = V_1 \, \left(g_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight) + V_2 \, \left(P_\mu - q_\mu \, rac{P \cdot q}{q^2}
ight) \, \left(P_
u - q_
u \, rac{P \cdot q}{q^2}
ight)$$

It is more convenient to introduce **two other parameters** W_1 and W_2 such that $W_1 = -V_2/(2M)$ and $W_2 = M/2V_2$.

The amplitude squared

The **leptonic tensor** can be easily obtained using the standard QED Feynman rules yielding

$$L^{\mu\nu} = 2 (k^{\mu} k'^{\nu} + k^{\nu} k'^{\mu} - k \cdot k' g^{\mu\nu})$$

16/37

(3)

The amplitude squared

The **leptonic tensor** can be easily obtained using the standard QED Feynman rules yielding

$$L^{\mu\nu} = 2 (k^{\mu} k'^{\nu} + k^{\nu} k'^{\mu} - k \cdot k' g^{\mu\nu})$$

The contraction of the leptonic and the hadronic tensors gives

$$L^{\mu\nu} W_{\mu\nu} = 2 M \left[2 Q^2 W_1 + W_2 \left(4 \frac{k \cdot P k' \cdot P}{M^2} - Q^2 \right) \right]$$

Image: A matrix and a matrix

The amplitude squared

The **leptonic tensor** can be easily obtained using the standard QED Feynman rules yielding

$$L^{\mu\nu} = 2 (k^{\mu} k'^{\nu} + k^{\nu} k'^{\mu} - k \cdot k' g^{\mu\nu})$$

The contraction of the leptonic and the hadronic tensors gives

$$L^{\mu\nu} W_{\mu\nu} = 2 M \left[2 Q^2 W_1 + W_2 \left(4 \frac{k \cdot P k' \cdot P}{M^2} - Q^2 \right) \right]$$

In the laboratory frame :

$$L^{\mu
u} W_{\mu
u} = 8 M \omega \omega' \left[2 W_1 \sin^2 \frac{\theta}{2} + W_2 \cos^2 \frac{\theta}{2} \right]$$

< ∃ ►

Image: A matrix and a matrix

The cross section

The cross section is given by

$$\sigma = \frac{1}{4P \cdot k} \int \frac{d^3k'}{(2\pi)^3 2\omega'} \frac{d^4P_X}{(2\pi)^3} (2\pi)^4 \,\delta^4(k+P-k'-P_X) \overline{\sum} |M|^2$$

The cross section

The cross section is given by

$$\sigma = \frac{1}{4P \cdot k} \int \frac{d^3k'}{(2\pi)^3 2\,\omega'} \frac{d^4P_X}{(2\pi)^3} (2\pi)^4 \,\delta^4(k + P - k' - P_X) \overline{\sum} |M|^2$$

The differential cross section is given by

$$\frac{d\sigma}{d\omega'\,d\cos\theta} = \frac{\pi\,\alpha^2}{2\,\omega^2\,\sin^4\frac{\theta}{2}}\,\left[2\,W_1\,\sin^2\frac{\theta}{2} + W_2\,\cos^2\frac{\theta}{2}\right]$$

The cross section

The cross section is given by

$$\sigma = \frac{1}{4P \cdot k} \int \frac{d^3k'}{(2\pi)^3 2\,\omega'} \frac{d^4P_X}{(2\pi)^3} (2\pi)^4 \,\delta^4(k + P - k' - P_X) \overline{\sum} |M|^2$$

The differential cross section is given by

$$\frac{d\sigma}{d\omega'\,d\cos\theta} = \frac{\pi\,\alpha^2}{2\,\omega^2\,\sin^4\frac{\theta}{2}}\,\left[2\,W_1\,\sin^2\frac{\theta}{2} + W_2\,\cos^2\frac{\theta}{2}\right]$$

One can use also the variables Q^2 and ν instead of ω and ω' , the new differential cross section becomes

$$\frac{d\sigma}{dQ^2 d\nu} = \frac{4 \pi \alpha^2}{Q^4} \frac{\omega - \nu}{\omega} \left[2 W_1 \sin^2 \frac{\theta}{2} + W_2 \cos^2 \frac{\theta}{2} \right]$$

The dynamic of the interaction γ*N is encoded inside the functions W₁, W₂.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The dynamic of the interaction γ*N is encoded inside the functions W₁, W₂.
- The cross section decreases when ω or θ increases, or equivalently, when Q, ν increases. Since the cross section to be measured is very small, it requires high luminosity lepton beams to get some data at high ω, θ ⇔ high Q², ν

- The dynamic of the interaction γ*N is encoded inside the functions W₁, W₂.
- The cross section decreases when ω or θ increases, or equivalently, when Q, ν increases. Since the cross section to be measured is very small, it requires high luminosity lepton beams to get some data at high ω, θ ⇔ high Q², ν
- at fixed initial energy (ω), modifying ω', θ, the variables x and Q² varies and W₁(x, Q², M²), W₂(x, Q², M²) can be extracted from experiment.

- The dynamic of the interaction γ*N is encoded inside the functions W₁, W₂.
- The cross section decreases when ω or θ increases, or equivalently, when Q, ν increases. Since the cross section to be measured is very small, it requires high luminosity lepton beams to get some data at high ω, θ ⇔ high Q², ν
- at fixed initial energy (ω), modifying ω', θ, the variables x and Q² varies and W₁(x, Q², M²), W₂(x, Q², M²) can be extracted from experiment.
- the functions W₁, W₂ have the dimension of the inverse of an energy

$$MW_1\left(x,\frac{M^2}{Q^2}
ight)=\mathcal{F}_1(x,\frac{M^2}{Q^2}), \quad
u W_2\left(x,\frac{M^2}{Q^2}
ight)=\mathcal{F}_2(x,\frac{M^2}{Q^2}).$$

Results of the experiment

The experiment reveals two important facts :

4 3 > 4 3

The parton model

Results of the experiment

The experiment reveals two important facts :

$$\nu W_2\left(x,\frac{M^2}{Q^2}\right) \equiv \nu W_2(x)$$

This is the property of scale invariance

1

3 ×

Image: A matrix and a matrix

Results of the experiment

The experiment reveals two important facts :

$$\nu W_2\left(x,\frac{M^2}{Q^2}\right) \equiv \nu W_2(x)$$

This is the property of scale invariance

2 The relation

$$2MW_1(x) \equiv \frac{\nu W_2(x)}{x} = \frac{P_{\cdot}q W_2(x)}{Mx}$$

is satisfied experimentally (Callan-Gross relation).

Image: A matrix and a matrix

The parton model

The SLAC experiment

Figure: Results of the SLAC experiment in 1968, showing the scale invariance of the function νW_2 at the value of $x = 1/\omega = 0,25$. Figure 2.1: Résultats expérimentaux de SLAC montrant l'invariance d'échelle de la fonction

 νW_2 .

J.-Ph. Guillet (LAPTh)

VSOP-30

The parton model

Lorentz invariant form

"Mandelstam variables" s, t, u

$$(P+k)^2 = s$$
, $(k-k')^2 = t = -Q^2$, $(P-k')^2 = u$

21/37

Lorentz invariant form

"Mandelstam variables" s, t, u

$$(P+k)^2 = s$$
, $(k-k')^2 = t = -Q^2$, $(P-k')^2 = u$

$$\frac{\omega' d\sigma}{d^3 k'} = \frac{\alpha^2}{s} \frac{2}{Q^4} \left\{ Q^2 \left(2 M W_1 - \frac{W_2}{M} \frac{P.q}{x} \right) + \frac{W_2}{2M} \left(s^2 + u^2 \right) \right\}.$$
(1)

Lorentz invariant form

"Mandelstam variables" s, t, u

$$(P+k)^2 = s$$
, $(k-k')^2 = t = -Q^2$, $(P-k')^2 = u$

$$\frac{\omega' d\sigma}{d^3 k'} = \frac{\alpha^2}{s} \frac{2}{Q^4} \left\{ Q^2 \left(2 M W_1 - \frac{W_2}{M} \frac{P.q}{x} \right) + \frac{W_2}{2M} \left(s^2 + u^2 \right) \right\}.$$
(1)

coefficient of the term in Q^2 : invariant form of $2 M W_1 - \nu W_2/x$ which is **zero** (an experimental fact)

$$\frac{\omega' d\sigma^{\exp}}{d^3 k'} = \frac{\alpha^2}{s} \frac{(s^2 + u^2)}{Q^4} \frac{W_2}{M}$$

The parton model

The proton (or nucleon) is made of partons which are point like objects whose quantum numbers are a priori unknown (charge, spin, etc). If it is made of parton of type *i* carrying a **4-momentum** p_i .

$$p_i = y_i P$$
 with $\sum_i y_i = 1$ and $P = (E, 0, 0, E)$

Frame where **the components of** $P \rightarrow \infty$ (the mass of the proton and the partons are neglected).

22/37

The parton model

The proton (or nucleon) is made of partons which are point like objects whose quantum numbers are a priori unknown (charge, spin, etc). If it is made of parton of type *i* carrying a **4-momentum** p_i .

$$p_i = y_i P$$
 with $\sum_i y_i = 1$ and $P = (E, 0, 0, E)$

Frame where **the components of** $P \rightarrow \infty$ (the mass of the proton and the partons are neglected).

Describing the γ^* -hadron interaction in terms of γ^* -parton interaction

 The "life time of the virtual photon" in the centre of mass frame photon-proton

$$\Delta au_{em} \sim rac{1}{\sqrt{Q^2}} rac{q_0}{\sqrt{Q^2}} \sim rac{1}{\sqrt{Q^2}}, \quad \Delta au_{em}
ightarrow 0, \ \text{when} \ \sqrt{Q^2}
ightarrow \infty$$

23/37

4 3 > 4 3

 The "life time of the virtual photon" in the centre of mass frame photon-proton

$$\Delta au_{em} \sim rac{1}{\sqrt{Q^2}} rac{q_0}{\sqrt{Q^2}} \sim rac{1}{\sqrt{Q^2}}, \quad \Delta au_{em}
ightarrow 0, ext{ when } \sqrt{Q^2}
ightarrow \infty$$

 The characteristic time of the strong interaction which binds the partons inside the proton in the frame γ*-proton

$$\Delta au_{ ext{strong int.}} \sim rac{1}{M} rac{E}{M} \sim rac{\sqrt{Q^2}}{M^2}$$

.

 The "life time of the virtual photon" in the centre of mass frame photon-proton

$$\Delta\tau_{em}\sim \frac{1}{\sqrt{Q^2}}\frac{q_0}{\sqrt{Q^2}}\sim \frac{1}{\sqrt{Q^2}}, \quad \Delta\tau_{em}\rightarrow 0, \text{ when } \sqrt{Q^2}\rightarrow\infty$$

 The characteristic time of the strong interaction which binds the partons inside the proton in the frame γ*-proton

$$\Delta au_{ ext{strong int.}} \sim rac{1}{M} rac{E}{M} \sim rac{\sqrt{Q^2}}{M^2}$$

If the characteristic times are compared, we get that

$$\Delta au_{
m em} \sim rac{1}{\sqrt{Q^2}} \ll \Delta au_{
m strong int.} \sim rac{\sqrt{Q^2}}{M^2}.$$

During the time $\Delta \tau_{em}$ that the $\gamma^* p_i$ interaction lasts, one can neglect the hadronic interaction which lasts on a much larger time scale

The confinement interactions do not affect the interaction

 γ^* –**parton**, we thus have to compute

and add in a **incoherent manner** the cross sections electron–parton to form the cross section electron–proton.

Squared amplitude γ^* –parton

$$\mid \mathcal{M} \mid_{ep_i}^2 = \frac{q_i^2 e^4}{Q^4} L^{\mu\nu} \underbrace{\widehat{\mathcal{W}}_{\mu\nu}}_{\gamma^*\text{-parton int.}}.$$

 q_i : the parton charge in unit of e.

26/37

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Squared amplitude γ^* –parton

$$|\mathcal{M}|_{ep_i}^2 = \frac{q_i^2 e^4}{Q^4} L^{\mu\nu} \underbrace{\widehat{W}_{\mu\nu}}_{\gamma^*\text{-parton int.}}$$

 q_i : the parton charge in unit of *e*. The **spin of the partons** is 1/2. The interaction photon–parton takes the form $q_i e \gamma_{\mu}$

$$\widehat{W}_{\mu
u} = 2\left(p_{i\mu} p_{i
u}' + p_{i
u} p_{i\mu}' - p_{i.} p_{i}' g_{\mu
u}\right),$$

where the final parton 4-momentum is $p'_i = p_i + q$.

Squared amplitude γ^* –parton

$$|\mathcal{M}|_{ep_i}^2 = \frac{q_i^2 e^4}{Q^4} L^{\mu\nu} \underbrace{\widehat{W}_{\mu\nu}}_{\gamma^* \text{-parton int}}$$

 q_i : the parton charge in unit of *e*. The **spin of the partons** is 1/2. The interaction photon–parton takes the form $q_i e \gamma_{\mu}$

$$\widehat{W}_{\mu\nu}=2\left(p_{i\mu}\,p_{i\nu}'+p_{i\nu}\,p_{i\mu}'-p_{i}.p_{i}'\,g_{\mu\nu}\right),$$

where the final parton 4-momentum is $p'_i = p_i + q$.

$$\mathcal{M}|_{ep_{i}}^{2} = 8 \; \frac{e^{4} \, q_{i}^{2}}{Q^{4}} \left((p_{i}.k)^{2} + (p_{i}.k')^{2} \right) = 2 \, \frac{e^{4} \, q_{i}^{2}}{Q^{4}} \left(\hat{s}^{2} + \hat{u}^{2} \right),$$

with the partonic invariants $\hat{s} = (p_i + k)^2$ et $\hat{u} = (p_i - k')^2$.

The cross section γ^* –parton

The cross section will be

$$\hat{\sigma} = \frac{1}{2\hat{s}} \frac{1}{(2\pi)^2} \int \frac{d^3 k'}{2\omega'} \frac{d^3 p'_i}{2p'_i^0} \,\delta^{(4)}(k + p_i - k' - p'_i) \mid \mathcal{M} \mid_{ep_i}^2 \quad (2)$$

$$= 2 \frac{\alpha^2 q_i^2}{Q^4} \int \frac{d^3 k'}{\omega'} \,\delta\left(2p_i \cdot q - Q^2\right) \,\frac{\hat{s}^2 + \hat{u}^2}{\hat{s}}. \quad (3)$$

The cross section γ^* –parton

The cross section will be

$$\hat{\sigma} = \frac{1}{2\hat{s}} \frac{1}{(2\pi)^2} \int \frac{d^3 k'}{2\omega'} \frac{d^3 p'_i}{2p'_i^0} \,\delta^{(4)}(k + p_i - k' - p'_i) \mid \mathcal{M} \mid_{ep_i}^2 \quad (2)$$

$$= 2 \frac{\alpha^2 q_i^2}{Q^4} \int \frac{d^3 k'}{\omega'} \,\delta\left(2p_{i.}q - Q^2\right) \,\frac{\hat{s}^2 + \hat{u}^2}{\hat{s}}. \quad (3)$$

At the **partonic level**, the differential cross section will have the following form

$$\frac{\omega' d\hat{\sigma}}{d^3 k'} = 2 \frac{\alpha^2 q_i^2}{Q^4} \frac{\hat{s}^2 + \hat{u}^2}{\hat{s}} \,\delta(2p_i.q - Q^2). \tag{4}$$

Image: A matrix and a matrix

The cross section γ^* –proton

The hadronic cross section : **incoherent sum** of the partonic cross sections

$$\frac{\omega' d\sigma}{d^3 k'} = \sum_{i} \int_0^1 dy \, F_i(y) \left. \frac{\omega' d\hat{\sigma}}{d^3 k'} \right|_{\rho_i = yP},\tag{5}$$

 $\hat{s} = ys$ et $\hat{u} = yu$, $2p_i \cdot q = y \, 2P \cdot q$. The quantities $F_i(y)$ are the **number of partons** of type *i* carrying a **4-momentum fraction** *y* of the proton one.

The cross section γ^* –proton

The hadronic cross section : **incoherent sum** of the partonic cross sections

$$\frac{\omega' d\sigma}{d^3 k'} = \sum_{i} \int_0^1 dy \, F_i(y) \left. \frac{\omega' d\hat{\sigma}}{d^3 k'} \right|_{\rho_i = yP},\tag{5}$$

 $\hat{s} = ys$ et $\hat{u} = yu$, $2p_i \cdot q = y \, 2P \cdot q$. The quantities $F_i(y)$ are the **number of partons** of type *i* carrying a **4-momentum fraction** *y* of the proton one.

$$\frac{\omega' d\sigma}{d^3 k'} = \frac{\alpha^2}{s} \frac{s^2 + u^2}{Q^4} \sum_i e_i^2 \frac{x}{P \cdot q} F_i(x)$$
(6)

with $y = Q^2 / 2Pq = x$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparison

Comparing with the formula given the differential cross section electron–proton, one can identify

$$\frac{W_2}{M}(x, \frac{M^2}{Q^2}) = \sum_i q_i^2 \frac{x}{P \cdot q} F_i(x)$$
(7)

Comparison

Comparing with the formula given the differential cross section electron–proton, one can identify

$$\frac{W_2}{M}(x, \frac{M^2}{Q^2}) = \sum_i q_i^2 \frac{x}{P \cdot q} F_i(x)$$
(7)

which is equivalent to (in the laboratory frame $P.q = M\nu$)

$$\frac{1}{x} \nu W_2(x, \frac{M^2}{Q^2}) = \sum_i e_i^2 F_i(x)$$
(8)

Comparison

Comparing with the formula given the differential cross section electron–proton, one can identify

$$\frac{W_2}{M}(x, \frac{M^2}{Q^2}) = \sum_i q_i^2 \frac{x}{P_. q} F_i(x)$$
(7)

which is equivalent to (in the laboratory frame $P.q = M\nu$)

$$\frac{1}{x} \nu W_2(x, \frac{M^2}{Q^2}) = \sum_i e_i^2 F_i(x)$$
(8)

and since there is no term in Q^2 in $\frac{\omega' d\sigma}{d^3 k'}$ (see eq. (1)), we also recover

$$2 M W_1(x, \frac{M^2}{Q^2}) = \frac{1}{x} \nu W_2(x).$$
(9)

 The parton model well reproduces the "scale invariance", that is to say W₂(x, M²/Q²) = W₂(x)

(日)

- The parton model well reproduces the "scale invariance", that is to say W₂(x, M²/Q²) = W₂(x)
- The variable $x = Q^2/2P.q$ has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon

30/37

- The parton model well reproduces the "scale invariance", that is to say W₂(x, M²/Q²) = W₂(x)
- The variable $x = Q^2/2P.q$ has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon
- $\nu W_2/x$ is the sum weighted by the squared charge q_i^2 , of the probabilities of finding a parton of type *i* being scattered by the photon with a *x* fixed.

- The parton model well reproduces the "scale invariance", that is to say W₂(x, M²/Q²) = W₂(x)
- The variable $x = Q^2/2P.q$ has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon
- $\nu W_2/x$ is the sum weighted by the squared charge q_i^2 , of the probabilities of finding a parton of type *i* being scattered by the photon with a *x* fixed.
- The relation $2 M W_1(x) = \nu W_2(x)/x$ is a direct consequence of the fact that the partons interacting with the virtual photon has a spin 1/2.

- The parton model well reproduces the "scale invariance", that is to say W₂(x, M²/Q²) = W₂(x)
- The variable $x = Q^2/2P.q$ has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon
- $\nu W_2/x$ is the sum weighted by the squared charge q_i^2 , of the probabilities of finding a parton of type *i* being scattered by the photon with a *x* fixed.
- The relation $2 M W_1(x) = \nu W_2(x)/x$ is a direct consequence of the fact that the partons interacting with the virtual photon has a spin 1/2.

<u>Exercice</u>: Show that for spin 0 partons (coupling to the γ given by $q_i(p_i + p'_i)^{\mu}$) one has $W_1 \equiv 0$.

Feynman partons $\stackrel{?}{=}$ the Gell-Mann and Zweig quarks \Rightarrow

```
proton = (uud)
neutron = (udd).
```

This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks.

Feynman partons $\stackrel{?}{=}$ the Gell-Mann and Zweig quarks \Rightarrow

```
proton = (uud)
neutron = (udd).
```

This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks. Using isospin symmetry

$$F_{u}^{p}(x) = F_{d}^{n}(x) = u_{v}(x)$$

 $F_{d}^{p}(x) = F_{u}^{n}(x) = d_{v}(x)$

Feynman partons $\stackrel{?}{=}$ the Gell-Mann and Zweig quarks \Rightarrow

proton = (uud)neutron = (udd).

This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks. Using isospin symmetry

$$F_{u}^{p}(x) = F_{d}^{n}(x) = u_{v}(x)$$

 $F_{d}^{p}(x) = F_{u}^{n}(x) = d_{v}(x)$

The experimental results : proton and neutron more complex than this "3 quarks" model, they contain also antiquarks,... : "sea" quarks $u_m(x) = \bar{u}_m(x), \ d_m(x) = \bar{d}_m(x).$

Feynman partons $\stackrel{?}{=}$ the Gell-Mann and Zweig quarks \Rightarrow

proton = (uud)neutron = (udd).

This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks. Using isospin symmetry

$$F_{u}^{p}(x) = F_{d}^{n}(x) = u_{v}(x)$$

 $F_{d}^{p}(x) = F_{u}^{n}(x) = d_{v}(x)$

The experimental results : proton and neutron more complex than this "3 quarks" model, they contain also antiquarks,... : "sea" quarks $u_m(x) = \bar{u}_m(x), \ d_m(x) = \bar{d}_m(x).$

The sum of the quantum number carried by this quarks is zero!

(日)

$$u(x) = u_v(x) + u_m(x)$$

 $d(x) = d_v(x) + d_m(x).$

Neglecting the role of *s*, *c* and *b* quarks

$$\frac{1}{x}\nu W_2^{ep} = \frac{4}{9}(u(x) + \bar{u}(x)) + \frac{1}{9}(d(x) + \bar{d}(x))$$

$$\frac{1}{x}\nu W_2^{en} = \frac{1}{9}(u(x) + \bar{u}(x)) + \frac{4}{9}(d(x) + \bar{d}(x)).$$
(10)

where $u_m = \bar{u}_m = \bar{u}$, $d_m = \bar{d}_m = \bar{d}$.

Experimental measurement on an target of deuterium = p + n

$$\frac{1}{x}\nu W_2^{ep+en} = \frac{5}{9} \left(u(x) + \bar{u}(x) + d(x) + \bar{d}(x) \right)$$

and thus to compute the integral

$$\frac{9}{5}\int_0^1 dx \ \nu W_2^{ep+en} = \int_0^1 dx \ x \ \left(u(x) + \bar{u}(x) + d(x) + \bar{d}(x)\right)$$

which measure the **total momentum** carried by all the quarks u, d, \bar{u} and \bar{d} , should be **equal to 1**!

$$\langle x \rangle_{q+\bar{q}} \simeq 0.45 \neq 1.$$
 (11)

Experimental measurement on an target of deuterium = p + n

$$\frac{1}{x}\nu W_2^{ep+en} = \frac{5}{9} \left(u(x) + \bar{u}(x) + d(x) + \bar{d}(x) \right)$$

and thus to compute the integral

$$\frac{9}{5}\int_0^1 dx \ \nu W_2^{ep+en} = \int_0^1 dx \ x \ \left(u(x) + \bar{u}(x) + d(x) + \bar{d}(x)\right)$$

which measure the **total momentum** carried by all the quarks u, d, \bar{u} and \bar{d} , should be **equal to 1**!

$$\langle x \rangle_{q+\bar{q}} \simeq 0.45 \neq 1.$$
 (11)

The quarks carry half of the proton momentum, the other half is carried by **neutral partons**.

J.-Ph. Guillet (LAPTh)

• A hadron is made of partons, frame : infinite momentum frame

 $H = \{p_i\}$ $i = 1, \infty$ $P = \sum_i p_i$ where P, p_i are resp. the hadron and partons 4-momenta.

34/37

• A hadron is made of partons, frame : infinite momentum frame

 $H = \{p_i\}$ $i = 1, \infty$ $P = \sum_i p_i$ where P, p_i are resp. the hadron and partons 4-momenta.

All the masses (hadron and partons) are neglected

$$p_i = x_i P$$
 avec $\sum_i x_i = 1$.

• A hadron is made of partons, frame : infinite momentum frame

 $\begin{array}{l} H = \{p_i\} & i = 1, \infty \\ P = \sum_i p_i & \text{where } P, p_i \text{ are resp. the hadron and partons 4-momenta.} \end{array}$

All the masses (hadron and partons) are neglected

$$p_i = x_i P$$
 avec $\sum_i x_i = 1$.

Partons are **point like** and their interactions is **ignored** inside the hadron

• Interactions between hadrons reduce to interactions between partons following the diagram

• Interactions between hadrons reduce to interactions between partons following the diagram

 $\hat{\sigma}_{ij}$ is the **"hard" cross section** describing the interactions between partons. The hadronic cross section is a **incoherent superposition** of partonic cross sections, the probabilities are added, not the amplitudes!

J.-Ph. Guillet (LAPTh)

We can the write

$$\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).$$

(4) (5) (4) (5)

We can the write

$$\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).$$

The function $F_i^H(x)$ is **partonic density**, \propto to the probability of finding in *H* a parton *i* carrying the fraction *x* of the 4-momentum. This function is **"scale invariant"**.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

We can the write

$$\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).$$

The function $F_i^H(x)$ is **partonic density**, \propto to the probability of finding in *H* a parton *i* carrying the fraction *x* of the 4-momentum. This function is **"scale invariant"**. It contains the **"long distance"** effects (confinement) and its *x* dependence is not predict by the perturbative theory. The **"short distance"** effects are contained in the "hard" cross section $\hat{\sigma}_{ij}$.

We can the write

$$\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).$$

The function $F_i^H(x)$ is **partonic density**, \propto to the probability of finding in *H* a parton *i* carrying the fraction *x* of the 4-momentum. This function is **"scale invariant"**. It contains the **"long distance"** effects (confinement) and its *x* dependence is not predict by the perturbative theory. The **"short distance"** effects are contained in the "hard" cross section $\hat{\sigma}_{ij}$.

• The parton model is a valid postulate when all the dimensional variables s, t, u are **large** compared to the proton mass (~ 1 GeV²).

 The hadrons are not elementary particles. They can be classified following the representations of SU(n)_{flavour} (n = number of flavours = number of quarks (spin 1/2 particles))

37/37

- The hadrons are not elementary particles. They can be classified following the representations of SU(n)_{flavour} (n = number of flavours = number of quarks (spin 1/2 particles))
- These quarks have to carry a new quantum number : colour

37/37

- The hadrons are not elementary particles. They can be classified following the representations of SU(n)_{flavour} (n = number of flavours = number of quarks (spin 1/2 particles))
- These quarks have to carry a new quantum number : colour
- To describe the scale invariance (experimental fact), hadrons made of partons such that a probe (γ^*), with a large momentum transfer, interacts with them as if they were free

- The hadrons are not elementary particles. They can be classified following the representations of SU(n)_{flavour} (n = number of flavours = number of quarks (spin 1/2 particles))
- These quarks have to carry a new quantum number : colour
- To describe the scale invariance (experimental fact), hadrons made of partons such that a probe (γ^*), with a large momentum transfer, interacts with them as if they were free
- partons \in [quarks,...]

- The hadrons are not elementary particles. They can be classified following the representations of SU(n)_{flavour} (n = number of flavours = number of quarks (spin 1/2 particles))
- These quarks have to carry a new quantum number : colour
- To describe the scale invariance (experimental fact), hadrons made of partons such that a probe (γ^*), with a large momentum transfer, interacts with them as if they were free
- partons \in [quarks,...]
- No information on the dynamics between partons