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→ ideal scenario for applied statistics!

In particle physics, 

1. Physical laws (and the observations we make) are probabilistic in 
nature due to quantum  mechanics

2. The way we perform experiments (e.g collider experiments) means 
that events are statistically independent 

Ψ =
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→ ideal scenario for applied statistics!

In particle physics, 

1. Physical laws (and the observations we make) are probabilistic in 
nature due to quantum  mechanics

2. The way we perform experiments (e.g collider experiments) means 
that events are statistically independent 

Ψ ~ + +…
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What does a plot like this

or this

actually tell us, and how are they made?



Probability
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We all have an intuitive sense of what probability means. The mathematics developed in 1933 by 
Kolmogorov treats probability as something which satisfies three axioms, and therefore no specific 
definition is given. The Kolmogorov axioms are, 

 

if Xi and Xj are exclusive

Where P(Xi) are probabilities that events/outcomes Xi  occur and Ω is the set of all possible outcomes  
→ E.G. when rolling an unbiased 6-sided die, Ω={1, 2, 3, 4, 5, 6}



Frequentist probability 
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Frequentist (or classical) probability is the 
definition that you are most likely familiar 
with. 

As the name suggests, this definition of 
probability is related to the frequency with 
which an event (say the roll of a die) occurs 
in repeated trials.

The number of times n that an event X 
occurs in N trials yields the probability as N 
gets large

1/6
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Bayesians think differently about the interpretation of probability. 

In these lectures, I’ll avoid discussing Bayes’ vs Frequentist 
interpretation of probability too much → usually for particle physicists 
we choose the one which is most useful for a given analysis

If I asked you what you think the probability it will rain 
tomorrow is, answering that you’d need to repeat “tomorrow” 
to give me a frequency is not very helpful! 

Bayesians avoid this by interpreting probability in terms of a 
degree of belief something will occur.



Bayes Rule
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The probability that two events A and B occur is given by 

Probability that A occurs 
given that B has occurred

A BA&B

Ω

Rearranging gives us Bayes’ rule!
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For a sequence of events X1, X2, X3..., we will often use vector notation X. Note however that X can 
also refer to a repeated set of experiments and each experiment will have a single observation 

The corresponding probabilities P(X)Ω over all possible values of X ∈ Ω form a probability 
distribution. As an example, if X is the outcome of a single die roll, then Ω = {X = 1, X = 2,X = 3,X = 
4,X = 5} and P(X) =1/6 for every possible value of X, meaning the 
probability distribution is uniform. 

A single event (roll) can be then thought of a random 
draw from such a probability distribution, and successive 
rolls of the die will yield a distribution of values whose 
frequency converges to a uniform distribution (U). We will 
write this as X ∼ U(1, 6) 



Most important Probability distributions
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We’ll take a look at a few common probability distributions (they’re common at least to me 
but let me know if any of them sound completely off-topic)

Discrete random variables 

Continuous random variables 

Binomial Distribution 

Poisson Distribution 

Gaussian Distribution 
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The binomial distribution describes the distribution of the number of successes (k) in a 
sequence of n independent trials, where the probability of success in any trial is p. 

More generally, any sequence of experiments, each of which results in a yes/no, 1/0 or 
other binary result with probabilities p and q = (1 − p) assigned to each outcome will be 
described by the binomial distribution, 

Distribution f

Observed number of successes k

Parameters of “model” (n, p) 
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Binomial Distribution

Cumulative distributionProbability distribution



Poisson Distribution

14Nicholas Wardle

The Poisson distribution is a limit case of the binomial distribution where n → ∞, 
and p → 0 such that the product λ = np is constant. 

In particle physics, this is a very common 
distribution since it models processes that are 
rare (p → 0) in data sets that are very large 
(n → ∞).



Poisson Distribution
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Cumulative distributionProbability distribution
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16Nicholas Wardle

The Gaussian (or Normal) distribution is the most common probability distribution 
used in statistics. There is a good reason for this but for now, just to refresh our 
memories about the Gaussian distribution.

If a continuous random variable X is distributed as a Normal distribution then,



Gaussian Distribution
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Cumulative distributionProbability distribution



χ2 distribution
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The χ2 distribution is related to the normal distribution. If T ∼ φ(T; 0, 1) then X = T2 will be 
distributed as a χ2(1)  - “chi-square” distribution with 1 degree of freedom,
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χ2 distribution
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The multivariate Gaussian probability density can be written as, 

Where X = (X1,X2,X3,...,XN) is a vector of random variables (not to be confused with a sequence of random outcomes of 
X), and V is a N × N symmetric matrix of co-variances Vij = covariance(Xi,Xj). 

In the special case where 
N = 2, we can write 

μX = 2
μY = 7
σX = 1.22
σY = 1
ρ   = 0.57

Multivariate distributions quickly 
become complicated and difficult to 
estimate (more about this later)



Moments 
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Probability density distributions can be used to obtain useful information about a particular random variable, or 
functions of random variables. For example, the mean value of a random variable X (or its expectation value under f 
(X) ) is given by, 

Similarly, any function of X, g(X) has an expectation value E[g] under f (X) of 

The expectation is a linear operator 

The expectation value (mean) is often referred to as the first moment of the distribution of X, but of course we can 
define higher moments too. For example, the expectation of the function g(X) = (X − E[X])2 is called the variance* of X 
under f (X), 

With the properties for a constant value a

Small variance

Large variance
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Moments of probability distributions are not the same as sample moments. For a finite sample of a random variable, it is always 
possible to determine sample moments (unlike in the case of some probability densities) → they are a property of the specific data 
set.

For a sequence of a random variable (X1, X2, ..., XN ) of size N, we can define the n−th sample moment as, 

You’ll be familiar with the 1st such 
moment, which is the sample mean, 

and the second central moment, 
which is the sample variance, 

Small sample variance

Large sample variance



Moments
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Probability distribution



The Central Limit Theorem
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In certain limiting cases, distributions of random variables can be well approximated by other 
(often more convenient) distributions. 
E.G …

Binomial Poisson Normal

n → ∞
p → 0 λ → ∞
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In certain limiting cases, distributions of random variables can be well approximated by other 
(often more convenient) distributions. 
E.G …

Binomial Poisson Normal

n → ∞
p → 0 λ → ∞

Theorem: Suppose we have a sequence of independent random variables X i , each from a distribution with 
mean μi

1 and variance νi
2. Define,

Then for T = limN→∞ TN, we have that T ∼ φ(T;0,1) → TN 
converges in distribution to a standard normal distribution 



The Central Limit Theorem
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N
 laye

rs

Example: a Galton board with N layers

The change in position after each layer      can be 
thought of as a uniform random variable 

Define: 
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Example: a Galton board with N layers

The change in position after each layer      can be 
thought of as a uniform random variable N

 laye
rs Define: 

Since E[X] = 0, Var[X] = 1

From CLT 



Statistical Inference
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N. Smith
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So far, we only talked about probability distributions → Where does the data come in?

Typically, we want to learn something about our model using the data → estimators is the first thing we can use 
the data for 

Data 
Model 

An estimator       for a quantity      is a function 
of the observed data. 

•     usually a parameter of a model
•     is a property of a specific set of 

observations → its value depends on the 
data observed and it is itself a random 
variable

There are many different estimators, but we will 
focus on the most common one used at the LHC 
→ the maximum likelihood estimator



Likelihoods
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The likelihood is a function of the model parameters θ at a fixed value for the data X

The likelihood function is proportional to the probability density P

Example: For the Poisson distribution, let’s suppose we observe the number of events k=2



Likelihoods
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The likelihood is a function of the model parameters θ at a fixed value for the data X

The likelihood function is proportional to the probability density P

Example: For the Poisson distribution, let’s suppose we observe the number of events k=2

Often easier to work with

-log



Maximum likelihood estimator
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Maximum likelihood estimators (MLE) are given by the values of θ for which 

Maximum likelihood  → Minimum –ve log likelihood

Example: For the Poisson distribution



Numerical minimization (Gradient Descent)
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…

We use many different computational tools for finding the MLE. Many of 
these different tools use a common algorithm → gradient descent 

Iterative process 

Stop when 
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Example: For the Poisson distribution with k =2 

We typically use numerical minimization algorithms since often calculating these analytically is not 
possible  → there’s lots of these tools available for you to use in common HEP software

Simple gradient descent 
algorithm finds same 
analytic solution

Numerical minimization (Gradient Descent)



Properties of MLE
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MLEs have very nice properties, which is why they are common in LHC analyses

1. Maximum likelihood estimators are invariant under bijective transformations of variables 

Since the likelihood is equal to the probability density for a 
random variable, the maximum of it (or minimum of its log) 
will not change when multiplying (adding) by a constant! 
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MLEs have very nice properties, which is why they are common in LHC analyses

1. Maximum likelihood estimators are invariant under bijective transformations of variables 

Since the likelihood is equal to the probability density for a 
random variable, the maximum of it (or minimum of its log) 
will not change when multiplying (adding) by a constant! 

2.   Relationships between parameter estimates are preserved

Suppose θ is the maximum likelihood estimate for θ and α = g(θ) is some function of θ, then 
the maximum likelihood estimator of α will be, 

^

This is obvious since 
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MLEs have very nice properties, which is why they are common in LHC analyses

1. Maximum likelihood estimators are invariant under bijective transformations of variables 

Since the likelihood is equal to the probability density for a 
random variable, the maximum of it (or minimum of its log) 
will not change when multiplying (adding) by a constant! 

2.   Relationships between parameter estimates are preserved

Suppose θ is the maximum likelihood estimate for θ and α = g(θ) is some function of θ, then 
the maximum likelihood estimator of α will be, 

^

This is obvious since 

3.  MLEs are consistent estimators i.e the value of the estimator converges to the true value as 
more data are included (n → ∞)

for any ε > 0
^



Variance of the Poisson estimator
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From the 3rd property, we know that the variance of the MLE* converges to zero as k → ∞
 
Example, Poisson random variable 

Which means for larger samples, this will decrease to zero  

* Generally, the law of large numbers tells us this is true for other estimators too

A histogram is an estimate of a probability density 

The density in each bin is better estimated as the number 
of observations in each bin gets large!



(Co)variance of Gaussian estimators 

39Nicholas Wardle

If we had a random variable that was distributed as a Gaussian with θ ∼φ(θ, σ), we 
would find that that the twice the negative log-likelihood would be, 

We must have 

So the variance can be estimated from the 
second derivative of q!

But if instead we Taylor expand =0
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If we had a random variable that was distributed as a Gaussian with θ ∼φ(θ, σ), we 
would find that that the twice the negative log-likelihood would be, 

We must have 

So the variance can be estimated from the 
second derivative of q!

But if instead we Taylor expand 

θ1θ2

More generally



Combined likelihoods
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Our data at the LHC is much richer than a single Poisson random variable

Evaluating this integral is essentially impossible → reduce the dataset x → x’ and use simulation to estimate p(x’|θ) 

(Example from K. Cranmer)
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Combined likelihoods

For N independent observations X = {X1,X2,...,XN}, the likelihood function is, 

where fi are the p.d.f for each observation Xi
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Combined likelihoods

For N independent observations X = {X1,X2,...,XN}, the likelihood function is, 

where fi are the p.d.f for each observation Xi

A histogram can be treated as a set of N 
independent Poisson random variables where
N = number of bins! 

At the LHC, we split the contributions into signal (S) 
and backgrounds (B)

And L → L(r) is a function of the signal strength



Confidence Intervals
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An estimator is only part of making a measurement at the LHC → we also report uncertainties. In frequentist 
statistics, we use the concept of a confidence interval 

 A confidence interval (or region) is a set of parameter values
at a specified confidence level 100 x (1-α) 

The confidence region at a confidence level 100 x (1-α) is a 
region which is constructed such that the true values of the 
true parameters θ0 is contained in the region with a 
probability (1-α) 

Example: a 68% confidence interval in θ will contain the true 
value θ0 in  68% of the outcomes in data



Confidence Intervals
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The Neyman construction of frequentist intervals is an elegant way to 
achieve intervals with exactly that property

We use the ratio of likelihoods 

Let’s look at what this looks like for our Poisson random variable where n = 4 

Note the extra 
factor of 2 now

Remember the MLE for λ is given by 

This is large when 
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Look at the distribution of ζλ when λ=2

From this distribution, we can calculate 
the value of 

Defined as 

Finally, we include this value in our 
interval if 



Confidence Intervals
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Repeating this for other values of λ 
allows us to build the 68% confidence 
interval for λ

We include any value of 
λ for which 

68% interval



Wilks’ theorem
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Wilks’ approximation

Wilks’ theorem tells us that the 
distribution of is a    
for large n (in this case for large λ) 

*the proof of this uses the central limit theorem



Wilks’ theorem 
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In general, Wilks’ theorem gives us the result for any number of degrees of 
freedom. 

The result is that for a log-likelihood difference with n parameters θ1, θ2, ..., θn, the 
test statistic ζθ1,...,θn will be distributed under H(θ1, ..., θn) (the null hypothesis) as, 

n 1 2 3 4 5

68.3% 1.00 2.30 3.53 4.72 5.89

95.5% 4.02 6.20 8.05 9.74 11.34

99.74% 9.07 11.90 14.24 16.34 18.29

Read off values for where to 
apply threshold for different 
confidence intervals, for 
different number of parameters  
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Frequentists care about the coverage of confidence intervals → check the fraction of intervals that contain the 
true value of λ (λ0) for different values of λ0

We can check for our Poisson case using 

Full frequentist construction slow but 
only over covers

Variance on n 
Very fast but can seriously undercover

Use Wilks’ theorem - somewhere in 
between the others
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When we see a plot like this… 
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We know the points represent the 
Maximum Likelihood estimates
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When we see a plot like this… 
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And we know that the error bars are derived 
from the region for which 

 [GeV]
H

m

124
124.5

125
125.5

126

)
H

m(L2ln -

0 1 2 3 4 5 6 7
CMS

 and 
ATLAS Run 1
LHC

gg
®H

l4
®

ZZ
®H

l
+4

gg
Combined 

Stat. only uncert.

Tomorrow, we’ll see what the 
dashed vs solid lines means 

We know the points represent the 
Maximum Likelihood estimates
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Now it’s your turn!

In this afternoon’s exercises, you will use the histograms that you produced yesterday and calculate the MLE 
for the signal strength for the tt process – in HEP we call this “fitting” to the data

For this exercise, you will be using the software package 
Combine, that is used in almost every CMS statistical 
analysis

Make sure you have obtained the cms_combine container

Don’t worry if you didn’t complete the previous exercise, all of the solutions can 
be found in ttbarAnalysis/exercise1solutions
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