QCD Lectures

J.-Ph. Guillet

LAPTh CNRS Université de Savoie

VSOP-30 presentation – Jully 2024

不同 医

 $4 \n **1** \n **1**$

QCD is a vast subject which cannot be covered in four lectures! I had to select some topics whose the main line is "QCD for LHC"

4 m k

 Ω

- QCD is a vast subject which cannot be covered in four lectures! I had to select some topics whose the main line is "QCD for LHC"
- The global outline will
	- Lecture I: Pre QCD, quark model, parton model
	- Lecture II: QCD as gauge theory
	- **Lecture III : Renormalisation**
	- Lecture IV : Soft/Collinear divergences, the QCD improved parton model

 Ω

- QCD is a vast subject which cannot be covered in four lectures! I had to select some topics whose the main line is "QCD for LHC"
- The global outline will
	- Lecture I: Pre QCD, quark model, parton model
	- Lecture II: QCD as gauge theory
	- **Lecture III : Renormalisation**
	- Lecture IV : Soft/Collinear divergences, the QCD improved parton model
- I will not address the non perturbative regime of QCD, the low energy one as well as many other subjects....

- QCD is a vast subject which cannot be covered in four lectures! I had to select some topics whose the main line is "QCD for LHC"
- The global outline will
	- Lecture I: Pre QCD, quark model, parton model
	- Lecture II : QCD as gauge theory
	- **Lecture III : Renormalisation**
	- Lecture IV : Soft/Collinear divergences, the QCD improved parton model
- I will not address the non perturbative regime of QCD, the low energy one as well as many other subjects....
- For each lecture, there will be some slides as well as some more detailed notes. They can be downloaded from this URL : <https://mydrive.lapth.cnrs.fr/s/rK9Qb6Nggfo78aT> They are labelled, for lecture X : note_cX.pdf and slide_cX.pdf where $X \in [I, II, III, IV]$ Ω

Outline

[Lecture I : The naive parton model](#page-6-0)

- [The hadrons are not elementary particles](#page-6-0)
- [The quark model](#page-9-0)
- [The parton model](#page-30-0)
- [The parton model in the deep inelastic](#page-58-0)
	- **[The electron–parton cross section](#page-65-0)**
	- [The electron–proton cross section](#page-70-0)
	- \bullet Partons \equiv [quarks + ...](#page-80-0)

 Ω

J.-Ph. Guillet (LAPTh) **[QCD Lectures](#page-0-0)** VSOP-30 4/37

重

 299

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ ...

Status of strong interaction

Hadrons

particles sensitive to the strong interaction, ex. proton, neutron, · · · mesons : hadrons having integer spin baryons : hadrons with half-integer spin

 Ω

 \mathbf{A} \mathbf{B} is a \mathbf{B} is

4 m k 1 \leftarrow \leftarrow \leftarrow

Status of strong interaction

Hadrons

particles sensitive to the strong interaction, ex. proton, neutron, · · · mesons : hadrons having integer spin baryons : hadrons with half-integer spin

Particle accelerators

Before the 50', people thought that hadrons were elementary particles With the coming of accelerators, hundred of hadrons have been discovered! (cf. Particle Data Book) Clearly not elementary...

Isospin symmetry

A first attempt to classify

The proton and the neutron undergo the same strong interaction, their masses are similar, only the electric charge distinguishes between them.

 Ω

重き イヨネ

∢⊓ ⊧∢⊜ ⊧

Isospin symmetry

A first attempt to classify

The proton and the neutron undergo the same strong interaction, their masses are similar, only the electric charge distinguishes between them.

Isospin symmetry

$$
p \equiv (1 = 1/2; l_3 = +1/2)
$$
 isospin "up", proton

$$
n \equiv (1 = 1/2; l_3 = -1/2)
$$
 isospin "down", neutron

重す

4 m k 1 \leftarrow \leftarrow \leftarrow

Isospin symmetry

A first attempt to classify

The proton and the neutron undergo the same strong interaction, their masses are similar, only the electric charge distinguishes between them.

Isospin symmetry

$$
p \equiv (1 = 1/2; l_3 = +1/2)
$$
 isospin "up", proton

$$
n \equiv (1 = 1/2; l_3 = -1/2)
$$
 isospin "down", neutron

Only for the couple proton–neutron!

Strangeness

Strange properties

Some hadrons have "extremely" long lifetime

$$
\Sigma^- \to n\pi^- \quad \tau \simeq 10^{-10}s
$$

$$
\Delta^- \to n\pi^- \quad \tau \simeq 10^{-23}s
$$

with $m_{\Sigma} \simeq m_{\Delta}$ or

$$
K(m_K \simeq 500 \text{MeV}) \quad \tau \simeq 10^{-8} \text{s}
$$

$$
\rho(m_\rho \simeq 770 \text{MeV}) \quad \tau \simeq 10^{-23} \text{s}
$$

E

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

Strangeness

Strange properties

Some hadrons have "extremely" long lifetime

$$
\Sigma^- \to n\pi^- \quad \tau \simeq 10^{-10}s
$$

$$
\Delta^- \to n\pi^- \quad \tau \simeq 10^{-23}s
$$

with $m_{\Sigma} \simeq m_{\Delta}$ or

$$
K(m_K \simeq 500 \text{MeV}) \quad \tau \simeq 10^{-8} \text{s}
$$

$$
\rho(m_\rho \simeq 770 \text{MeV}) \quad \tau \simeq 10^{-23} \text{s}
$$

Strangeness

New quantum number : strangeness, conserved by strong and E.M. interactions

J.-Ph. Guillet (LAPTh) QCD Lectures VSOP-30 6/37

イロメ イ押 トイラ トイラメー

∍

化重压 不重

(ロ) (d)

- $B = 0$ for mesons (hadrons with integer spin),
- $B = 1$ for the baryons (hadrons with half integer spin $\frac{1}{2}$, $\frac{3}{2}$ $\frac{3}{2}, ...$
- $B = -1$ for the antibaryons.

つへへ

- $B = 0$ for mesons (hadrons with integer spin),
- $B = 1$ for the baryons (hadrons with half integer spin $\frac{1}{2}$, $\frac{3}{2}$ $\frac{3}{2}, ...$
- $B = -1$ for the antibaryons.

The **strangeness** *S* and the **hypercharge**, *Y*, not independent

$$
\boldsymbol{Y} = \boldsymbol{B} + \boldsymbol{S}
$$

- $B = 0$ for mesons (hadrons with integer spin),
- $B = 1$ for the baryons (hadrons with half integer spin $\frac{1}{2}$, $\frac{3}{2}$ $\frac{3}{2}, ...$
- $B = -1$ for the antibaryons.

The **strangeness** *S* and the **hypercharge**, *Y*, not independent

$$
\boldsymbol{Y} = \boldsymbol{B} + \boldsymbol{S}
$$

The electric charge is related to the other quantum numbers by

$$
Q = I_3 + \frac{Y}{2}.
$$

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

 Ω

E K

∢⊓ ⊧∢⊜ ⊧

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

The **mesons** which have a baryonic number equal to zero $(B = 0)$ are bound states quark–antiquark

$$
M=(q_i\ \bar{q}_j)\qquad i,j=u,d,s...
$$

 Ω

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

The **mesons** which have a baryonic number equal to zero $(B = 0)$ are bound states quark–antiquark

$$
M=(q_i\ \bar{q}_j)\qquad i,j=u,d,s...
$$

The **baryons**, which have a baryonic quantum number equal to 1, are made of three quarks

$$
B=(q_iq_jq_k) \qquad i,j,k=u,d,s...
$$

They are made of **quarks** and **antiquarks** in such a way that their charge and their baryonic numbers have integer values.

The **mesons** which have a baryonic number equal to zero $(B = 0)$ are bound states quark–antiquark

$$
M=(q_i\ \bar{q}_j)\qquad i,j=u,d,s...
$$

The **baryons**, which have a baryonic quantum number equal to 1, are made of three quarks

$$
B=(q_iq_jq_k) \qquad i,j,k=u,d,s...
$$

All the knowns hadrons (at that time!) were arranged in the irreducible **representations** of *SU*(3)flavour

K ロ K K 御 K K 唐 K K 唐 K L

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

 290

イロメ イ母 トイラメ イラメ

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

- \bullet The symmetry described by the Lie group $SU(3)_{\text{flavour}}$ is not exact
	- : $m_u \simeq m_d \neq m_s$

 Ω

(すっと)

不同 医

∢⊓ ⊧∢⊜ ⊧

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

- \bullet The symmetry described by the Lie group $SU(3)_{\text{flavour}}$ is not exact : $m_u \simeq m_d \neq m_s$
- Other quarks have been discovered : *c*, *b* and *t*. The symmetry group has to be extended to *SU*(6) but huge mass difference *m*^{*t*}/*m*^{*u*} ∼ 10⁴

 Ω

化重新分重率

Despite its success : prediction of a new resonance $\Omega = (sss)$, the quark model has some weaknesses

- \bullet The symmetry described by the Lie group $SU(3)_{\text{flavour}}$ is not exact : $m_u \simeq m_d \neq m_s$
- Other quarks have been discovered : *c*, *b* and *t*. The symmetry group has to be extended to *SU*(6) but huge mass difference *m*^{*t*}/*m*_{*u*} ∼ 10⁴
- No information on the dynamic! How the quarks interact between themselves?

Let us consider, the hadron $\Delta^{++}=(uuu)$ in a spin state $s_{z}=\frac{3}{2}$ <u>ș</u> (each quarks has its spin up)

$$
\Delta^{++}(s_z=\frac{3}{2})=(u^{\uparrow}u^{\uparrow}u^{\uparrow})
$$

and the ∆++ wave function is **symmetric** when exchanging two quarks in contraction with the Fermi-Dirac statistic which requires that the wave function is **antisymmetric**!

 Ω

Let us consider, the hadron $\Delta^{++}=(uuu)$ in a spin state $s_{z}=\frac{3}{2}$ <u>ș</u> (each quarks has its spin up)

$$
\Delta^{++}(s_z=\frac{3}{2})=(u^{\uparrow}u^{\uparrow}u^{\uparrow})
$$

and the ∆++ wave function is **symmetric** when exchanging two quarks in contraction with the Fermi-Dirac statistic which requires that the wave function is **antisymmetric**! To solve this problem, a new quantum number is introduced : the colour.

$$
u = \left(\begin{array}{c} u_R \\ u_G \\ u_B \end{array}\right) \quad d = \left(\begin{array}{c} d_R \\ d_G \\ d_B \end{array}\right) \quad s = \left(\begin{array}{c} s_R \\ s_G \\ s_B \end{array}\right)
$$

To this new quantum number is associated a **colour symmetry group** $SU(3)$ (to be distinguished from $SU(3)_{\text{flavour}}$). Each quark is a colour triplet and the hadrons are colour singlets (their wave functions are invariant under this group of transformation).

 Ω

To this new quantum number is associated a **colour symmetry group** $SU(3)$ (to be distinguished from $SU(3)_{\text{flavour}}$). Each quark is a colour triplet and the hadrons are colour singlets (their wave functions are invariant under this group of transformation). In this way, the Δ^{++} wave function is

$$
\Delta^{++} = \frac{1}{\sqrt{6}} \, \epsilon_{ijk} \, u_i^{\uparrow} u_j^{\uparrow} u_k^{\uparrow}
$$

which is **antisymmetric** under the permutation of two elements.

The electron–nucleus scattering

∍

不同 医

 $4 \n **1** \n **1**$

The electron–nucleus scattering

Kinematics ω ≫ *m*

$$
P = (M, \vec{0})
$$

\n
$$
k = (\omega, 0, 0, \omega)
$$

\n
$$
k' = (\omega', \omega' \sin \theta, 0, \omega' \cos \theta)
$$

 $\left\langle \cdot \right\rangle$ ∍

4. 17. 30

 \prec A D

$$
Q^2 = -q^2 = -(k - k')^2 = 4 \omega \, \omega' \, \sin^2 \frac{\theta}{2} > 0
$$

 299

画

メロトメ団トメモトメモト

$$
Q^2 = -q^2 = -(k - k')^2 = 4 \omega \, \omega' \, \sin^2 \frac{\theta}{2} > 0
$$

Let us introduce some new variables :

$$
\nu \equiv \omega - \omega'
$$

\n
$$
y \equiv \frac{2 P \cdot q}{2 P \cdot k} = \frac{\nu}{\omega}
$$

\n
$$
x \equiv \frac{Q^2}{2 P \cdot q} = \frac{Q^2}{2 M \nu}
$$

イロトス 御 トス ヨ トス ヨ トー

重

$$
Q^2 = -q^2 = -(k - k')^2 = 4 \omega \, \omega' \, \sin^2 \frac{\theta}{2} > 0
$$

Let us introduce some new variables :

$$
\nu \equiv \omega - \omega'
$$

\n
$$
y \equiv \frac{2 P \cdot q}{2 P \cdot k} = \frac{\nu}{\omega}
$$

\n
$$
x \equiv \frac{Q^2}{2 P \cdot q} = \frac{Q^2}{2 M \nu}
$$

The invariant mass of the hadronic final state

$$
M_X^2 \equiv (P+q)^2 = M^2 + Q^2 \frac{1-x}{x}
$$
 $0 \le x \le 1$ and $y \in [0,1]$

J.-Ph. Guillet (LAPTh) **[QCD Lectures](#page-0-0)** VSOP-30 13/37

イロメ イ母 トイラメ イラメ

E

The photon–nucleon coupling

It is **unknown**! The nucleon is not **point like**, it has a size! need to be parametrised

$$
\sum_{\text{spin}} |M|^2 = \frac{e^4}{Q^2} L^{\mu\nu} \; W_{\mu\nu}
$$

 298

化重压 化重压

4 F 1 4 F 1
The photon–nucleon coupling

It is **unknown**! The nucleon is not **point like**, it has a size! need to be parametrised

$$
\sum_{\text{spin}} |M|^2 = \frac{e^4}{Q^2} L^{\mu\nu} W_{\mu\nu}
$$

L µν : the **leptonic** tensor; and *W*µν : the **hadronic** one.

∢⊓ ⊧∢⊜ ⊧

 Ω

The photon–nucleon coupling

It is **unknown**! The nucleon is not **point like**, it has a size! need to be parametrised

$$
\sum_{\text{spin}} |M|^2 = \frac{e^4}{Q^2} L^{\mu\nu} W_{\mu\nu}
$$

L^{μν} : the **leptonic** tensor; and $W_{\mu\nu}$: the **hadronic** one. The most general parametrisation in terms of *P* and *q*

$$
W_{\mu\nu} = V_1 g_{\mu\nu} + V_2 P_{\mu} P_{\nu} + V_3 (q_{\mu} P_{\nu} + q_{\nu} P_{\mu}) + V_4 (q_{\mu} P_{\nu} - q_{\nu} P_{\mu}) + V_5 q_{\mu} q_{\nu} + V_6 \epsilon_{\mu\nu\rho\sigma} P^{\rho} q^{\sigma}
$$

 V_i , $i = 1, \dots, 6$: functions of Q^2 , *x* and M^2 .

 Ω

Constraints on the *Vⁱ* parameters

But this a **QED interaction** thus the hadronic tensor is expected to be **transverse**

$$
q^{\mu} W_{\mu\nu} = q^{\nu} W_{\mu\nu} = 0
$$

化重压

4 n > 4 n +

 290

Constraints on the *Vⁱ* parameters

But this a **QED interaction** thus the hadronic tensor is expected to be **transverse**

$$
q^\mu\,W_{\mu\nu}=q^\nu\,W_{\mu\nu}=0
$$

Thus the hadronic tensor can be expressed in terms of **two parameters** only : V_1 et V_2

$$
W_{\mu\nu}=V_1\,\left(g_{\mu\nu}-\frac{q_\mu q_\nu}{q^2}\right)+V_2\,\left(P_\mu-q_\mu\,\frac{P\cdot q}{q^2}\right)\,\left(P_\nu-q_\nu\,\frac{P\cdot q}{q^2}\right)
$$

Constraints on the *Vⁱ* parameters

But this a **QED interaction** thus the hadronic tensor is expected to be **transverse**

$$
q^\mu\,W_{\mu\nu}=q^\nu\,W_{\mu\nu}=0
$$

Thus the hadronic tensor can be expressed in terms of **two parameters** only : V_1 et V_2

$$
W_{\mu\nu}=V_1\,\left(g_{\mu\nu}-\frac{q_\mu q_\nu}{q^2}\right)+V_2\,\left(P_\mu-q_\mu\,\frac{P\cdot q}{q^2}\right)\,\left(P_\nu-q_\nu\,\frac{P\cdot q}{q^2}\right)
$$

It is more convenient to introduce **two other parameters** W_1 and W_2 such that $W_1 = -V_2/(2 M)$ and $W_2 = M/2 V_2$.

The amplitude squared

The **leptonic tensor** can be easily obtained using the standard QED Feynman rules yielding

$$
L^{\mu\nu} = 2(k^{\mu}k^{\prime\,\nu} + k^{\nu}k^{\prime\,\mu} - k\cdot k^{\prime}\,g^{\mu\nu})
$$

 290

E K

4 m k 1 4. 何 下

The amplitude squared

The **leptonic tensor** can be easily obtained using the standard QED Feynman rules yielding

$$
L^{\mu\nu}=2\left(k^{\mu}k^{\prime\,\nu}+k^{\nu}k^{\prime\,\mu}-k\cdot k^{\prime}\,g^{\mu\nu}\right)
$$

The **contraction** of the leptonic and the hadronic tensors gives

$$
L^{\mu\nu} W_{\mu\nu} = 2 M \left[2 Q^2 W_1 + W_2 \left(4 \frac{k \cdot P k' \cdot P}{M^2} - Q^2 \right) \right]
$$

4. 17. 31

 290

The amplitude squared

The **leptonic tensor** can be easily obtained using the standard QED Feynman rules yielding

$$
L^{\mu\nu}=2\left(k^{\mu}k^{\prime\,\nu}+k^{\nu}k^{\prime\,\mu}-k\cdot k^{\prime}\,g^{\mu\nu}\right)
$$

The **contraction** of the leptonic and the hadronic tensors gives

$$
L^{\mu\nu} W_{\mu\nu} = 2 M \left[2 Q^2 W_1 + W_2 \left(4 \frac{k \cdot P k' \cdot P}{M^2} - Q^2 \right) \right]
$$

In the **laboratory frame** :

$$
L^{\mu\nu} W_{\mu\nu} = 8 M \omega \, \omega' \, \left[2 W_1 \, \sin^2 \frac{\theta}{2} + W_2 \, \cos^2 \frac{\theta}{2} \right]
$$

The cross section

The **cross section** is given by

$$
\sigma = \frac{1}{4P \cdot k} \int \frac{d^3 k'}{(2 \pi)^3 2 \omega'} \frac{d^4 P_X}{(2 \pi)^3} (2 \pi)^4 \delta^4 (k + P - k' - P_X) \overline{\sum} |M|^2
$$

ŧ

 299

メロトメ 御 トメ 君 トメ 君

The cross section

The **cross section** is given by

$$
\sigma = \frac{1}{4P \cdot k} \int \frac{d^3 k'}{(2 \pi)^3 2 \omega'} \frac{d^4 P_X}{(2 \pi)^3} (2 \pi)^4 \delta^4 (k + P - k' - P_X) \overline{\sum} |M|^2
$$

The **differential cross section** is given by

$$
\frac{d\sigma}{d\omega' d\cos\theta} = \frac{\pi \,\alpha^2}{2\,\omega^2 \,\text{sin}^4\frac{\theta}{2}} \left[2\,W_1\,\sin^2\frac{\theta}{2} + W_2\,\cos^2\frac{\theta}{2} \right]
$$

ミト

 298

←ロ ▶ + 伊 ▶

The cross section

The **cross section** is given by

$$
\sigma = \frac{1}{4P \cdot k} \int \frac{d^3 k'}{(2 \pi)^3 2 \omega'} \frac{d^4 P_X}{(2 \pi)^3} (2 \pi)^4 \delta^4 (k + P - k' - P_X) \overline{\sum} |M|^2
$$

The **differential cross section** is given by

$$
\frac{d\sigma}{d\omega' d\cos\theta} = \frac{\pi \,\alpha^2}{2\,\omega^2 \sin^4\frac{\theta}{2}} \left[2\,W_1\,\sin^2\frac{\theta}{2} + W_2\,\cos^2\frac{\theta}{2}\right]
$$

One can use also the variables Q^2 and ν instead of ω and ω' , the new differential cross section becomes

$$
\frac{d\sigma}{dQ^2 d\nu} = \frac{4\,\pi\,\alpha^2}{Q^4} \frac{\omega - \nu}{\omega} \left[2\,W_1\,\sin^2\frac{\theta}{2} + W_2\,\cos^2\frac{\theta}{2} \right]
$$

The **dynamic** of the interaction $\gamma^* N$ is encoded inside the functions W_1 , W_2 .

E

 299

イロメ イ母 トイラメ イラメ

- The **dynamic** of the interaction $\gamma^* N$ is encoded inside the functions W_1 , W_2 .
- The cross section **decreases** when ω or θ **increases**, or equivalently, when Q, ν increases. Since the cross section to be measured is very small, it requires high luminosity lepton beams to get some data at high $\omega, \theta \Leftrightarrow$ high Q^2, ν

 Ω

- The **dynamic** of the interaction $\gamma^* N$ is encoded inside the functions W_1 , W_2 .
- The cross section **decreases** when ω or θ **increases**, or equivalently, when Q, ν increases. Since the cross section to be measured is very small, it requires high luminosity lepton beams to get some data at high $\omega, \theta \Leftrightarrow$ high Q^2, ν
- at fixed initial energy (ω), modifying ω' , θ , the variables x and Q^2 varies and $W_1(x,Q^2,M^2),\;W_2(x,Q^2,M^2)$ can be extracted from experiment.

- The **dynamic** of the interaction $\gamma^* N$ is encoded inside the functions W_1 , W_2 .
- The cross section **decreases** when ω or θ **increases**, or equivalently, when Q, ν increases. Since the cross section to be measured is very small, it requires high luminosity lepton beams to get some data at high $\omega, \theta \Leftrightarrow$ high Q^2, ν
- at fixed initial energy (ω), modifying ω' , θ , the variables x and Q^2 varies and $W_1(x,Q^2,M^2),\;W_2(x,Q^2,M^2)$ can be extracted from experiment.
- \bullet the functions W_1 , W_2 have the dimension of the **inverse of an energy**

$$
MW_1\left(x,\frac{M^2}{Q^2}\right)=\mathcal{F}_1(x,\frac{M^2}{Q^2}),\quad \nu\,W_2\left(x,\frac{M^2}{Q^2}\right)=\mathcal{F}_2(x,\frac{M^2}{Q^2}).
$$

Results of the experiment

The experiment reveals **two important facts** :

ミト

4. 17. 30

4. 何 下

Results of the experiment

The experiment reveals **two important facts** :

$$
\nu\,W_2\left(x,\frac{M^2}{Q^2}\right)\equiv\nu\,W_2(x)
$$

This is the property of **scale invariance**

1

4 m k 1

 290

Results of the experiment

The experiment reveals **two important facts** :

$$
\nu\,W_2\left(x,\frac{M^2}{Q^2}\right)\equiv\nu\,W_2(x)
$$

This is the property of **scale invariance**

² The relation

1

$$
2MW_1(x) \equiv \frac{\nu W_2(x)}{x} = \frac{P.q \ W_2(x)}{Mx}
$$

is satisfied experimentally (**Callan-Gross relation**).

The SLAC experiment

Figure: *Results of the SLAC experiment in 1968, showing the scale invariance of the function* ν *W*₂ *at the value of* $x = 1/\omega = 0, 25$ *.*
Figure 2.1: Résultats expérimentaux de SLAC montrant l'invariance d'échelle de la fonction νW_2 .

J.-Ph. Guillet (LAPTh) **[QCD Lectures](#page-0-0)** VSOP-30 20/37

 290

Lorentz invariant form

"Mandelstam variables" *s*, *t*, *u*

$$
(P + k)^2 = s, \quad (k - k')^2 = t = -Q^2, \quad (P - k')^2 = u
$$

ŧ

 299

メロトメ 伊 トメ ミトメ ミト

Lorentz invariant form

"Mandelstam variables" *s*, *t*, *u*

$$
(P + k)^2 = s, \quad (k - k')^2 = t = -Q^2, \quad (P - k')^2 = u
$$

$$
\frac{\omega' d\sigma}{d^3 k'} = \frac{\alpha^2}{s} \frac{2}{Q^4} \left\{ Q^2 (2 M W_1 - \frac{W_2}{M} \frac{P.q}{x}) + \frac{W_2}{2M} (s^2 + u^2) \right\}.
$$
 (1)

ŧ

 299

メロトメ 伊 トメ ミトメ ミト

Lorentz invariant form

"Mandelstam variables" *s*, *t*, *u*

$$
(P + k)2 = s, \quad (k - k')2 = t = -Q2, \quad (P - k')2 = u
$$

$$
\frac{\omega' d\sigma}{d^3k'} = \frac{\alpha^2}{s} \frac{2}{Q^4} \left\{ Q^2 (2 M W_1 - \frac{W_2}{M} \frac{P.q}{x}) + \frac{W_2}{2M} (s^2 + u^2) \right\}.
$$
 (1)

coefficient of the term in Q^2 : **invariant form** of 2 *M* $W_1 - \nu$ W_2/x which is **zero** (an experimental fact)

$$
\frac{\omega' d\sigma^{\text{exp}}}{d^3k'} = \frac{\alpha^2}{s} \frac{(s^2 + u^2)}{Q^4} \frac{W_2}{M}
$$

不重 的人

The parton model

The **proton** (or nucleon) is made of **partons** which are **point like objects** whose quantum numbers are a priori unknown (charge, spin, etc). If it is made of **parton of type** *i* carrying a **4-momentum** *pⁱ* .

$$
p_i = y_i P
$$
 with $\sum_i y_i = 1$ and $P = (E, 0, 0, E)$

Frame where **the components of** $P \rightarrow \infty$ (the mass of the proton and the partons are neglected).

 Ω

The parton model

The **proton** (or nucleon) is made of **partons** which are **point like objects** whose quantum numbers are a priori unknown (charge, spin, etc). If it is made of **parton of type** *i* carrying a **4-momentum** *pⁱ* .

$$
p_i = y_i P
$$
 with $\sum_i y_i = 1$ and $P = (E, 0, 0, E)$

Frame where **the components of** $P \rightarrow \infty$ (the mass of the proton and the partons are neglected).

Describing the γ^* -hadron interaction in terms of γ^* -parton interaction

The **"life time of the virtual photon"** in the centre of mass frame photon-proton

$$
\Delta \tau_{\rm em} \sim \frac{1}{\sqrt{Q^2}} \frac{q_0}{\sqrt{Q^2}} \sim \frac{1}{\sqrt{Q^2}}, \quad \Delta \tau_{\rm em} \rightarrow 0, \text{ when } \sqrt{Q^2} \rightarrow \infty
$$

 298

 \rightarrow \pm

B K

∢⊓ ⊧∢⊜ ⊧

The **"life time of the virtual photon"** in the centre of mass frame photon-proton

$$
\Delta \tau_{\rm em} \sim \frac{1}{\sqrt{Q^2}} \frac{q_0}{\sqrt{Q^2}} \sim \frac{1}{\sqrt{Q^2}}, \quad \Delta \tau_{\rm em} \rightarrow 0, \text{ when } \sqrt{Q^2} \rightarrow \infty
$$

The **characteristic time of the strong interaction** which binds the partons inside the proton in the frame $\gamma^*{-}$ proton

$$
\Delta \tau_{\text{strong int.}} \sim \frac{1}{M} \frac{E}{M} \sim \frac{\sqrt{Q^2}}{M^2}
$$

.

The **"life time of the virtual photon"** in the centre of mass frame photon-proton

$$
\Delta \tau_{\rm em} \sim \frac{1}{\sqrt{Q^2}} \frac{q_0}{\sqrt{Q^2}} \sim \frac{1}{\sqrt{Q^2}}, \quad \Delta \tau_{\rm em} \rightarrow 0, \text{ when } \sqrt{Q^2} \rightarrow \infty
$$

The **characteristic time of the strong interaction** which binds the partons inside the proton in the frame $\gamma^*{-}$ proton

$$
\Delta \tau_{\text{strong int.}} \sim \frac{1}{M} \frac{E}{M} \sim \frac{\sqrt{Q^2}}{M^2}
$$

If the characteristic times are compared, we get that

$$
\Delta \tau_{\rm em} \sim \frac{1}{\sqrt{Q^2}} \ll \Delta \tau_{\rm strong \ int.} \sim \frac{\sqrt{Q^2}}{M^2}.
$$

.

During the time $\Delta\tau_{\rm em}$ that the $\gamma^*\rho_i$ interaction lasts, one can neglect the hadronic interaction which lasts on a much larger time scale

The **confinement interactions** do not affect the **interaction**

γ [∗]**–parton**, we thus have to compute

and add in a **incoherent manner** the cross sections electron–parton to form the cross section electron–proton.

Squared amplitude γ^* –parton

$$
|\mathcal{M}|^2_{ep_i} = \frac{q_i^2 e^4}{Q^4} L^{\mu\nu} \underbrace{\widehat{W}_{\mu\nu}}_{\gamma^*\text{-parton int.}}.
$$

qi : the parton charge in unit of *e*.

ŧ

 298

イロト イ部 トイモ トイモト

.

Squared amplitude γ^* –parton

$$
|\mathcal{M}|_{ep_i}^2 = \frac{q_i^2 e^4}{Q^4} L^{\mu\nu} \underbrace{\widehat{W}_{\mu\nu}}_{\gamma^*\text{-parton int.}}
$$

qi : the parton charge in unit of *e*. The **spin of the partons** is 1/2. The interaction photon–parton takes the form $q_i e_{\gamma\mu}$

$$
\widehat{W}_{\mu\nu}=2\,(\overline{p}_{i\mu}\,p'_{i\nu}+\overline{p}_{i\nu}\,p'_{i\mu}-\overline{p}_{i}.\overline{p}'_{i}\,g_{\mu\nu}),
$$

where the final parton 4-momentum is $p'_i = p_i + q.$

 Ω

イロメ イ押 トイラ トイラメー

.

Squared amplitude γ^* –parton

$$
|\mathcal{M}|_{ep_i}^2 = \frac{q_i^2 e^4}{Q^4} L^{\mu\nu} \underbrace{\widehat{W}_{\mu\nu}}_{\gamma^*\text{-parton int.}}
$$

qi : the parton charge in unit of *e*. The **spin of the partons** is 1/2. The interaction photon–parton takes the form $q_i e_{\gamma\mu}$

$$
\widehat{W}_{\mu\nu}=2\,(p_{i\mu}\,p'_{i\nu}+p_{i\nu}\,p'_{i\mu}-p_{i}.p'_{i}\,g_{\mu\nu}),
$$

where the final parton 4-momentum is $p'_i = p_i + q.$

$$
|\mathcal{M}|^2_{ep_i} = 8 \frac{e^4 q_i^2}{Q^4} \left((p_i.k)^2 + (p_i.k')^2 \right) = 2 \frac{e^4 q_i^2}{Q^4} \left(\hat{s}^2 + \hat{u}^2 \right),
$$

with the partonic invariants $\hat{s} = (p_i + k)^2$ et $\hat{u} = (p_i - k')^2$.

イロト イ押 トイラ トイラト

The cross section γ^* –parton

The cross section will be

$$
\hat{\sigma} = \frac{1}{2\hat{s}} \frac{1}{(2\pi)^2} \int \frac{d^3k'}{2\omega'} \frac{d^3p'_i}{2p'_i} \delta^{(4)}(k + p_i - k' - p'_i) | \mathcal{M} |_{ep_i}^2 \qquad (2)
$$

= $2 \frac{\alpha^2 q_i^2}{Q^4} \int \frac{d^3k'}{\omega'} \delta (2p_i.q-Q^2) \frac{\hat{s}^2 + \hat{u}^2}{\hat{s}}.$ (3)

ŧ

メロトメ 伊 トメ ミトメ ミト

The cross section γ^* –parton

The cross section will be

$$
\hat{\sigma} = \frac{1}{2\hat{s}} \frac{1}{(2\pi)^2} \int \frac{d^3k'}{2\omega'} \frac{d^3p'_i}{2p'_i} \delta^{(4)}(k + p_i - k' - p'_i) | \mathcal{M} |_{ep_i}^2 \qquad (2)
$$

= $2 \frac{\alpha^2 q_i^2}{Q^4} \int \frac{d^3k'}{\omega'} \delta (2p_i.q-Q^2) \frac{\hat{s}^2 + \hat{u}^2}{\hat{s}}.$ (3)

At the **partonic level**, the differential cross section will have the following form

$$
\frac{\omega'd\hat{\sigma}}{d^3k'}=2\,\frac{\alpha^2q_i^2}{Q^4}\,\frac{\hat{s}^2+\hat{u}^2}{\hat{s}}\,\delta(2p_i.q-Q^2). \hspace{1cm} (4)
$$

∢⊓ ⊧∢⊜ ⊧

 \rightarrow \equiv \rightarrow

The cross section γ^* –proton

The hadronic cross section : **incoherent sum** of the partonic cross sections

$$
\frac{\omega'd\sigma}{d^3k'}=\sum_i\int_0^1dy\,F_i(y)\,\frac{\omega'd\hat{\sigma}}{d^3k'}\bigg|_{p_i=yP},\qquad \qquad (5)
$$

 \hat{s} = *ys* et \hat{u} = *yu*, 2*p*_{*i*} · *q* = *y* 2*P* · *q*. The quantities *F*_{*i*}(*y*) are the **number of partons** of type *i* carrying a **4-momentum fraction** *y* of the proton one.

 Ω

The cross section γ^* –proton

The hadronic cross section : **incoherent sum** of the partonic cross sections

$$
\frac{\omega'd\sigma}{d^3k'}=\sum_i\int_0^1dy\,F_i(y)\,\frac{\omega'd\hat{\sigma}}{d^3k'}\bigg|_{p_i=yP},\qquad \qquad (5)
$$

 \hat{s} = *ys* et \hat{u} = *yu*, 2*p*_{*i*} · *q* = *y* 2*P* · *q*. The quantities *F*_{*i*}(*y*) are the **number of partons** of type *i* carrying a **4-momentum fraction** *y* of the proton one.

$$
\frac{\omega'd\sigma}{d^3k'} = \frac{\alpha^2}{s} \frac{s^2 + u^2}{Q^4} \sum_i e_i^2 \frac{x}{P.q} F_i(x) \tag{6}
$$

with $y = Q^2/2Pq = x$.

 Ω
Comparison

Comparing with the formula given the differential cross section electron–proton, one can identify

$$
\frac{W_2}{M}(x,\frac{M^2}{Q^2})=\sum_i q_i^2 \frac{x}{P.q}F_i(x)
$$
 (7)

∍

 298

イロメ イ母 トイラメ イラメ

Comparison

Comparing with the formula given the differential cross section electron–proton, one can identify

$$
\frac{W_2}{M}(x,\frac{M^2}{Q^2})=\sum_i q_i^2 \frac{x}{P.q}F_i(x)
$$
 (7)

which is equivalent to (in the laboratory frame $P.q = M\nu$)

$$
\frac{1}{x} \nu W_2(x, \frac{M^2}{Q^2}) = \sum_i e_i^2 F_i(x) \tag{8}
$$

 Ω

化重压 化重压

4 F + 4 F +

Comparison

Comparing with the formula given the differential cross section electron–proton, one can identify

$$
\frac{W_2}{M}(x,\frac{M^2}{Q^2})=\sum_i q_i^2 \frac{x}{P.q}F_i(x)
$$
 (7)

which is equivalent to (in the laboratory frame $P.q = M\nu$)

$$
\frac{1}{x} \nu W_2(x, \frac{M^2}{Q^2}) = \sum_i e_i^2 F_i(x)
$$
 (8)

and since there is no term in *Q*² in ^ω ′*d*σ $\frac{\partial^2 G}{\partial x^3}$ (see eq. (1)), we also recover

$$
2 M W_1(x, \frac{M^2}{Q^2}) = \frac{1}{x} \nu W_2(x). \tag{9}
$$

イロメ イ押メ イヨメ イヨメー

The parton model well reproduces the "scale invariance", that is to say $W_2(x, M^2/Q^2) = W_2(x)$

∍

 298

イロメ イ母 トイラメ イラメ

- The parton model well reproduces the "scale invariance", that is to say $W_2(x, M^2/Q^2) = W_2(x)$
- The variable $x = Q^2/2P$.*q* has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon

- The parton model well reproduces the "scale invariance", that is to say $W_2(x, M^2/Q^2) = W_2(x)$
- The variable $x = Q^2/2P$.*q* has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon
- ν W_2/x is the sum weighted by the squared charge q_i^2 , of the probabilities of finding a parton of type *i* being scattered by the photon with a *x* fixed.

つひつ

- The parton model well reproduces the "scale invariance", that is to say $W_2(x, M^2/Q^2) = W_2(x)$
- The variable $x = Q^2/2P$.*q* has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon
- ν W_2/x is the sum weighted by the squared charge q_i^2 , of the probabilities of finding a parton of type *i* being scattered by the photon with a *x* fixed.
- The relation 2 *M* $W_1(x) = \nu W_2(x)/x$ is a direct consequence of the fact that the partons interacting with the virtual photon has a spin 1/2.

イロメ イ押 トイラ トイラメー

- The parton model well reproduces the "scale invariance", that is to say $W_2(x, M^2/Q^2) = W_2(x)$
- The variable $x = Q^2/2P$ *g* has the following physical meaning : this is the normalised parton 4-momentum in the proton which scatters with the virtual photon
- ν W_2/x is the sum weighted by the squared charge q_i^2 , of the probabilities of finding a parton of type *i* being scattered by the photon with a *x* fixed.
- The relation 2 *M* $W_1(x) = \nu W_2(x)/x$ is a direct consequence of the fact that the partons interacting with the virtual photon has a spin 1/2.

Exercice : Show that for spin 0 partons (coupling to the γ given by $q_i\,(p_i+p'_i)^\mu)$ one has $W_1\equiv 0.$

≮ロ ▶ ⊀ 御 ▶ ⊀ 君 ▶ ⊀ 君 ▶

Feynman partons $\frac{?}{=}$ the Gell-Mann and Zweig quarks \Rightarrow

```
proton = (uud)
neutron = (udd).
```
This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks.

Feynman partons $\frac{?}{=}$ the Gell-Mann and Zweig quarks \Rightarrow

proton = (*uud*) neutron = (*udd*).

This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks. Using isospin symmetry

$$
F_d^p(x) = F_d^n(x) = u_v(x) F_d^p(x) = F_u^n(x) = d_v(x)
$$

つひつ

Feynman partons $\frac{2}{3}$ the Gell-Mann and Zweig quarks \Rightarrow

proton = (*uud*) neutron = (*udd*).

This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks. Using isospin symmetry

$$
F_d^p(x) = F_d^n(x) = u_v(x) F_d^p(x) = F_u^n(x) = d_v(x)
$$

The experimental results : proton and neutron more complex than this "3 quarks" model, they contain also antiquarks,... : **"sea" quarks** $u_m(x) = \bar{u}_m(x), d_m(x) = \bar{d}_m(x).$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

Feynman partons $\frac{2}{3}$ the Gell-Mann and Zweig quarks \Rightarrow

proton = (*uud*) neutron = (*udd*).

This is the **"valence" quarks** : $u_v(x)$ and $d_v(x)$. The nucleon quantum number are carried by the "valence" quarks. Using isospin symmetry

$$
F_d^p(x) = F_d^n(x) = u_v(x) F_d^p(x) = F_u^n(x) = d_v(x)
$$

The experimental results : proton and neutron more complex than this "3 quarks" model, they contain also antiquarks,... : **"sea" quarks** $u_m(x) = \bar{u}_m(x), d_m(x) = \bar{d}_m(x).$

The sum of the quantum number carried by this quarks is **zero**!

イロメ イ押 トイラ トイラメー

$$
u(x) = uv(x) + um(x)
$$

\n
$$
d(x) = dv(x) + dm(x).
$$

Neglecting the role of *s*, *c* and *b* quarks

$$
\frac{1}{x}\nu W_2^{ep} = \frac{4}{9}(u(x) + \bar{u}(x)) + \frac{1}{9}(d(x) + \bar{d}(x))
$$
\n
$$
\frac{1}{x}\nu W_2^{en} = \frac{1}{9}(u(x) + \bar{u}(x)) + \frac{4}{9}(d(x) + \bar{d}(x)).
$$
\n(10)

where $u_m = \bar{u}_m = \bar{u}$, $d_m = \bar{d}_m = \bar{d}$.

イロメ イ押 トイラ トイラメー

E

Experimental measurement on an target of deuterium $= p + n$

$$
\frac{1}{x}\nu W_2^{ep+en}=\frac{5}{9}\left(u(x)+\bar{u}(x)+d(x)+\bar{d}(x)\right)
$$

and thus to compute the integral

$$
\frac{9}{5} \int_0^1 dx \, \nu \, W_2^{ep+en} = \int_0^1 dx \, x \, \left(u(x) + \bar{u}(x) + d(x) + \bar{d}(x) \right)
$$

which measure the **total momentum** carried by all the quarks u, d, \bar{u} and \vec{d} , should be **equal to 1**!

$$
\langle x \rangle_{q+\bar{q}} \simeq 0.45 \neq 1. \tag{11}
$$

Experimental measurement on an target of deuterium $= p + n$

$$
\frac{1}{x}\nu W_2^{ep+en}=\frac{5}{9}\left(u(x)+\bar{u}(x)+d(x)+\bar{d}(x)\right)
$$

and thus to compute the integral

$$
\frac{9}{5} \int_0^1 dx \, \nu \, W_2^{ep+en} = \int_0^1 dx \, x \, \left(u(x) + \bar{u}(x) + d(x) + \bar{d}(x) \right)
$$

which measure the **total momentum** carried by all the quarks u, d, \bar{u} and *d*, should be **equal to 1**!

$$
\langle x \rangle_{q+\bar{q}} \simeq 0.45 \neq 1. \tag{11}
$$

The quarks carry half of the proton momentum, the other half is carried by **neutral partons**.

J.-Ph. Guillet (LAPTh) **COD Lectures** VSOP-30 33/37

• A hadron is **made of partons**, frame : infinite momentum frame

H = { p_i } *i* = 1,∞ $P = \sum_i \rho_i$ where P, p_i are resp. the hadron and partons 4-momenta.

 Ω

イロト イ押 トイラ トイラトー

• A hadron is **made of partons**, frame : infinite momentum frame

H = { p_i } *i* = 1,∞ $P = \sum_i \rho_i$ where P, p_i are resp. the hadron and partons 4-momenta.

All the masses (hadron and partons) are neglected

$$
p_i = x_i P \text{ avec } \sum_i x_i = 1.
$$

 Ω

イロト イ押 トイラ トイラトー

• A hadron is **made of partons**, frame : infinite momentum frame

H = { p_i } *i* = 1,∞ $P = \sum_i \rho_i$ where P, p_i are resp. the hadron and partons 4-momenta.

All the masses (hadron and partons) are neglected

$$
p_i = x_i P \text{ avec } \sum_i x_i = 1.
$$

Partons are **point like** and their interactions is **ignored** inside the hadron

イロト イ押 トイラ トイラト・ト

 $4.171.6$

The parton model: general formulation II

• **Interactions** between hadrons reduce to interactions between partons following the diagram

• **Interactions** between hadrons reduce to interactions between partons following the diagram

 $\hat{\sigma}_{ij}$ is the **"hard" cross section** describing the interactions between partons. The hadronic cross section is a **incoherent superposition** of partonic cross sections, the probabilities are added, not the amplitudes! Ω

We can the write

$$
\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).
$$

∍

 299

化重压 不重

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

We can the write

$$
\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).
$$

The function $F_j^H(x)$ is **partonic density**, \propto to the probability of finding in *H* a parton *i* carrying the fraction *x* of the 4-momentum . This function is **"scale invariant"**.

We can the write

$$
\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).
$$

The function $F_j^H(x)$ is **partonic density**, \propto to the probability of finding in *H* a parton *i* carrying the fraction *x* of the 4-momentum . This function is **"scale invariant"**. It contains the **"long distance"** effects (confinement) and its *x* dependence is not predict by the perturbative theory. The **"short distance"** effects are contained in the "hard" cross section $\hat{\sigma}_{ij}$.

We can the write

$$
\sigma^{H_1H_2} = \sum_{i,j} \int dx_1 dx_2 \ F_i^{H_1}(x_1) \ F_j^{H_2}(x_2) \ \alpha_s^p \ \hat{\sigma}_{ij}(x_1, x_2, s).
$$

The function $F_j^H(x)$ is **partonic density**, \propto to the probability of finding in *H* a parton *i* carrying the fraction *x* of the 4-momentum . This function is **"scale invariant"**. It contains the **"long distance"** effects (confinement) and its *x* dependence is not predict by the perturbative theory. The **"short distance"** effects are contained in the "hard" cross section $\hat{\sigma}_{ij}$.

• The parton model is a valid postulate when all the dimensional variables s, t, u are **large** compared to the proton mass ($\sim 1 \, \text{GeV}^2$).

イロメ イ押 トイラ トイラメー

The hadrons are not elementary particles. They can be classified following the representations of $SU(n)_{flavour}$ ($n =$ number of flavours = number of quarks (spin $1/2$ particles))

- The hadrons are not elementary particles. They can be classified following the representations of $SU(n)_{flavour}$ ($n =$ number of flavours = number of quarks (spin $1/2$ particles))
- These quarks have to carry a new quantum number : colour

- The hadrons are not elementary particles. They can be classified following the representations of $SU(n)_{flavour}$ ($n =$ number of flavours = number of quarks (spin 1/2 particles))
- These quarks have to carry a new quantum number : colour
- To describe the scale invariance (experimental fact), hadrons made of partons such that a probe (γ^*), with a large momentum transfer, interacts with them as if they were free

- The hadrons are not elementary particles. They can be classified following the representations of $SU(n)_{flavour}$ ($n =$ number of flavours = number of quarks (spin 1/2 particles))
- These quarks have to carry a new quantum number : colour
- To describe the scale invariance (experimental fact), hadrons made of partons such that a probe (γ^*), with a large momentum transfer, interacts with them as if they were free
- partons \in [quarks,...]

つひつ

- The hadrons are not elementary particles. They can be classified following the representations of $SU(n)_{flavour}$ ($n =$ number of flavours = number of quarks (spin 1/2 particles))
- These quarks have to carry a new quantum number : colour
- To describe the scale invariance (experimental fact), hadrons made of partons such that a probe (γ^*), with a large momentum transfer, interacts with them as if they were free
- partons \in [quarks,...]
- No information on the dynamics between partons