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Statistical Analysis at the LHC

In particle physics,

1. Physical laws (and the observations we make) are probabilistic in

nature due to quantum mechanics
The way we perform experiments (e.g collider experiments) means

that events are statistically independent

\ l
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- ideal scenario for applied statistics!
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Probability

We all have an intuitive sense of what probability means. The mathematics developed in 1933 by
Kolmogorov treats probability as something which satisfies three axioms, and therefore no specific
definition is given. The Kolmogorov axioms are,

o P(X;) >0 foralli
o P(X;or X;)=P(X;)+ P(X;) ifXandX are exclusive

° ZQ P(X;) =1,

Where P(X,) are probabilities that events/outcomes X; occur and Q is the set of all possible outcomes
- E.G. when rolling an unbiased 6-sided die, Q={1, 2, 3, 4, 5, 6}




Frequentist probability

Frequentist (or classical) probability is the
definition that you are most likely familiar
with.

As the name suggests, this definition of
probability is related to the frequency with
which an event (say the roll of a die) occurs
in repeated trials.

The number of times n that an event X
occurs in N trials yields the probability as N
gets |aroa

N
P(X) = || =
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Bayesian Probability

Bayesians think differently about the interpretation of probability.

If | asked you what you think the probability it will rain
tomorrow is, answering that you’d need to repeat “tomorrow”
to give me a frequency is not very helpful! ¢

¢
Bayesians avoid this by interpreting probability in terms of a O @ Py _
degree of belief something will occur. ¢ ¢

In these lectures, I’ll avoid discussing Bayes’ vs Frequentist
interpretation of probability too much = usually for particle physicists
we choose the one which is most useful for a given analysis
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Bayes Rule

The probability that two events A and B occur is given by

P(A and B) = P(A|B)P(B) = P(B|A)P(A)

Probability that A occurs
given that B has occurred

Rearranging gives us Bayes’ rule! A&B

P(BJA)P(A) o
P(B)

P(AIB) =
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Probability Distributions

For a sequence of events X1, X2, X3..., we will often use vector notation X. Note however that X can
also refer to a repeated set of experiments and each experiment will have a single observation

The corresponding probabilities P(X)Q over all possible values of X € Q form a probability

distribution. As an example, if X is the outcome of a single die roll, then Q = {X =1, X=2,X=3,X=

4,X = 5} and P(X) =1/6 for every possible value of X, meaning the

probability distribution is uniform.

A single event (roll) can be then thought of a random
draw from such a probability distribution, and successive
rolls of the die will yield a distribution of values whose
frequency converges to a uniform distribution (U). We will
write thisas X ~ U(1, 6)
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Most important Probability distributions

We’ll take a look at a few common probability distributions (they’re common at least to me
but let me know if any of them sound completely off-topic)

Binomial Distribution
> Discrete random variables

Poisson Distribution

Gaussian Distribution } Continuous random variables




Binomial Distribution

The binomial distribution describes the distribution of the number of successes (k) in a
sequence of nindependent trials, where the probability of success in any trial is p.

More generally, any sequence of experiments, each of which results in a yes/no, 1/o0 or

other binary result with probabilities p and g = (1 - p) assigned to each outcome will be
described by the binomial distribution,

Observed number of successes k )

]

/CfI(@ =, phq" "

T (n) _ n!
Distribution f Parameters of “model” (n, p) k) kl(n—k)!

Nicholas Wardle 12



Binomial Distribution

Probability distribution Cumulative distribution
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Poisson Distribution

The Poisson distribution is a limit case of the binomial distribution where n — oo,
and p — 0 such that the product A = np is constant.

proton - (anti)proton cross sections

10° ErT

In particle physics, this is a very common _
distribution since it models processes that are Tevatron  LHC
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Poisson Distribution

Probability distribution Cumulative distribution
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Gaussian Distribution

The Gaussian (or Normal) distribution is the most common probability distribution

used in statistics. There is a good reason for this but for now, just to refresh our
memories about the Gaussian distribution.

If a continuous random variable X is distributed as a Normal distribution then,

1 (X—u,)2
. =
f(X;u, o)= e 2\ ©

O\ 2T




Gaussian Distribution

Probability distribution Cumulative distribution
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X2 distribution

The 2 distribution is related to the normal distribution. If T~ ¢(T; 0, 1) then X = T2 will be
distributed as a x*(1) - “chi-square” distribution with 1 degree of freedom, X
2

f(X;1)= e

0.5
1.4

0.4 - 1.2 /

0.3

f(X)
f(X?)

0.2 1

0.1

0.0 -
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X2 distribution
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Multi-variate distributions

The multivariate Gaussian probability density can be written as,

1
1 — = (X=pw)" (V1) (X—p)

NN

f(X;w V)=

Where X = (X1,X5,Xs,...,Xn) is @ vector of random variables (not to be confused with a sequence of random outcomes of
X), and Vis a N x N symmetric matrix of co-variances Vi= covariance(X,X;).

In the special case where 1 oo [~ 1 (x —MX)Q . (y— uy)z 2 (x—ux) (y—#y)
N =2, we can write FXY b by, 0, 0. 0) = 2maxay /1 — p? 2(1-p%) Ox oy

=2
ﬁxz 7 Multivariate distributions quickly
gY —1.22 become complicated and difficult to
GX_ ' estimate (more about this later)
y =
p =0.57
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Moments

Probability density distributions can be used to obtain useful information about a particular random variable, or
functions of random variables. For example, the mean value of a random variable X (or its expectation value under f
(X)) is given by,

0.6

Small variance

E[X] = /Q XF(X)dX

0.5 1
Large variance
0.4 1

Similarly, any function of X, g(X) has an expectation value E[g] under f (X) of

0.3 1

Elg] = fQ g(X)F(X)dX

0.1 1

0.0

The expectationiis alinear operator —> El[a-g(X)+b-h(Y)] =a-E[g(X)]+ b- E[h(Y)] —° =75 -50 -23 0;0 25 50 75 100

The expectation value (mean) is often referred to as the first moment of the distribution of X, but of course we can

define higher moments too. For example, the expectation of the function g(X) = (X - E[X])?is called the variance* of X

under f (X),

V(X) = E[(X — EIX])*] = /(X — E[X])*f(X)dX
Q

With the properties V(X + a) = V(X) and V(aX) = a®°V(X) for aconstant value a

Nicholas Wardle 21



Moments

Moments of probability distributions are not the same as sample moments. For a finite sample of a random variable, it is always
possible to determine sample moments (unlike in the case of some probability densities) = they are a property of the specific data

set.

N
1
For a sequence of arandom variable (X,, X,, ..., Xy ) of size N, we can define the n-th sample moment as, mp, = o Z X/
’.

You'll be familiar with the 1st such
moment, which is the sample mean,

- 1
mq =X = EZX,‘,

and the second central moment,
which is the sample variance,

N
- 1 -
V==>%"(X,—- X3
nEJ_( )
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Moments

Probability distribution E|] Var|]
f(k: n, p) = (Z) pkqr* np np(1l — p)
F(k; \) = %e—k k vk
F(Xip0) = — ol s d
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The Central Limit Theorem

In certain limiting cases, distributions of random variables can be well approximated by other
(often more convenient) distributions.

E.G...
Binomial Poisson Normal
p—0 A — oo
N — oo
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The Central Limit Theorem

In certain limiting cases, distributions of random variables can be well approximated by other
(often more convenient) distributions.

E.G...
Binomial Poisson Normal
p—0 A — oo
N — oo

Theorem: Suppose we have a sequence of independent random variables X;, each from a distribution with
mean W', and variance v',. Define,

[— N .
- XN — Z,-Zl A Then for T = limn—«Tn, we have that T ~ ¢(T;0,1) 2 Tn
- ZN . converges in distribution to a standard normal distribution
LV
=12

T
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The Central Limit Theorem

o Example: a Galton board with N layers
l The change in position after each layer X, can be

6 6 6" 8,2 E 000 _ thought of as a uniform random variable X; ¢ [—1,1]

@ @ O O @ /. @ O o @ @ O -

Q)

@ @ @ @ @ @] @ @ @ o] @] @ < . 1

O @ O @ @ \. @ @ @] @ @ O g Deﬁne: PN = XZ'

/ VN Zz
@ @ @ @ @ /. @ @ @ o O @
o

0 Position
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The Central Limit Theorem
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Since E[X] = 0, Var[X] = 1

PN — gb(ovl)

From CLT

Example: a Galton board with N layers

The change in position after each layer X, can be
thought of as a uniform random variable X; € [—1, 1]

1
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Statistical Inference

N. Smith

Probability

Data fluctuate according
to process randomness

X v POE|0)

Inference

Model uncertainty due to

fluctuations of the data sample

P@|xs.)72

Nicholas Wardle
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Estimators

So far, we only talked about probability distributions = Where does the data come in?

Typically, we want to learn something about our model using the data = estimators is the first thing we can use
the data for

An estimator () for a quantity (9 is a function
of the observed data. Data

Q usually a parameter of a model
@ is a property of a specific set of
observations = its value depends on the

data observed and it is itself a random :, R R . °i .3.;'30 o
variable il‘ ‘V“V > °o.:° N .
~f ‘~. e e

There are many different estimators, but we will

focus on the most common one used at the LHC
- the maximum likelihood estimator




Likelihoods

The likelihood is a function of the model parameters 0 at a fixed value for the data X

The likelihood function is proportional to the probability density P [ (9) X P(X | 9) _

Example: For the Poisson distribution, let’s suppose we observe the number of events k=2

0.25 A
0.20 A
= 0.15 A
0.10 -

0.05 A

0.00 A




Likelihoods

The likelihood is a function of the model parameters 0 at a fixed value for the data X

The likelihood function is proportional to the probability density P [ (9) X P(X | 9) _

Example: For the Poisson distribution, let’s suppose we observe the number of events k=2

0.25 1 5 4
Often easier to work with ¢ = —log(L)

0.20 A

—~ 0.15 4
S
0.10 A

0.05 A

0.00 A
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Maximum likelihood estimator

Maximum likelihood estimators (MLE) are given by the values of 8 for which

Maximum likelihood €= Minimum -ve log likelihood

aq‘ _ 0
06 '7=?
Example: For the Poisson distribution q — )\ — k In )\ — lﬂ(k')

dg _, _F
A




Numerical minimization (Gradient Descent)

iminuit

We use many different computational tools for finding the MLE. Many of
these different tools use a common algorithm -> gradient descent

Tk
86,
0q
89

V(q)le

init

Oq
- 60” - ozeim’t

Iterative process

Or = 0inis — kX h x V(q)|g

\ V(9)le.. J

Stop when [V(g)le = \/(%)2 + <%>2+...+<;i)2 <e

zmt
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Numerical minimization (Gradient Descent)

We typically use numerical minimization algorithms since often calculating these analytically is not
possible = there’s lots of these tools available for you to use in common HEP software

Example: For the Poisson distribution with k =2

q=A—kln\—In(k!

Simple gradient descent
algorithm finds same

analytic solution \\M

—InL(A)




Properties of MLE

MLEs have very nice properties, which is why they are common in LHC analyses

1. Maximum likelihood estimators are invariant under bijective transformations of variables

fx(X)

|g9'(X)

Since the likelihood is equal to the probability density for a
random variable, the maximum of it (or minimum of its log)
will not change when multiplying (adding) by a constant!

Nicholas Wardle



Properties of MLE

MLEs have very nice properties, which is why they are common in LHC analyses

1. Maximum likelihood estimators are invariant under bijective transformations of variables

fx(X)

|g9'(X)

Since the likelihood is equal to the probability density for a
random variable, the maximum of it (or minimum of its log)
will not change when multiplying (adding) by a constant!

2. Relationships between parameter estimates are preserved

A
Suppose 0 is the maximum likelihood estimate for 6 and a = g(0) is some function of 6, then

the maximum likelihood estimator of a willbe, & = g(é)

This is obvious since oL dg

oL
0 = %b:é =

oL

—_— f T — / A S
oo del"‘:"‘ oo (@la=a = la=a =0

oo
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Properties of MLE

MLEs have very nice properties, which is why they are common in LHC analyses

1. Maximum likelihood estimators are invariant under bijective transformations of variables

Since the likelihood is equal to the probability density for a
random variable, the maximum of it (or minimum of its log)
will not change when multiplying (adding) by a constant!

fx(X)

2. Relationships between parameter estimates are preserved

A
Suppose 0 is the maximum likelihood estimate for 6 and a = g(0) is some function of 6, then
the maximum likelihood estimator of a willbe, & = g(é)

This is obvious since 8l oL dg aL ol
0= 25le=6 = 5, gglo=a = 55,9 (Mla=a = 7_la=a =0

3. MLEs are consistent estimators i.e the value of the estimator converges to the true value as
more data are included (n — )

N
P(l6,—06| >€¢) -0 foranye>o




Variance of the Poisson estimator

From the 3" property, we know that the variance of the MLE* converges to zero ask — oo

A

Example, Poisson random variable \ A 1

1
Var X = ﬁVar(k) — ﬁ — X

0.5

Which means for larger samples, this will decrease to zero

0.4 M
A histogram is an estimate of a probability density > \
S
\
The density in each bin is better estimated as the number 0.2 \

of observations in each bin gets large!

0.1 i

L/

o

* Generally, the law of large numbers tells us thisis true for other estimators too




(Co)variance of Gaussian estimators

If we had a random variable that was distributed as a Gaussian with 8 ~ (6, o), we
would find that that the twice the negative log-likelihood would be,

2 (q(H) - (J(é)) — —2(In(¢(8, ) — In(¢(8, 0))) = —2 (_; (¥

But if instead we Taylor expand —0
. a 1 .
2 (40)4(0)) =2 (4 0~ 0)+ 300~ 07?)
We must have 1 — 4 QA
52 q (0)

So the variance can be estimated from the
second derivative of g!




(Co)variance of Gaussian estimators

If we had a random variable that was distributed as a Gaussian with 8 ~ (6, o), we
would find that that the twice the negative log-likelihood would be,

2 (q(9) - Q(é)) = —2(In(¢(8,0)) = In(¢(8,0))) = -2 | —5 (—

But if instead we Taylor expand

2 (4(6) - a(0)) =2 (40)- 0~ 0) + 5
1 "
We must have ? — q”(g)

So the variance can be estimated from the
second derivative of g!




Combined likelihoods

Our data at the LHC is much richer than a single Poisson random variable

(Example from K. Cranmer)

Detector Shower Parton-level Theory
Observables : : .
Interactions splittings momenta parameters
T < Zq *—— Zg *—— Zy —— )

G

pal0) = [dza [az, [az plolza)  pladz)  plal) O p(ml0)

Evaluating this integral is essentially impossible = reduce the dataset x = x’ and use simulation to estimate p(x’|6)

Nicholas Wardle
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Combined likelihoods

For N independent observations X = {X;,Xa,...,Xn}, the likelihood function is,

L(6) =[] fi(xi:0).

where fiare the p.d.f for each observation X;

Nicholas Wardle
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Combined likelihoods

For N independent observations X = {X;,Xa,...,Xn}, the likelihood function is,

L(6) := | | fi(xi:6),

B wjets
where fiare the p.d.f for each observation X: 100004 = single_top_tw
single _top_t chan
Bl single atop t chan
A histogram can be treated as a set of N 8000 - m tthar
independent Poisson random variables where } data(2.26 fb71)

N = number of bins! 9

\ ki £ 6000

. M= i
filki Ai) = e

k;! 4000
At the LHC, we split the contributions into signal (S)
and backgrounds (B) 2000
And L = L(r)is a function of the signal strength > 100 200 300 400 500

Mpjj (GeV)
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Confidence Intervals

An estimator is only part of making a measurement at the LHC = we also report uncertainties. In frequentist
statistics, we use the concept of a confidence interval

A confidence interval (or region) is a set of parameter values § € (I)(l—a)
at a specified confidence level 100 x (1-)

The confidence region at a confidence level 100 x (1-a) is a
region which is constructed such that the true values of the
true parameters 6, is contained in the region with a
probability (1-a)

Example: a 68% confidence interval in 6 will contain the true
value B,in 68% of the outcomes in data

Nicholas Wardle

44



Confidence Intervals

The Neyman construction of frequentist intervals is an elegant way to
achieve intervals with exactly that property

L (9) . Note the extra
= 9 — 9 factor of 2 now
L@ ~ 9~ a0

We use the ratio of likelihoods C@ = —2|In

Let’s look at what this looks like for our Poisson random variable wheren = 4

f(nm )= A—Te_)‘
n: Thisis large when
¢ =a(x) = g(X) = =2(In(X) = X) + 2(In(n) + n) A=A >>0

~

Remember the MLE for A is given by 0 = A=n

dq,
dx =2
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Confidence Intervals

Look at the distribution of {; when A=2

_

Go=a(N) = a(X) = =2(n(A) = A) +2(In(n) + n)

1.0 -

From this distribution, we can calculate
the value of 68
Go

Defined as

+00
/ F(Cud=2)dr = 1 — 0.68

68
2

Finally, we include this value in our

interval if obs 68
5 < (o

0.8 1

0.6 1

0.4 -

0.2 1

v

obs
2

68
2

0.0

10 12
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Confidence Intervals

Repeating this for other values of A
allows us to build the 68% confidence
interval for A

We include any value of
A for which
obs

b 68 G
< (Y

f(

14 -

12 -

10 -

< 8-

N

=

e e W w =
S S el e m -
= ey o=t m e —

B g e S
|| =-===-_ -E-:__-— _-:—_
e T e e S
gy W= e ™
- : --__= _ —— _____-_
- | --=== ™ -__—_ — -
= = T g _—__-_=—______—_
e == . me e =l
B i
R T
i el i =
o e T e o=
e e ol
e —_— = =
—— _—____: ——— T - =
Ty el et
68% interval | - =" T =-C"_
 —— ——_____—=_ =
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101

1072
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Wilks’ theorem

Wilks’ theorem tells us that the

1=
>
I
—
~
~

distribution of () is a N (1)

L e e s g =
for large n (in this case for large A) s e e o m ™
y y PEES e i
R e
12- e
10 e e e
S gty — -
~ 81 e e e
— e e e L EED T -
obs 61 e o e e T T
A —___:'——_ E_:——_ _:_-— - -
bs 68 4 e ol
O < C - -__:_: -— _ _ T== _-:'_- -
A — A - :: _ = = -_____'-:-- _ - E
68 2

68 Ca
A\ Wilks’ approximation

*the proof of this uses the central limit theorem

-10°

101

1072
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Wilks’ theorem

1.2 — x3(1)
— X3(2)

In general, Wilks’ theorem gives us the result for any number of degrees of — X

1.0 ¥2(4)

freedom. — X

— X6

— X347
— x%(8)

The result is that for a log-likelihood difference with n parameters 61, 0, ..., On, the = So;
test statistic Ce...0.will be distributed under H(6;, ..., Bn) (the null hypothesis) as,

f(Coy...0,|H(O1, ..., 0,)) = X (Coy....0,: 1)

0.0 2.5 5.0 7.5 100 12,5 150 175 20.0
X

Read offvalues forwhereto 1 KENE NN NN PR FE

apply threshold for different 68.3% 1.00 2.30 3.53 4.72 5.89
confidence intervals, for 95.5% 4.02 6.20 8.05 9.74 11.34

different number of parameters
99.74% 9.07 11.90 14.24 16.34 18.29
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Coverage

Frequentists care about the coverage of confidence intervals = check the fraction of intervals that contain the
true value of A (A,) for different values of A,

We can check for our Poisson case using

Full frequentist construction slow but
only over covers
Nobs — v/ Mobs < A < Nobs + 1/ Nobs
Variance onn
Very fast but can seriously undercover

Coverage

—&— Neyman
0.2 - —e— Simple
—o— Wilks

Use Wilks’ theorem - somewhere in
between the others

T T T T T T T

0 2 4 6 8 10 12
True value - A
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Uncertainties @ the LHC

When we see a plot like this...
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Uncertainties @ the LHC

When we see a plot like this...

And we know that the error bars are derived
from the region for which C%b; <1
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We knowthe points represent the
Maximum Likelihood estimates

Tomorrow, we’ll see what the
dashed vs solid lines means
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Now it’s your turn!

In this afternoon’s exercises, you will use the histograms that you produced yesterday and calculate the MLE
for the signal strength for the tt process — in HEP we call this “fitting” to the data

For this exercise, you will be using the software package W wjets
. . . . e ] B single top tw
Combine, thatis used in almost every CMS statistical 10000 9 e ok
Bl single_top t chan
anaIySIs Bl single atop t chan
8000 1 mm ttbar
. . . } data(2.26 fb71)
Make sure you have obtained the cms combine container
- w
£ 6000 1
Exercise 2 - Maximum Likelihood Fits >
From yesterday's exercise, we now have a set of histograms, from data and simulation, in our 4000 -
.csv file. Don't worry if you didn't manage to run over all of the samples from yesterday, you can
use the pre-prepared file ttbarAnalysis/exerciselsolutions/signalregion_mbjj.csv.
In today's exercises, we're going to use the CMS statistics software tool combine to extract 2000 -
statistical results from the data (and simulation) that we processed yesterday. combine is a
software package that is designed with a command line interface that uses simple .txt files as
inputs. You can find out lots more about the tool at the online documentation pages here.
We'll begin by starting the container that has combine compiled for us. If you didn't download the 0 300
container already, go back to the Getting started pages before continuing.
m bjj { GeV }
To do this, type the following into a terminal on your laptop (or by clicking the play button next to
the cms_combine container in the Docker desktop application and using the terminal there).
Bash Don’t worry if you didn’t complete the previous exercise, all of the solutions can
docker start -i cms_combine befoundin ttbarAnalysis/exerciselsolutions
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