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Lecture III : Renormalisation

The problem

Computation of the second order in perturbation of a QCD process,

qi q̄i → qk q̄k

�

k

k-q
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UV divergences
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Lecture III : Renormalisation

UV divergences

�

k

k-q

a, µ
q

b, ν
q

k not fixed by the energy-momentum conservation at each vertex

P(1)
µν (q) ≃

∫
d4k

(2π)n
Tr

[

γµ
6k + m

(k2 − m2 + iλ)
γν

(6k − 6q) + m

((k − q)2 − m2 + iλ)

]
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Lecture III : Renormalisation

UV divergences

�

k

k-q

a, µ
q

b, ν
q

k not fixed by the energy-momentum conservation at each vertex

P(1)
µν (q) ≃

∫
d4k

(2π)n
Tr

[

γµ
6k + m

(k2 − m2 + iλ)
γν

(6k − 6q) + m

((k − q)2 − m2 + iλ)

]

k ∈ Minkowski space k2 = k2
0 − |~k |2 : "Wick rotation" Minkowski

space (k) → an Euclidean one (k̄ )

∫

d4k
kµ kν

k4
∼

∫
∞

0

d |k̄ | |k̄ | → ∞ UV divergence
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Lecture III : Renormalisation

Origin

What does that mean ?
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Origin

What does that mean ?

We are getting a contribution from intermediate states involving q q̄

pairs but the energy of these intermediate states is arbitrarily high!

We have no idea what the interaction of gluons with arbitrarily high

momentum quarks is.
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Lecture III : Renormalisation

Origin

What does that mean ?

We are getting a contribution from intermediate states involving q q̄

pairs but the energy of these intermediate states is arbitrarily high!

We have no idea what the interaction of gluons with arbitrarily high

momentum quarks is.

We made the assumption, at the very beginning, that the q − g

interaction is point-like (−i g T a γµ). But we cannot test at such high

energies that the interaction q − g is like that
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Firstly, give a meaning to the expression of P(1)
µν (q) by regularising the

integral.

- cut-off
∫ Λ

0
dk̄ f (k̄) = F (Λ) → breaks some symmetries of the

Lagrangian, not a good idea!
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Lecture III : Renormalisation

Regularisation

What can we do ?

Firstly, give a meaning to the expression of P(1)
µν (q) by regularising the

integral.

- cut-off
∫ Λ

0
dk̄ f (k̄) = F (Λ) → breaks some symmetries of the

Lagrangian, not a good idea!

- dimensional regularisation d4k → dnk , preserves Lorentz and

gauge symmetry

Back to our example:

∫
∞

0

|k̄ |n−1 d |k̄ | |k̄ |−2 =

[ |k̄ |n−2

n − 2

]∞

0

convergent for n < 2
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Lecture III : Renormalisation

Regularisation

Is it an isolated case?

J.-Ph. Guillet (LAPTh) QCD Lectures VSOP-30 7 / 37



Lecture III : Renormalisation

Regularisation

Is it an isolated case? No, other Green functions have UV

divergences :

�

∫

d4k
kµ kν

k6
→

∫
∞

0

d |k̄ |
|k̄ |

logarithmic UV divergence

∫
∞

0

d |k̄ | |k̄ |n−5 converge for n < 4
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Lecture III : Renormalisation

Regularisation

Is it an isolated case? No, other Green functions have UV

divergences :

�

∫

d4k
kµ kν

k6
→

∫
∞

0

d |k̄ |
|k̄ |

logarithmic UV divergence

∫
∞

0

d |k̄ | |k̄ |n−5 converge for n < 4

But how many Green functions diverge?
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Lecture III : Renormalisation Superficial degree of divergence

A Simple tool

ω(G) : superficial degree of divergence of a Feynman diagram G.
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Lecture III : Renormalisation Superficial degree of divergence

A Simple tool

ω(G) : superficial degree of divergence of a Feynman diagram G.

EF external fermions

EB external bosons

IF fermion propagators

IB boson propagators

ni number of vertices of type i , N =
∑

i ni the total number of

vertices. Some vertices may be derivative coupling di power of k

coming from the vertex i , for instance

�

di = 1

�

di = 0
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Lecture III : Renormalisation Superficial degree of divergence

A Simple tool

ω(G) : superficial degree of divergence of a Feynman diagram G.

EF external fermions

EB external bosons

IF fermion propagators

IB boson propagators

ni number of vertices of type i , N =
∑

i ni the total number of

vertices. Some vertices may be derivative coupling di power of k

coming from the vertex i , for instance

�

di = 1

�

di = 0

L the number of independent four-momenta (number of loops),

each term corresponds to k4 (d4k)
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Lecture III : Renormalisation Superficial degree of divergence

A Simple tool

ω(G) = 4 L − IF − 2 IB +
∑

i

ni di (1)
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A Simple tool

ω(G) = 4 L − IF − 2 IB +
∑

i

ni di (1)

This formula is not very handy!

L = IB + IF − (N − 1)

EF + 2 IF =
∑

i ni fi where fi is the number of fermions attached to

the vertex of type i
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Lecture III : Renormalisation Superficial degree of divergence

A Simple tool

ω(G) = 4 L − IF − 2 IB +
∑

i

ni di (1)

This formula is not very handy!

L = IB + IF − (N − 1)

EF + 2 IF =
∑

i ni fi where fi is the number of fermions attached to

the vertex of type i

EB + 2 IB =
∑

i ni bi where bi is the number of bosons attached to

the vertex of type i

ω(G) = 4 − EB − 3

2
EF +

∑

i

ni

(

bi + di +
3

2
fi − 4

)

(2)
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Lecture III : Renormalisation Superficial degree of divergence

A Simple tool

But if the vertex of type i originates from a term in the Lagrangian of

the type

gi ψ · · ·ψ
︸ ︷︷ ︸

fi

A · · ·A
︸ ︷︷ ︸

bi

∂ · · · ∂
︸ ︷︷ ︸

di
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A Simple tool

But if the vertex of type i originates from a term in the Lagrangian of

the type

gi ψ · · ·ψ
︸ ︷︷ ︸

fi

A · · ·A
︸ ︷︷ ︸

bi

∂ · · · ∂
︸ ︷︷ ︸

di

This term must have a dimension 4 as any element of the Lagrangian,

introducing [gi ] the dimension of the coupling constant gi we have then

that

[gi ] + bi + di +
3

2
fi = 4

because the A field has dimension 1 as the derivative ∂µ and the

dimension of the ψ field is 3/2.
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Lecture III : Renormalisation Superficial degree of divergence

A Simple tool

But if the vertex of type i originates from a term in the Lagrangian of

the type

gi ψ · · ·ψ
︸ ︷︷ ︸

fi

A · · ·A
︸ ︷︷ ︸

bi

∂ · · · ∂
︸ ︷︷ ︸

di

This term must have a dimension 4 as any element of the Lagrangian,

introducing [gi ] the dimension of the coupling constant gi we have then

that

[gi ] + bi + di +
3

2
fi = 4

because the A field has dimension 1 as the derivative ∂µ and the

dimension of the ψ field is 3/2. Thus, the superficial degree of

divergence can be written

ω(G) = 4 − EB − 3

2
EF −

∑

i

ni [gi ] (3)
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Lecture III : Renormalisation Superficial degree of divergence

Exercise

1)Rederive the formula for the superficial degree of divergence in a

space-time of dimensions n

2) Consider the following Lagrangian

L =
1

2
(∂µΦ(x)) (∂

µΦ(x))− m2

2
Φ2(x)− λ

4!
Φ4(x)

where Φ(x) is a scalar field. Determine for which value of n, this theory

is super renormalisable, renormalisable, non renormalisable.
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Lecture III : Renormalisation Superficial degree of divergence

QCD case

In the case of QCD, there is only one type of coupling constant whose

dimension is zero! But the ghosts must be included, thus

ω(G) = 4 − (EB + EG)−
3

2
EF (4)
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2
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w(G) < 0 convergent Green function

w(G) = 0 Green function with a logarithmic divergence
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QCD case

In the case of QCD, there is only one type of coupling constant whose

dimension is zero! But the ghosts must be included, thus

ω(G) = 4 − (EB + EG)−
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Lecture III : Renormalisation Superficial degree of divergence

QCD case

In the case of QCD, there is only one type of coupling constant whose

dimension is zero! But the ghosts must be included, thus

ω(G) = 4 − (EB + EG)−
3

2
EF (4)

w(G) < 0 convergent Green function

w(G) = 0 Green function with a logarithmic divergence

w(G) = 1 Green function with a linear divergence

w(G) = 2 Green function with a quadratic divergence

...
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Lecture III : Renormalisation Superficial degree of divergence

2-points, 3-points

�

ω(G) = 2

�

ω(G) = 1

�

ω(G) = 2

�

ω(G) = 1

�

ω(G) = 0

�

ω(G) = 1
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Lecture III : Renormalisation Superficial degree of divergence

4-points

�

ω(G) = 0

�

ω(G) = -1

�

ω(G) = -2

�

ω(G) = 0

 

ω(G) = 0

5-points and more : ω(G) < 0
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Lecture III : Renormalisation Superficial degree of divergence

Renormalisation

Finite number of Green functions which diverge (9).
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Renormalisation

Finite number of Green functions which diverge (9).

Due to the symmetries of the Lagrangian (Lorentz symmetry, gauge

symmetry), ωR(G) = 0 ∀ divergent Green functions : all the

divergences are of logarithmic types. These nine divergent Green

functions are not independent : the Slavnov-Taylor identities

(generalisation of Ward identities in QED), (originate from the BRST

symmetry).
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Lecture III : Renormalisation Superficial degree of divergence

Renormalisation

Finite number of Green functions which diverge (9).

Due to the symmetries of the Lagrangian (Lorentz symmetry, gauge

symmetry), ωR(G) = 0 ∀ divergent Green functions : all the

divergences are of logarithmic types. These nine divergent Green

functions are not independent : the Slavnov-Taylor identities

(generalisation of Ward identities in QED), (originate from the BRST

symmetry).

Number of divergent Green functions is finite ⇒ absorb them into a

redefinition of the parameters of the Lagrangian.
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Lecture III : Renormalisation Superficial degree of divergence

At quantum level, L(ψB ,AB , ηB ,mB,gB), bare parameters : not

physical (∞) ⇒ L expressed in terms of the renormalised parameters

ψB(x) = Z
1/2
2 ψ(x), Aa

B µ(x) = Z
1/2
3 Aa

µ(x), ηa
B(x) = Z̃

1/2
3 ηa(x),

mB =
Z0

Z2
m, gB =

Z1 F

Z2 Z
1/2
3

g′ =
Z1

Z
3/2
3

g′ =
Z̃1

Z̃3 Z
1/2
3

g′, ξB = Z3 ξ
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At quantum level, L(ψB ,AB , ηB ,mB,gB), bare parameters : not

physical (∞) ⇒ L expressed in terms of the renormalised parameters

ψB(x) = Z
1/2
2 ψ(x), Aa

B µ(x) = Z
1/2
3 Aa

µ(x), ηa
B(x) = Z̃

1/2
3 ηa(x),

mB =
Z0

Z2
m, gB =

Z1 F

Z2 Z
1/2
3

g′ =
Z1

Z
3/2
3

g′ =
Z̃1

Z̃3 Z
1/2
3

g′, ξB = Z3 ξ

All the couplings must be equal even the renormalised ones, a

consequence of the gauge invariance

Z1 F

Z2
=

Z1

Z3
=

Z̃1

Z̃3

This is what the Taylor-Slavnov identities tell us!

J.-Ph. Guillet (LAPTh) QCD Lectures VSOP-30 16 / 37



Lecture III : Renormalisation Superficial degree of divergence

At quantum level, L(ψB ,AB , ηB ,mB,gB), bare parameters : not

physical (∞) ⇒ L expressed in terms of the renormalised parameters

ψB(x) = Z
1/2
2 ψ(x), Aa

B µ(x) = Z
1/2
3 Aa

µ(x), ηa
B(x) = Z̃

1/2
3 ηa(x),

mB =
Z0

Z2
m, gB =

Z1 F

Z2 Z
1/2
3

g′ =
Z1

Z
3/2
3

g′ =
Z̃1

Z̃3 Z
1/2
3

g′, ξB = Z3 ξ

All the couplings must be equal even the renormalised ones, a

consequence of the gauge invariance

Z1 F

Z2
=

Z1

Z3
=

Z̃1

Z̃3

This is what the Taylor-Slavnov identities tell us! For matter of

convenience, we introduce

Zi = 1 + δZi , Z̃i = 1 + δ Z̃i
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Lecture III : Renormalisation Superficial degree of divergence

The Lagrangian can be expanded in terms of the δ Zi and δZ̃i

L(ψB ,AB, ηB ,mB ,gB) = L(ψ,A, η,m,g′) + δL(ψ,A, η,m,g′)
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The Lagrangian can be expanded in terms of the δ Zi and δZ̃i

L(ψB ,AB, ηB ,mB ,gB) = L(ψ,A, η,m,g′) + δL(ψ,A, η,m,g′)

The renormalisation procedure works order by order in the coupling

constant expansion, i. e. δZi =
∑

k g′2 k δZ
(k)
i .

Space time of dimensions n, the dimension (in term of energy) of the

coupling constant g′ is not zero!

[L] = 4 [g′] = 0 [m] = 1

[L] = n [g′] = 2 − n
2

[m] = 1

g′ → g µ2−n/2 with [g] = 0 and [µ] = 1

J.-Ph. Guillet (LAPTh) QCD Lectures VSOP-30 17 / 37



Lecture III : Renormalisation Superficial degree of divergence

The Lagrangian can be expanded in terms of the δ Zi and δZ̃i

L(ψB ,AB, ηB ,mB ,gB) = L(ψ,A, η,m,g′) + δL(ψ,A, η,m,g′)

The renormalisation procedure works order by order in the coupling

constant expansion, i. e. δZi =
∑

k g′2 k δZ
(k)
i .

Space time of dimensions n, the dimension (in term of energy) of the

coupling constant g′ is not zero!

[L] = 4 [g′] = 0 [m] = 1

[L] = n [g′] = 2 − n
2

[m] = 1

g′ → g µ2−n/2 with [g] = 0 and [µ] = 1

To absorb the change of [g′], a new energy scale µ is introduced.
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Lecture III : Renormalisation Superficial degree of divergence

Whatever the way we regularise, the renormalisation procedure makes

the appearance of an energy scale. The use of a cut-off Λ would

lead to

A ln

(
Λ

Q

)

+ B

where Q is typical energy scale and A and B are two coefficients

independent of Λ.
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A ln

(
Λ

Q

)
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where Q is typical energy scale and A and B are two coefficients

independent of Λ.

An arbitrary energy scale can be introduced in such a way that

A ln
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Λ

µ

)

+ A ln
( µ

Q

)

+ B

In the old textbooks on Quantum Field Theory, the scale µ is the scale

at which the UV divergences are subtracted.
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Lecture III : Renormalisation Superficial degree of divergence

Whatever the way we regularise, the renormalisation procedure makes

the appearance of an energy scale. The use of a cut-off Λ would

lead to

A ln

(
Λ

Q

)

+ B

where Q is typical energy scale and A and B are two coefficients

independent of Λ.

An arbitrary energy scale can be introduced in such a way that

A ln

(
Λ

µ

)

+ A ln
( µ

Q

)

+ B

In the old textbooks on Quantum Field Theory, the scale µ is the scale

at which the UV divergences are subtracted.

In addition, with the logarithmic dependence on the regulator, one can

also absorb some finite terms (even not logarithmic), this defines the

renormalisation scheme.
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Lecture III : Renormalisation A specific example

One loop corrections to the gluon propagator

!

k

k-q

a, µ
q

b, ν
q

"

k

a, µ
q

b, ν
q

#

k

k-q

a, µ
q

b, ν
q

$

k

k-q

a, µ
q

b, ν
q
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Lecture III : Renormalisation A specific example

Results (Feynman gauge ξ = 1)

P
(1) gg
µν (q) =

1

ε
N δab K (ε)

[

q2 gµν

(

19

12
+

29 ε

9

)

− qµ qν

(

11

6
+

67 ε

18

)]

P
(1) ggg
µν (q) = 0

P
(1) GG
µν (q) =

1

ε
N δab K (ε)

[

q2 gµν

(

1

12
+

2 ε

9

)

− qµ qν

(

−
1

6
−

5 ε

18

)]

P
(1) qq
µν (q) = −

1

ε
TF δab K (ε)

[

q2 gµ ν

(

4

3
+

20 ε

9

)

− qµ qν

(

4

3
+

20 ε

9

)]
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Lecture III : Renormalisation A specific example

Results (Feynman gauge ξ = 1)

P
(1) gg
µν (q) =

1

ε
N δab K (ε)

[

q2 gµν

(

19

12
+

29 ε

9

)

− qµ qν

(

11

6
+

67 ε

18

)]

P
(1) ggg
µν (q) = 0

P
(1) GG
µν (q) =

1

ε
N δab K (ε)

[

q2 gµν

(

1

12
+

2 ε

9

)

− qµ qν

(

−
1

6
−

5 ε

18

)]

P
(1) qq
µν (q) = −

1

ε
TF δab K (ε)

[

q2 gµ ν

(

4

3
+

20 ε

9

)

− qµ qν

(

4

3
+

20 ε

9

)]

K (ε) ≃ 1 + ε

(

ln(4π)− γ + ln

(
µ2

−q2 − i λ

))

+ O(ε2) and TF =
NF

2

with γ is the Euler constant : γ = 0.5772 · · ·and ε = (4 − n)/2.
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Lecture III : Renormalisation A specific example

More results

P the sum of four contributions

P(1)
µν (q) = P(1) gg

µν (q) + P(1) ggg
µν (q) + P(1)GG

µν (q) + P(1) qq
µν (q)

The ghost contribution is necessary in order that P(1)
µν (q) is

transverse : qµ P(1)
µν (q) = qν P(1)

µν (q) = 0 as required by Slavnov-Taylor

identities. Note that P(1)
µν (q) is not the gluon propagator, it can be

shown that

D−1
µν = D−1

µν − i P(1)
µν (5)

where D is the exact propagator (one loop in our case) and D the free

propagator.
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Lecture III : Renormalisation A specific example

Counter term

%

a,µ b,ν
q

− i δZ
(1)
3 δab

(

q2 gµν − qµqν
)

iP(1) tot
µν,ab = i P(1)

µν,ab − i δZ
(1)
3 δab

(

q2 gµν − qµqν
)
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Lecture III : Renormalisation A specific example

Counter term

&

a,µ b,ν
q

− i δZ
(1)
3 δab

(

q2 gµν − qµqν
)

iP(1) tot
µν,ab = i P(1)

µν,ab − i δZ
(1)
3 δab

(

q2 gµν − qµqν
)

In the MS scheme and the Feynman gauge (ξ = 1)

δZ
(1)
3 =

αs

4π

(
1

ε
+ ln(4π)− γ

) (
5

3
N − 4

3
TF

)
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Lecture III : Renormalisation A specific example

Other counter terms

Let us compute also the counter term associated to the quark wave

function

'

i j +

(

i j

δZ2 = − αs

4π
CF

(
1

ε
+ ln(4π)− γ

)
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Lecture III : Renormalisation A specific example

as well as the counter term associated to the vertex quark – gluon

)

a, µ

i j

+

*

a, µ

i j

+

+

a, µ

i j

δZ1 F = − αs

4π
(CF + N)

(
1

ε
+ ln(4π)− γ

)
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Lecture III : Renormalisation The running coupling constant

The renormalised αs

Relation between the bare αs B and the renormalised one αs

αs B = αs µ
2 ε Z 2

1 F

Z 2
2 Z3

≡ αs µ
2 ε Zα
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Lecture III : Renormalisation The running coupling constant

The renormalised αs

Relation between the bare αs B and the renormalised one αs

αs B = αs µ
2 ε Z 2

1 F

Z 2
2 Z3

≡ αs µ
2 ε Zα

Zα ≃ 1 + 2 δZ1 F − 2 δZ2 − δZ3 + O(α2
s)

= 1 − αs

4π

[
11

3
N − 2 NF

3

] (
1

ε
+ ln(4π)− γ

)
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Lecture III : Renormalisation The running coupling constant

The renormalised αs

Relation between the bare αs B and the renormalised one αs

αs B = αs µ
2 ε Z 2

1 F

Z 2
2 Z3

≡ αs µ
2 ε Zα

Zα ≃ 1 + 2 δZ1 F − 2 δZ2 − δZ3 + O(α2
s)

= 1 − αs

4π

[
11

3
N − 2 NF

3

] (
1

ε
+ ln(4π)− γ

)

αs B does not depend on µ

µ2 dαs B

dµ2
= 0
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Lecture III : Renormalisation The running coupling constant

ξ dependence

For simplicity reason, we choose the Feynman gauge to present the

different results. Letting the xi parameter free, the results for the

counter terms would have been

δZ
(1)
3 =

αs

4π

(
1

ε
+ ln(4π)− γ

) (

N

[
13

6
− ξ

2

]

− TF
4

3

)

δZ
(1)
2 = − αs

(4π)
CF ξ

[
1

ε
− γ + ln(4π)

]

δZ F
1 = − αs

4π

(
1

ε
+ ln(4π)− γ

) (

CF ξ + N

[
3

4
+
ξ

4

])
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Lecture III : Renormalisation The running coupling constant

ξ dependence

For simplicity reason, we choose the Feynman gauge to present the

different results. Letting the xi parameter free, the results for the

counter terms would have been

δZ
(1)
3 =

αs

4π

(
1

ε
+ ln(4π)− γ

) (

N

[
13

6
− ξ

2

]

− TF
4

3

)

δZ
(1)
2 = − αs

(4π)
CF ξ

[
1

ε
− γ + ln(4π)

]

δZ F
1 = − αs

4π

(
1

ε
+ ln(4π)− γ

) (

CF ξ + N

[
3

4
+
ξ

4

])

It is easy to verify that the ξ dependence drops out in Zα, This is

expected because Zα is related to a physical quantity.

J.-Ph. Guillet (LAPTh) QCD Lectures VSOP-30 26 / 37



Lecture III : Renormalisation The running coupling constant

αs must depend on µ

µ2 d

dµ2

(

αs µ
2 ε Zα

)

= 0

β(αs)

[

Zα + αs
dZα

dαs

]

+ εαs Zα = 0 with β(αs) = µ2 dαs

dµ2

that is to say

β(αs) = −εαs − α2
s κ(ε)

(
11 N − 2 NF

12π

)

with κ(ε) = 1 + ε ln(4π)− ε γ.
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Lecture III : Renormalisation The running coupling constant

αs must depend on µ

µ2 d

dµ2

(

αs µ
2 ε Zα

)

= 0

β(αs)

[

Zα + αs
dZα

dαs

]

+ εαs Zα = 0 with β(αs) = µ2 dαs

dµ2

that is to say

β(αs) = −εαs − α2
s κ(ε)

(
11 N − 2 NF

12π

)

with κ(ε) = 1 + ε ln(4π)− ε γ. β(αs) is not singular when ε→ 0, limit

ε→ 0,

β(αs) = −α2
s b0 with b0 =

11 N − 2 NF

12π
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Lecture III : Renormalisation The running coupling constant

The µ dependence of αs

Solve the differential equation with initial condition

d αs(t)

dt
= β(αs(t)) with t = ln(µ2/µ2

0)
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Lecture III : Renormalisation The running coupling constant

The µ dependence of αs

Solve the differential equation with initial condition

d αs(t)

dt
= β(αs(t)) with t = ln(µ2/µ2

0)

The β function can be computed at any order in αs

β(αs(t)) = −b0 αs(t)
2 (1 + b1 αs(t) + · · · )

J.-Ph. Guillet (LAPTh) QCD Lectures VSOP-30 28 / 37



Lecture III : Renormalisation The running coupling constant

The µ dependence of αs

Solve the differential equation with initial condition

d αs(t)

dt
= β(αs(t)) with t = ln(µ2/µ2

0)

The β function can be computed at any order in αs

β(αs(t)) = −b0 αs(t)
2 (1 + b1 αs(t) + · · · )

An example of the renormalisation group equations (RGE)

t =

∫ αs(t)

αs(0)

dx

β(x)

Keeping only the first term

αs(t) =
αs(0)

1 + b0 t αs(0)
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Lecture III : Renormalisation The running coupling constant

Discussions

b0 > 0 if NF ≤ 16 → d αs(t)/dt ≤ 0. So αs(t) ց when t ր

asymptotic freedom
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Discussions
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asymptotic freedom
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an electric charge is screened by

the virtual ± charge in the vacuum
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Lecture III : Renormalisation The running coupling constant

Discussions

b0 > 0 if NF ≤ 16 → d αs(t)/dt ≤ 0. So αs(t) ց when t ր

asymptotic freedom

In QED, b0 < 0 screening effect :

an electric charge is screened by

the virtual ± charge in the vacuum

In QCD, b0 > 0 anti-screening ef-

fect : an colour charge is screened

by the virtual q q̄ but anti-screened

by the g in the vacuum
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Lecture III : Renormalisation The running coupling constant

The parameter Λ

A parameter Λ is defined such that:

ln

(
µ2

Λ2

)

= −
∫ αs(µ2)

∞

dx

β(x)
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Lecture III : Renormalisation The running coupling constant

The parameter Λ

A parameter Λ is defined such that:

ln

(
µ2

Λ2

)

= −
∫ αs(µ2)

∞

dx

β(x)

Taking the first term of the β function, one gets

αs(µ
2) =

1

b0 ln
(
µ2

Λ2

) ⇒ µ2 = Λ2 αs(Λ
2) = ∞

Λ : a scale which separate perturbative and non perturbative regime

(Λ depends on the renormalisation scheme)
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Lecture III : Renormalisation The running coupling constant

Plot of αs(µ)

[GeV]µ

-1
10 1 10

2
10

3
10

4
10

)
2

µ(
s

α

-2
10

-1
10

1

10

2
10

Λ
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Lecture III : Renormalisation The running coupling constant

αs Measurement

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)
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Lecture III : Renormalisation Choice of the scale µ

The ration R

The ratio R

R(µ2) ≡ σ(e+ e− → hadrons)

σ(e+ e− → µ+ µ−)
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Lecture III : Renormalisation Choice of the scale µ

The ration R

The ratio R

R(µ2) ≡ σ(e+ e− → hadrons)

σ(e+ e− → µ+ µ−)

At lowest order, R(µ2) = RB = N
∑

i q2
i .

R̄(µ2) =
R(µ2)− RB

RB
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Lecture III : Renormalisation Choice of the scale µ

The ration R

The ratio R

R(µ2) ≡ σ(e+ e− → hadrons)

σ(e+ e− → µ+ µ−)

At lowest order, R(µ2) = RB = N
∑

i q2
i .

R̄(µ2) =
R(µ2)− RB

RB

At one loop

R̄(µ2) =
αs(µ

2)

π
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Lecture III : Renormalisation Choice of the scale µ

How to choose this scale µ?

The only scale is the available energy in the centre of mass frame

e+ e− :
√

S.

R̄(S) =
αs(S)

π
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Lecture III : Renormalisation Choice of the scale µ

How to choose this scale µ?

The only scale is the available energy in the centre of mass frame

e+ e− :
√

S. For another choice µ

R̄(S) =
αs(S)

π
=
αs(µ

2)

π

[

1 − αs(µ
2)b0 t + α2

s(µ
2) (b0 t)2 + · · ·

]

with t = ln(S/µ2).
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Lecture III : Renormalisation Choice of the scale µ

How to choose this scale µ?

The only scale is the available energy in the centre of mass frame

e+ e− :
√

S. For another choice µ

R̄(S) =
αs(S)

π
=
αs(µ

2)

π

[

1 − αs(µ
2)b0 t + α2

s(µ
2) (b0 t)2 + · · ·

]

with t = ln(S/µ2).

R̄(S)− R̄(µ2) = O(α2
s(µ

2))

A good choice for the scale µ ≃
√

S, more precisely "≃" means that

αs(µ
2) ln(S/µ2) ≪ 1.

The variation of the scale µ around
√

S gives an error band for the

theoretical prediction.
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Lecture III : Renormalisation Choice of the scale µ

Remarks

The formula, we got, for αs(µ
2) is called at Leading Logarithmic (LL)

accuracy.

R̄(S) = R̄(µ2)
∞∑

n=0

an (αs(µ
2) t)n

J.-Ph. Guillet (LAPTh) QCD Lectures VSOP-30 35 / 37



Lecture III : Renormalisation Choice of the scale µ

Remarks

The formula, we got, for αs(µ
2) is called at Leading Logarithmic (LL)

accuracy.

R̄(S) = R̄(µ2)
∞∑

n=0

an (αs(µ
2) t)n

Including, the expression of the β function at two loop in the differential

equation which drives the µ dependence of αs(µ
2),

R̄(S) = R̄(µ2)

∞∑

n=0

[an (αs(µ
2) t)n + bn αs(µ

2)n tn−1]

Next to Leading Logarithmic (NLL) accuracy.
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Lecture III : Renormalisation Choice of the scale µ

What we learnt in lecture III

The loop calculation may generate UV divergences (when the

4-momentum running in the loop goes to infinity)
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Lecture III : Renormalisation Choice of the scale µ

What we learnt in lecture III

The loop calculation may generate UV divergences (when the

4-momentum running in the loop goes to infinity)

In the QCD case, the number of divergent Green functions is finite

(because [g] = 0 in four-dimension space time)

Due to the symmetries of the Lagrangian, all the divergences are

logarithmic

Renormalisation procedure : express the "bare" parameters of the

Lagrangian in terms of the renormalised (physical) one plus some

counter terms. These latter are adjusted to cancel the UV

divergences. Work order by order in perturbation.
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Lecture III : Renormalisation Choice of the scale µ

What we learnt in lecture III

The loop calculation may generate UV divergences (when the

4-momentum running in the loop goes to infinity)

In the QCD case, the number of divergent Green functions is finite

(because [g] = 0 in four-dimension space time)

Due to the symmetries of the Lagrangian, all the divergences are

logarithmic

Renormalisation procedure : express the "bare" parameters of the

Lagrangian in terms of the renormalised (physical) one plus some

counter terms. These latter are adjusted to cancel the UV

divergences. Work order by order in perturbation.

As the outcome of renormalisation, an arbitrary energy scale

appears. The renormalised parameters depend on it.
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Lecture III : Renormalisation Choice of the scale µ

What we learnt in lecture III

The independence of measurable quantities on this scale yields

sets of differential equations which drive the dependence of these

renormalised parameters on this scale
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