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Overview (Exp)
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Slides for today inspired by 
Sourabh Dube (VSOP-28 2022)

Morning Afternoon

Tuesday 16th Lecture 1 
LHC Data Analysis

Exercise 1 

Wednesday 17th Lecture 2
LHC Statistics

Exercise 2

Thursday 18th Lecture 3
LHC Statistics

Friday 19th Exercise 3 (&4)



Our understanding of matter

3Nicholas Wardle

~10-10m ~10-14m

< ~10-15mPhysical Size 



Our understanding of matter

4Nicholas Wardle

~10-10m ~10-14m

< ~10-15mPhysical Size 

Energy (density)

Probing finer structure requires higher energy densities → Particle Collisions probe fine structure of Nature 

de Broglie relationship 
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The Large Hadron Collider at CERN is a fundamental physics experiment!

  - 27 km in circumference
  - 100m underground
  - Accelerates protons to 99.9999991% x speed of light
  - Proton circles 11,245 times per second!
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The LHC

At center-of-mass energies of 13.6 TeV, proton collisions 
probe physics around the time of the big-bang!



Proton Collisions
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Unlike electron-positron colliders, proton collisions are messy but can 
probe a huge range of energies simultaneously! F. Betchel 

Fraction of proton momentum carried

https://www.researchgate.net/figure/Sketch-of-a-proton-proton-collision-at-high-energies-hard-process-top-hard-process_fig5_254469235


Open questions in Particle Physics

• Is the Higgs sector SM-like ? 

• What is Dark Matter (DM)? 

• Why is there more matter than anti-
matter? 

• …
W

M
A

P
 

• What is the 
fundamental nature 
of neutrinos?

• What is (or is there) 
a quantum 
description of 
gravity?
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https://wmap.gsfc.nasa.gov/universe/uni_matter.html


Data analyses 
at the LHC
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Compact Muon Solenoid 
(CMS)

Compact Muon Solenoid 
(CMS)

A Toroidal LHC ApparatuS 
(ATLAS)

A Toroidal LHC ApparatuS 
(ATLAS)

ATLAS and CMS are the two 
General Purpose Detectors at 
the LHC 

LHCb optimized for flavour 
physics and ALICE optimized 
for Heavy Ion collisions

Each is designed to detect the 
products that are produced in 
the proton-proton collisions

Extremely large-scale 
machines are required to 
reconstruct the microscopic 
events  
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A Large Ion Collider Experiment
(ALICE)

A Large Ion Collider Experiment
(ALICE)

Large Hadron Collider beauty
(LHCb)

Large Hadron Collider beauty
(LHCb)
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Co-ordinate system
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Co-ordinate system chosen around design 
of detector & collision system  

p

p

x

y

Typically deal with transverse projections as in this 
plane the incoming momentum is zero! 
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Different elements of the detector 
designed to identify and reconstruct 
different stable particles that are 
produced

 

|η| < 2.4



Forming Tracks
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B

p p

Charged particles travelling through silicon 
track layers (pixels/strips) will create 
electrons / hole pairs 
→ Electrons drift where charge can be 
read-out 
→ Localized “hits” in the tracker layer 

r

r



Forming Tracks
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B

F = qv x B

p p

Tracking algorithm combines hits along 
path → track is formed!

• Radius of curvature → momentum
• Charge ID from direction of bending 
• Angles of trajectory wrt beamline 
• Impact parameters (offset wrt 

interaction point)

r



Calorimetery
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Calorimeter layers are designed to absorb 
particle energy: E.g electron bremsstrahlung in 
ECAL / pair production produces showers which 
evolve through calorimeter material

Electromagnetic Calorimeter 
(ECAL) designed to stop 
electrons/photons 

Hadronic Calorimeter (HCAL) 
designed to stop hadrons 

X0 2X0 3X0 

Different materials have 
different radiation lengths (X0)



Calorimetery
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Remember that different components of our detector will respond differently to different particles

Track

ECAL

HCAL

Muon 
Chamber

Electron (e) 

Photon (γ) 

Electrons and photons can be identified 
by deposits of energy in the ECAL 
without NO deposits in the HCAL



“Super clustering” 
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Electrons bend in the presence of a magnetic field B 
→ Radiation from acceleration of charged particle 
→ Photons must be included in reconstruction of electrons to 

maintain a good energy measurement

B r

r
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Tracks

ECAL/HCAL deposits
(→ superclusters)

Muon chamber hits

In each collision, the detector components measure energy deposits forming hits / tracks
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Remember that different components of our detector will respond differently to different particles

Track

ECAL

HCAL

Muon 
Chamber

Electron (e) 
Charged Hadron (π+, p) 

Muon (μ) Neutral Hadron (ρ, n) Photon (γ) 

Calorimeters



Jet Clustering
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Coloured particles (quarks & gluons) produced in proton collisions do not reach the detector 
components 

→ Part of the production energy/momentum is used to produce additional quark/antiquark pairs –
which then form hadrons. It is the hadrons that exist/escape from the collision and can be detected

p p

q/g trajectory

Hadron 

How can we determine energy & momentum 
of the original coloured particle?

ca
lo

rim
e

te
r



Jet Clustering
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Coloured particles (quarks & gluons) produced in proton collisions do not reach the detector 
components 

→ Part of the production energy/momentum is used to produce additional quark/antiquark pairs –
which then form hadrons. It is the hadrons that exist/escape from the collision and can be detected

p p

q/g trajectory

Hadron 

Clustering collects particles* with original 
quark/gluon into single four-vector using 
energy-momentum conservation!

*or tracks/energy deposits …



b/c-jet 
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Identifying which particle initiated each jet requires 
lots of combined information about the 
constituents of the jet and the vertices it contains

We use sophisticated machine learning 
methods to perform this task 



Tau-leptons
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Most modern τ-ID strategies use machine learning to identify the decay mode and reconstruct the τ four-momentum 

τ decay mode probabilities

τ leptons have very short lifetime → they decay into leptons or hadronically 
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Jets & taus (τ)

Physics objects are formed by clustering certain tracks & energy deposits

Muons (μ)

Electrons (e) & Photons (γ)

Heavy particles (H, W, Z, t) must be reconstructed from decay products



Missing momentum
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Neutrinos do not interact with any component of the 
detector 

We infer the presence of neutrinos through an 
imbalance of momentum in the transverse plane 
→ missing transverse momentum 
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Standard Candles
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μ+

μ- 
Z, J/ψ,ϒ 

e+

e- 
Z, J/ψ,ϒ 

l+

l- Z

γ

Large source of clean 
events with a well 
described mass peak 

Z, J/ψ and ϒ decays in data provide standard candles to 
calibrate energy/momentum measurements



Relative corrections
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More complicated objects (eg jets) require several stages of correction → Use previously 
calibrated objects to calibrate jet momentum! 

μ/e

μ/e

Z

jet

γ

jet
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Collecting events
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Each event that we select this way 
builds a picture of the underlying 
physics → if we’re lucky, we might find 
something new 

To extract the Physics, we use 
distributions of observables across 
many events



Collecting events
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Each event that we select this way 
builds a picture of the underlying 
physics → if we’re lucky, we might find 
something new 

To extract the Physics, we use 
distributions of observables across 
many events

γ

γ

Η



Collecting events
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Collisions (i.e. bunch crossings) happen at 40 MHz 

Integrated luminosity (units of 1/area)

Number of events

Linst ~ 1034 cm-2 s-1



Collecting events
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We typically have to select events based on these observables 
to dig out the signal from the background (noise!)

Example: For every 1,000,000,000 inelastic proton-proton 
collisions, only expect one of them to produce a Higgs boson!

Collisions (i.e. bunch crossings) happen at 40 MHz 

Cross-section (units of area)

Integrated luminosity (units of 1/area)

Number of events

1 barn = 10-28 m2 



Event Selection
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By knowing ahead of time the kind of events we are 
interested in, we impose selections on the events to 
reduce the background as much as possible while 
maintaining the signal

.
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BDT Output
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We often use Machine Learning techniques to combine 
as much information as possible for this task 

How can we choose these selections/train our Machine Learning models?
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Simulation 
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Generate large number of simulated events for each process 
contributing to our analysis (signals and backgrounds)

L =

Simulated events must be weighted to the get the correct 
predicted yield for a given dataset 

ν

ν

Z ν

Lost 
μ/e/τ

W

Χ

Χ

H

pT
miss
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Missing transverse 
momentum

jet

jet

ν

ν

Z

Data-driven background
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μ

μ

Z

Data-driven background

Estimate the normalization of the 
Z→neutrinos background using data!
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Huge computing power 
required to acquire and 
analyse LHC data

Huge computing power 
required to acquire and 
analyse LHC data



Online Selection of events “Trigger” determines which events to keep in around 4 micro-seconds! 



Huge collaborations of 
people required for Data 
Analysis at the LHC

Huge collaborations of 
people required for Data 
Analysis at the LHC



Now it’s your turn!
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This afternoon, we are going to have a go at doing a data analysis with some real CMS proton-proton collision data!

If you haven’t already done so, please go through the 
“Getting started” section before this afternoon’s session!

All of the instructions for getting setup and the exercises are 
available here: 
https://nucleosynthesis.github.io/LHCDataStatisticsICISE2024/ 

This afternoon, we will be 
working through Exercise 1

You will also see links to the lecture slides 
(password VSOPLHC2024)

https://nucleosynthesis.github.io/LHCDataStatisticsICISE2024/


(Extra Slide) Data Tiers
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RAW data output from experiments is too large for direct analysis 
 e.g 2018 data from CMS O(10) PB at RAW data level 
→ Reduce content through processing at different data tiers to make 

analysis manageable
→ Less information but content is closer to final analysis objects 
      (hits → particles) 
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