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Our understanding of matter
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Our understanding of matter

Matter

Forces
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de Broglie relationship
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Probing finer structure requires higher energy densities = Particle Collisions probe fine structure of Nature
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The Large Hadron Collider at CERN is a fundamental physics experiment!

-27 km in circumference
-100m underground At center-of-mass energies of 13.6 TeV, proton collisions

- Accelerates protons t0 99.9999991% x speed of light probe physics around the time of the big-bang!
- Proton circles 11,245 times per second!
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Proton Collisions

Unlike electron-positron colliders, proton collisions are messy but can

probe a huge range of energies simultaneously!
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https://www.researchgate.net/figure/Sketch-of-a-proton-proton-collision-at-high-energies-hard-process-top-hard-process_fig5_254469235

Open questions in Particle Physics

* Is the Higgs sector SM-like ?

* What is Dark Matter (DM)?

* Why is there more matter than anti-
matter?

e  Whatisthe
fundamental nature

of neutrinos? Atoms Dark A
4.6% ar : |
' Energy ,
* Whatis (or is there) Dark 71.4%
a quantum Matter
. 24% = \
description of <
gravity? © , E
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https://wmap.gsfc.nasa.gov/universe/uni_matter.html
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ATLAS and CMS are the two
General Purpose Detectors at
the LHC

LHCb optimized for flavour
physics and ALICE optimized
for Heavy lon collisions

Each is designed to detect the
products that are produced in
the proton-proton collisions

Extremely large-scale
machines are required to
reconstruct the microscopic
events
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Event Selections
Calibrations &

Distributions




Co-ordinate system

Co-ordinate system chosen around design
of detector & collision system

\ center of \

the LHC

Typically deal with transverse projections as in this
plane the incoming momentumis zero! \/

v
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Different elements of the detector
designed to identify and reconstruct
different stable particles that are

produced
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The CMS Detector
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Forming Tracks

®B

Charged particles travelling through silicon
track layers (pixels/strips) will create
electrons / hole pairs

—> Electrons drift where charge can be
read-out

—> Localized “hits” in the tracker layer

1
!
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Forming Tracks

Tracking algorithm combines hits along
path = track is formed!

' * Radius of curvature > momentum
B  Charge ID from direction of bending
® / * Angles of trajectory wrt beamline
* Impact parameters (offset wrt
7 interaction point)

F=qvxB
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Calorimetery

PbWO0, CMS, X(=0.89 cm Calorimeter layers are designed to absorb

e ¢ particle energy: E.g electron bremsstrahlung in
ECAL / pair production produces showers which
evolve through calorimeter material
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Calorimetery

Remember that different components of our detector will respond differently to different particles

Electron (e) — Track
SNy Electrons and photons can be identified @ ECAL
T~ by deposits of energy in the ECAL
T without NO deposits in the HCAL (—f) HCAL
~
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“Super clustering”

Electrons bend in the presence of a magnetic field B \ kil
—> Radiation from acceleration of charged particle B L .
—> Photons must be included in reconstruction of electrons to @ 3

maintain a good energy measurement
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In each collision, the detector components measure energy deposits forming hits / tracks

( n < CMS Experiment at the LHC, CERN
§ Data recorded: 2012-Aug-09 22:43:53.319400 GMT

Run / Event / LS: 200600 / 200821634 / 125

Tracks

ECAL/ deposits
(= )
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Calorimeters

Remember that different components of our detector will respond differently to different particles

— Track

6 ECAL

Charged Hadron (1%, p)

Electron (e)
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Jet Clustering

Coloured particles (quarks & gluons) produced in proton collisions do not reach the detector
components

—> Part of the production energy/momentum is used to produce additional quark/antiquark pairs -
which then form hadrons. It is the hadrons that exist/escape from the collision and can be detected

---» q/g trajectory

—> Hadron

J912WlLio|ed

Ky

How can we determine energy & momentum
of the original coloured particle?
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Jet Clustering

Coloured particles (quarks & gluons) produced in proton collisions do not reach the detector
components

—> Part of the production energy/momentum is used to produce additional quark/antiquark pairs -
which then form hadrons. It is the hadrons that exist/escape from the collision and can be detected

Initial Combine the 2 particles Continue iteratively combining particles (at each step
particles with smallest dj combine the protojets with smallest djj)
---» q/g trajectory * °*® e T - e < e
° o @ Qe @
o © ° ° °
—> Hadron e ® . o0 .0 .= % L% .
- . . . . L
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Clustering collects particles* with original |
. . . 1 , 11
quark/gluon into single four-vector using st - e . . dij = 255 (B0, + A¢%,) - min (p%g)
energy-momentum conservation! ® ® ®
o ~-0_~0 -
[ @ ®
*or tracks/energy deposits ... > _’d”' t> pr; Found 4 4 jets, each with N
n clustsezﬁg jets constituents
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b/c-jet

|dentifying which particle initiated each jet requires

lots of combined information about the

constituents of the jet and the vertices it contains

——3 tracks

b jet

—————— b hadron
—————— impact
parameter
secondary
vertex
light jet B

‘ 70 - primary vertex
‘ightjet

We use sophisticated machine learning
methods to perform this task

mis-id rate
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Tau-leptons

T leptons have very short lifetime = they decay into leptons or hadronically

+

™ 5 pErtrty,

T decay mode probabilities

17.4% 17.8%

2.7% A

9.0% 10.8%

1.5%

9.3% 25.5%

Most modern t-ID strategies use machine learning to identify the decay mode and reconstruct the t four-momentum

Nicholas Wardle
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Physics objects are formed by clustering certain tracks & energy deposits

AS CMS Experiment at the LHC, CERN
"N Data recorded: 2012-Aug-09 22:43:53.319400 GMT
La= | Run/Event/LS: 200600 / 200821634 / 125

Electrons (e) & Photons (y)

X Heavy particles (H, W, Z, t) must be reconstructed from decay products
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Missing momentum

do not interact with any component of the
detector

We infer the presence of neutrinos through an

imbalance of momentum in the transverse plane
—> missing transverse momentum

Nicholas Wardle




Reconstruction
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Standard Candles

lul+

Z, JJ\,Y H

Z, J\,Y €

Z, JJ and Y decays in data provide standard candles to
calibrate energy/momentum measurements

4 4x106 41.5 o (13 TeV) 2017
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Relative corrections

More complicated objects (eg jets) require several stages of correction = Use previously
calibrated objects to calibrate jet momentum!

Run 2 Legacy, 138 fb™ (13 TeV

~ I I T L |l I ] I T TTT I I
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Collecting events

3500+ Each event that we select this way
builds a picture of the underlying
3000 - physics = if we’re lucky, we might find
something new
2500 -
To extract the Physics, we use
b _ distributions of observables across
= 2000
i many events
]
L
1500 -
1000 -
500 -
I::I -w y skl " y w y q q
10 110 120 130 140 150 160 170 180

Myy (GeV)
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Collecting events

3500 Signal
Background Each event that we select this way
¢ Data builds a picture of the underlying
3000 1 physics = if we’re lucky, we might find
something new
2500 y
-------------------- To extract the Physics, we use

2 4 distributions of observables across
c 20001
0 many events
L

1500 -

1000 -

500 ~

O T T T T T T T
100 110 120 130 140 150 160 170 180
m,, GeV




Collecting events

Collisions (i.e. bunch crossings) happen at 40 MHz

N1 Ny

Integrated luminosity (units of 1/area) = [ ¢- ——
4705 4

: fnbdt

\ _
N L O_ CMS 2010, 7 TeV, 45.0 pb™
/

2011,7 TeV, 6.1 fo~! Linet ~ 1034 cm2 s
2012, 8 TeV, 23.3 fo™
2015, 13 TeV, 4.3 fo™
2016, 13 TeV, 41.6 fb™
2017, 13 TeV, 49.8 fb™"
2018, 13 TeV, 67.9 fb™

o
o

60| )
2022 13.6 TeV, 41.5 fb"
Number of events 2023 13.6 TeV. 31.9 fb3
2024 13.6 TeV. 40.0
40

Total integrated luminosity (fo™)

\Y X Q‘
& \N\"ﬁ R N = N e O IR S
Date (UTC)
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Collecting events

Collisions (i.e. bunch crossings) happen at 40 MHz

N1 N
Integrated luminosity (units of 1/farea) = [ c- # - frpdt
\
Number of events \

Cross-section (units of area)
Example: For every 1,000,000,000 inelastic proton-proton
collisions, only expect one of them to produce a Higgs boson!

We typically have to select events based on these observables
to dig out the signal from the background (noise!)

Nicholas Wardle
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Event Selection

By knowing ahead of time the kind of events we are
interested in, we impose selections on the events to
reduce the background as much as possible while
maintaining the signal
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Event Selection

We often use Machine Learning techniques to combine Events

as much information as possible for this task
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How can we choose these selections/train our Machine Learning models?
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RESULTS




X

Simulation /
: / - X
Generate large number of simulated events for each process H/ MW" " L= 1
contributing to our analysis (signals and backgrounds) A —— I@ — |2|.:3]fP] l(“l? .T.e|vl_)
v . 30 CMS ¢ Data —
’ S b VBFjets Z(vv)iets :
-V )V Pr | % 25 Il W(—tv)+ets E
> - i
K . % Tl 20F Y E
w/eft : QCD multijet .
15 Top quark =
n — H, B(H > inv)=100% ]
Simulated events must be weighted to the get the correct 1 0:_ %JV B
predicted yield for a given dataset ) .l _
9 % ]
N L i
L gen . o 0

Leg = w) weight = 7 4 45 5 55 6 65 7

? eff A j,)
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Data-driven background

Nicholas Wardle

Missing transverse
momentum




Data-driven background

o
W
Estimate the normalization of the B(7 — vy
Z->neutrinos background using datal! NZ(_W,/) ~ NZ(—>,LL,LL) BEZ - ; A(,u)e(,u)
o
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A 'J“‘ o Pt "‘§ few 1000 events/second
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Now it’s your turn!

This afternoon, we are going to have a go at doing a data analysis with some real CMS proton-proton collision data!

All of the instructions for getting setup and the exercises are
available here:

n  LHCDataStatisticsICISE2024

https://nucleosynthesis.github.io/LHCDataStatisticsICISE202

You will also see links to the lecture slides

Home

(password VSOPLHC2024)

Exercises

If you haven’t already done so, please go through the
“Getting started” section before this afternoon’s session!

This afternoon, we will be
working through Exercise 1

Nicholas Wardle

Getting Started

To complete these exercises, we will be using two container images, with the software installed
for you. In the examples here, we will use Docker to run the images. The Docker desktop is
available for mac, windows and linux so follow the link and download the right installation for
your personal laptop. You should start by downloading the Docker desktop for your laptop (click
here and follow the instructions). You will need to setup an account to do so.

Once you have the Docker desktop installed, make sure it is running and download the two
containers that we'll need for the exercises using the terminal commands below. Note that the
Docker desktop has its own terminal if you prefer to use that. If you are using a linux machine, be
sure that you allow all users to access the Docker deamon otherwise you will need to add sudo
to the start of your docker run commands. Below is what the Docker desktop looks like for

Mac, where you can see which containers are running.

A s
otk 5 aQ wm e
N oo
Nany mage  Ste P PU(N)  Last: Acsame
Aumning o e '
o oTm .
| o vm .
] 5 o '
uning s 00 1day .
= v .
dcer - o e il s
Soming & Hems
ouns D |

Q, Search

Table of contents

Python environment for CMS
Open Data datasets

Combine package for statistical
analysis

Jupyter Notebooks
Notebooks
Terminal
CSVfiles

Moving files around
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https://nucleosynthesis.github.io/LHCDataStatisticsICISE2024/

(Extra Slide) Data Tiers

RAW data output from experiments is too large for direct analysis
e.g 2018 data from CMS O(10) PB at RAW data level
—> Reduce content through processing at different data tiers to make
analysis manageable PNG 600x330
—> Less information but content is closer to final analysis objects
(hits = particles)

AOD 450kb/ev

430Kb

"

Analysis Model CMS

PNG 200x110

~ AOD Mini ‘

nano

ﬂ J < F

Final Analysis Ntuples/Histograms

MiniAOD 50kb/ev

PNG 25x14
1.2Kb (~300bytes header)

NanoAOD 1-2kb/ev
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Ratio to SM Sons B (Tb)

(Extra Slide) A Real CMS analysis selection flow
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