VSOP Quy Nhon, Vietnam
15-26 July 2024



https://orcid.org/%200000-0003-1344-3356

Uncertainties (@ the LHC Recap

And we know that the error bars are derived

Wh lot like this...
en we see a plot like this from the region for which C%b; <1
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Uncertainties (@ the LHC Recap

And we know that the error bars are derived

Wh lot like this...
€N We See a plotlike this from the region for which C%b; <1
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Systematic Uncertainties

Experimental/Detector systematics:
* Object efficiencies, energy calibrations, luminosity
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Background theory uncertainties: ;
* Often rather different phase-spaces considered for °t

extrapolating from control regions for data-driven estimates . ——

* Limited simulation size to predict p(B) S
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Cross-section example

Remember our formulae for the number of expected event

N = Lo

This tells us the total (inclusive) expected rate
of events but from lecture 1, we know that we
don’t keep all of the events - selection!
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Acceptance

N = LocA
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Event kinematics not known precisely
—> Acceptance uncertainty

Pixels+Tracker

Need to account for acceptance of detector for different physics objects

ZDC

David d'Enterria
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Efficiency

N = LoAe

Not all particles reconstructed with perfect efficiency
(missing hits in tracker, leakage/gaps in calorimeter...)

—> Uncertainty in measurements offline and online can
lead to uncertainty in total efficiency of selection

L1 Efficiency
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Nuisance parameters

We model the effects of systematic uncertainties through the introduction of nuisance parameters into our

model

p(X;0) = p(X; p, v)
Iu Parameters of interest: cross-section, Top mass, ... interpolated to
Y Nuisance parameters: Jet energy scale, Luminosity, ... "unseen” NP value

l °

We need to choose a parameterization for the effects o o
of each of our nuisance parameters

Ln simulator
at fixed NP values>

L. Heinrich

Nuisance parameter v
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Nuisance parameters

We model the effects of systematic uncertainties through the introduction of nuisance parameters into our

model
p(X;0) — p(X;p,v)
Iu Parameters of interest: cross-section, Top mass, ... .
Log-normal cannot be negative
o . . 0.8 1 [ k=1.05
1Y Nuisance parameters: Jet energy scale, Luminosity, ... k=11

1 k=13

/_\
Y I Lis “distributed”
N — U O-L()(/{/) AE " as log-normal

0.4 1

0.3 1

We often use “log-normal” uncertainties to model the effect of
each nuisance parameter — eg for luminosity uncertainty

0.2 1

0.1 1

0.0
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interpolated to

e 4 'T,I::r'? ‘I\.—.-"::-:::‘.. "unseen" NP value
Shape uncertainties i P
’n% °« @ / % o O /
I*-.-u simudabor Lun simulator
For distributions (shapes) this is more complicated as whole distribution can Nuisnce parametery | Nsance parameter
change as aresult of varying nuisance parameters
[ nominal B jes = -2
3500 A [ jesUp @es =-1.75
[ jesDown 0.12 - !es =-1.5
jes =-1.25
3000 A jes =-1
0.10 4 jes = -0.75
2500 A jes =-0.5
o jes =-0.25
| aanek [ jes=0
= [ [ jes=0.25
0.06 - — J:es =0.5
1500 4 [ jes =0.75
[ jes=1
0.04 1 3 jes=1.25
g [ jes=1.5
3 jes=1.75
500 A 0.02 A
0 L) T T T T T T 0.00 =

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Bin number \/ Bin number

We use morphing [ interpolation from nominal and alternative
templates to derive continuous parameterization of shape
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Enhancing the Likelihood function

Nuisance parameters often constrained through measurements
—> calibration measurements for energy scale, tag-and-probe for efficiencies etc ...

0.5

We can include these constraints in the likelihood function!
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Eg for a Poisson likelihood,
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Profiled likelihood

For statistical inference, we replace the likelihood function with the profiled likelihood function

L(p,v) = L(p,v(p) &  Guw — Gu=—2log
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As expected, including systematic uncertainties increases total uncertainty!
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Analysis strategies

When designing an analysis, we try to consider the balance between systematic and statistical effects!
For example, lets consider cross-section measurements of

~ | CMS Experiment at LHC, CERN

X1 03 CMS CMS Run 133874, Event 21466935
— - — —_— T il Lumi section: 301

! I ! Sat Apr 24 2010, 05:19:21 CEST

(a) 29pb™ at \s=7TeV |

Large background from QCD multijet events

Electron p;=35.6 GeV/c
ME; = 36.9 GeV
M:=71.1 GeV/c?

e data _ I

Woev ' - ,
B EWK+E - . N
B QcD ~ :

Strategy 1: Use simulated events to estimate background
contribution

Systematic effects: luminosity, hadronization model, missing
momentum model ...

number of events / 2.5 GeV

.
P | PPN

0 20 40 60
Missing transverse momentum ET [GeV]
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Analysis strategies

When designing an analysis, we try to consider the balance between systematic and statistical effects!
For example, lets consider cross-section measurements of

3 CMS ~ | CMS Experiment at LHC, CERN
.o > 41— ——— CMS {| Run 133874, Event 21466935
Large background from QCD multijet events 3 [ @ 29pb™ at V5=7TeV | i R
0 h . - - ~e
o * data i e l/ \‘
= ; Mr=71.1 GeV/c2 O\ P
Strate.zgy 1 Use simulated events to estimate background % — ‘é"w;ft‘; I I ‘\ ,‘;K;r: J
contribution S . oeD . T - N4
S T
Systematic effects: luminosity, hadronization model, missing 2 __ i }
momentum model ... g A ==
Strategy 2: Use ABCD method to estimate contribution from 0 i
data 0 20 40 60

Systematic effects: lurinesity, hadronization-meodel, missing i
moementum-meodel-limited events in data to estimate, s P T g —]

. . k I.Sigrll C 4
correlation assumptlons [ BacKground S

Need to study total systematic D B
uncertainties in different scenarios! : =
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Warning about combining likelihoods

Remember that for N independent observations X = {X,Xa,...,Xn}, the likelihood

function is, N
L(6) := | [ fix::6),
Thismeans —1In L(0) = — Z In(f;(X;;0)) = Z —1In(L;(0))

—InL(6)

160 A
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100 A

80 A

60 -

40 A

20 A

0_

-10.0 -7.5 -50 -25 0.0 25 50 7.5 10.0
6
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Warning about combining likelihoods

Remember that for N independent observations X = {Xi,Xs,...,Xn}, the likelihood

function is, N
L(6) := | [ fix::6),
Thismeans —1In L(0) = — Z In(f;(X;;0)) = Z —1In(L;(0))

—InL(6)

We can sum the negative log likelihood curves to obtained the
combined negative log likelihood - measurements can be
easily combined

—In Leomp(0) = —In L1 (6) — In Lo (6)
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Warning about combining likelihoods

This is not true for profiled likelihoods!

—1In Leomp (1, D(p)) # —1In Ly (p, 0(p)) — In Lo (e, ()

1.75
Imaging fitting a straight line

. 1.50
to the points

1.25 +
Y=mMmIr -+ C .
0.75 H
0.50
0.25

0.00 A

-0.5 0.0 0.5 1.0 1.5 2.0




Warning about combining likelihoods

This is not true for profiled likelihoods!

—In Lcomb (,U
1.75
Imaging fitting a straight line L so
to the points |
1.25 4
Y= MmMIT + C .,
0.75 A
The profiled likelihoods as a 0-50
function of the slope donot sum  0.25 -
to give the correct combined 0.00
profiled likelihood!
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Hypothesis testing

tanb

CMS hHA®tt 19.7fb™ (8 TeV) + 4.9 fb ™2 (7 TeV)

mo I I — I I I — I I I — I I I — I \- I
- |CL(MSSM,SM)<0.05: -
50 ”I — Observed IH
. Expected -
- + 1s Expected .
a0f -
C * 2s Expected ]
— m¥SSM T 15513 Gev| 4
I 7227 My * .
H_.O . —_

MSSM m™*** scenario

\\\\\\\

A

Now we know how measurements are made,

what about results like this one?

600 800 1000

m, [GeV]
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Hypothesis testing

Suppose that we have to choose between two hypotheses labelled Ho
and H1. We typically distinguish the two as; 4\

H, := the null hypothesis
H, := the alternate hypothesis

Example : H, = Standard Model, H, = Supersymmetry

Xis a function of the experimental observations which is supposed to
summarize the observations - this is known as a test statistic.

Nicholas Wardle
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Type-1/Type-ll Errors

Suppose then that we have our chosen test

statistic X € W W

We divide this region )V into a critical region w/
and a region of acceptance )\ —

Observations of X falling into w would W —w
lead us to believe that our null hypothesis
IS not true.

Reject H, if X in O

Accept H, if Xin @
Defining a test of H,, given we’ve

decided on our test statistic, then becomes choosing a critical region w




Type-1/Type-ll Errors

Type-l Error : In practise, we often tune the critical region so as to obtain a
particular probability (known as the size of the test) a that X falls into the critical
region when Hois true (we usually say “under H,”)

P(X € w|Hp) =(a) o

Reject H, if X in O

Accept H, if Xin @

You can see then that « is exactly the probability to reject the null hypothesis if
the null hypothesis is true




Type-1/Type-ll Errors

Type-Il Error: Of course, we also want to know how useful a test is at discriminating
against the alternate hypothesis. This is known as the

power of the test, and is defined as the probability w

of X falling into the critical region if H.is true (under H:),

Reject H, if X in O

Clearly this is related to the probability that X .
. . . Accept H, if Xin @
falls into the acceptance region via

P(X €W — wlH;) = 1 — P(X € w|Hy) q@

Then p is the probability that we would accept the null hypothesis when the alternative
hypothesis is true




Type-1/Type-ll Errors

D)

Reject H, if X in <f )
. 0 X c w\HO = —» How likely to falsely reject H,
Accept H, if Xin @ (X € W — w|H;) = 3= How likely to falsely accept H,




Hypothesis tests

There are a huge number of hypothesis tests on the market for use in various
problems, however they generally follow the same routine;

1. Define atest (summary) statistict € R that summarizes the observations and
has some separation between H, and H,
2. Define acritical region w such that

0.40 A

[ sy =a

where « is a predefined value between o0 and 1. =
0.15 4
0.10 ~

0.05 A

0.00 -

-4 -3 -2 -1 0 1 2




Hypothesis tests

There are a huge number of hypothesis tests on the market for use in various
problems, however they generally follow the same routine;

1. Define atest (summary) statistict € R that summarizes the observations and
has some separation between H, and H,
2. Define acritical region w such that

0.40 A

[ sy =a

0.25 A

where a is a predefined value between 0 and 1. =

0.15 A

Determine the value of tin the observed data, {51, o Lob
4. RejectH,if tops € W 0.05 l

0.00 -

W

-4 -3 -2 -1 0 1 2




Example — Student’s t-test

IN ,

The Student's t-test is a simple hypothesis test based on the t = — (X — u,)
expectation values of distributions V

- —— Ho Small and large values of t indicate

' Hy that the data has a significantly
different expectation compared to H,,
0.4 1 \,
7 X
0.3 1
0.2 1
\
0.1

X OH
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Example — Student’s t-test

Choosing a = 0.05, we can define t,;, and t,,, such that
N tmin +00
t:‘/r()_(—,u) / f(t|Ho)dt:/ f(t|H0)dt:0.025
V —C0 tmax
H=0
0.5 1 Ho | tmins tmax
H1 250 A data i
0.4 _ i
\ T 200 |
< |
0.3 - = '
5 150 |
o |
0.2 | T W\
= 100 / ! \
I
\ |
0.1 - 50 A I
J I
I
I —\
0.0 J == T T K T 0 T T : T
-4 -2 0 2 4 -4 -2 0 2 4 6
X r

Power will depend on H,

Nicholas Wardle



The most powerful test

For a fixed value of a can we find the test that gives the best power (1-8) ?

Nicholas Wardle
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The most powerful test

For a fixed value of a can we find the test that gives the best power (1-8) ?
Yes = Neyman-Pearson lemma

Let’s think about some observed data X and suppose it has a probability distribution function f(X;0),
where 0 is used to represent our hypotheses:

0 = 0, represents the null hypothesis Ho

0 = 0, represents the alternate hypothesis H:

What I meanis f(X|H(8)) = f(X;0)




The most powerful test

For a fixed value of a can we find the test that gives the best power (1-8) ?
Yes = Neyman-Pearson lemma

Let’s think about some observed data X and suppose it has a probability distribution function f(X;0),
where 0 is used to represent our hypotheses:

0 = 0, represents the null hypothesis Ho

0 = 0, represents the alternate hypothesis H:

What I meanis f(X|H(8)) = f(X;0)

For a specific size of test a we choose w such that.
[ F(X;6,)dX =
w

and we want to find the region w which maximises 1 - 8

1-8 = /f(X;91)dX




The most powerful test

1-08 = /f(X;91)dX

f(X; 61) .
/w F(X: 0) f(X;0p)dX

vvvvvvvvv

_____________
Expectation valuein a

restricted SPaCe_W E f(x, 91 )
f(X;00)

9=95:|

w
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The most powerful test

1-08 = /f(X;91)dX

0.35 -
0.30 A

0.25 -

B B f(X;61) .,

0.00

4 3 2 -1 0 1 2 3 4
’ Expectation value in a

restricted space w f xl 9
- f(X;01)  L(61) = E aady

9=90

Define A\ = = f(X;6
F(X:60) ~ L(B) (X 60) "
This quantity is the ratio of the likelihood function, evaluated under the two hypotheses
1-B will be maximal when w is chosen to contain the largest values of A
—> The best critical region is the set of points for which A > ca € R, where casatisfies
/ f(X;00)dX =« The likelihood ratio is the most powerful test
w

(fact used very often in Machine Learning!)
- If A > cq, we would choose Hs, while A < caleads us to choose Ho!
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Example: Gaussian distributions

H, and H, are both Gaussian distributions with
the same mean (W) but different width (o) or

vice-versa
05 Ho 0.5 - Ho
H1 Hl
0.4 \ 0.4 - \
0.3 ; 0:34 ;
1 —L /
0.2 / 1 0.2 - /
\ \

0.1- 0.1-
0.0 f — T T \¥ ' 00 T —= T T K T

-4 -2 0 2 4 -4 -2 0 2 4

X X
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Example: Gaussian distributions

0.5 1

0.4 1

0.3 1

0.2 1

0.1 1

— Hop
— H

0.0

X O

0.51

0.4 1

0.31

0.2 1

0.1

0.0

Hy

X OF

0.8 1

0.61

Power

0.4 1

0.21

H, and H, are both Gaussian distributions with
the same mean (W) but different width (o)

0.15 020 025 0.30

Hpys On, = 1.00

0.05 0.10

Power

1.0

0.8

0.6

0.4 -

0.2

0.01

a=0.05

— KS
WW Runs

- t-test

— LHR

1.00 125 150 175 2.00

Oy HH, = 0.00

0.50 0.75
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Profiled likelihood ratio based test

Compatibility of data and prediction ( H, ) in distributions r= —21n

fi —

Nicholas Wardle 36



Profiled likelihood ratio based test

Compatibility of data and prediction ( H, ) in distributions d

r =2 E fi(@) —d; + d; In
Make use of the saturated likelihood as alternative H, fz (

—> Best possible fit to data v

| T

)

25

L
)

20

==

fi .
—+=

O0 1 2 3 4 5 6 7 8 9 10
Bin Number
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Profiled likelihood ratio based test

Compatibility of data and prediction ( H, ) in distributions d

Make use of the saturated likelihood as alternative H, f (6)

—> Best possible fit to data v

Generate pseudo-data to
calculate p-value

htemp
B _ Entries 1000
50— Mean 10.26
B Std Dev  4.771

25

OI
p(x)

20

—+=

==

Y 5

p(x) distributed as x?(n)
(Wilks’ theorem) for large
event samples!

10

Hrrlnnln‘
25 30 35

00 1 2 3 4 5 6 7 8 9 10
Bin Number

Nicholas Wardle 38



Searches for new physics

Let’s imagine we are searching for a new particle X:
* Our null hypothesis H, is the standard model - sometimes called “background only”’
* The alternate hypothesis H, is the standard model + the new particle - or signal + background

40

Cross-section parameterized with signal strength
35 - Ho

H ogAel = po(pp — X)A'€' L

30 A

25

1

15 } } / If we assume A’ 6, — Ae, then we can think of
10 -

N o
Iu:
o ; ; : ; n U(pp%X)

observable




Searches for new physics

Let’s imagine we are searching for a new particle X:

* Our null hypothesis H, is the standard model - sometimes called “background only”’
* The alternate hypothesis H, is the standard model + the new particle - or signal + background

40

35_ HO
H.
30 A
[ ]
25 A |
20 ~ |
15 ~ }
10 +
5_
O T T T T
0 2 4 6 8 10
observable

The test-statistic we use

B £O70)\ ¢ A
7o — 21n<£( 3)) iffi >0

0 otherwise,

Where p is the signal strength (u=0 =
background only)

Nicholas Wardle
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Searches for new physics

Let’s imagine we are searching for a new particle X:

* Our null hypothesis H, is the standard model - sometimes called “background only”’

* The alternate hypothesis H, is the standard model + the new particle - or signal + background

—2In (“O'YS(S))) if § >0
o = L(V) 109 -
0 otherwise,
)
Il
3107
We calculate a p-value using the =
distribution under the null =
1074
(0}
po= [ f(40l0)dqy,
90
107°

obs
— (o

Po

do

Nicholas Wardle




Searches for new physics

In the large statistics limit, the distribution of the test
statistic is known (see Eur.Phys.J.C71:1554,2011 )

We convert p-values into significances
(Z-score) through simple formula

0.5
. . | 1.4
Central limit theorem 00
0.4 - do = —21]?1( L(p,V) ) lf‘u>0 1.2 Z J— A / qo
0 otherwise,
1.0
0.3 1 -~
— o 0.8
<3 —
~— Y=
- 2 \\/ "
0.4
0.1~
0.2
. 0.0 T
0.0 T . 0 5 ] 0 2 4 6 8 10
N
8 Jo
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Searches for new physics

If p, very small or Z large we reject H, = discovery of new physics!

Phys. Lett. B 716 (2012)

Q-Q i L | LI | L | LI | LI | LI | LI I L ;
= ATLAS 2011-2012  __
8 Vs=7TeV: [Ldt=4.6-4.81b" - Exp. z
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Upper limits

What about if we don’t see any excess in the data?

40

35 A

30 A

25 A

20 A

15 A

10 -

— e

8 10
observable
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Upper limits

What about if we don’t see any excess in the data? = We invert the hypotheses
* Our null hypothesis H, is the standard model + new particle - sometimes called “background only”
* The alternate hypothesis H, is the standard model

40

Test-statistic for upper limits at the LHC
35 A H1
30 A Ho
( A
] —2In (‘C(”’f’(j‘))> if0<f<u,
20 - I £(”A’V)
l Tnc) =4 o) (“F"‘:W) if f <0,
15 A 3
| L£(0,v(0)) |
10 - I \O if ﬁ > U,
5_
0 . . . 1 Test-statistic is a function of the signal
0 2 4 6 8 10
observable strength: H, = H(p)
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Upper limits - CLs

We need to be careful in this case to avoid excluding a signal when the data also doesn’t agree
well with the background hypothesis = replace p-value with ratio of p-values

107 ;
o] O Rluclu=04)u=04) s ke N
i [ f(Quuc(u=0.4)|u=0) 1-pp Pu — f(Q(:u)LHcllu)
100  ——— GOB3 (u=0.4) q(1)PRic
107 +00
e B )
= Cj(ﬂ)ilf{sc

103

104

Asymptotic formulae for
these distributions also in

10> Eur.Phys.J).C71:1554,2011

I 1 — s

QLuc(u = 0.4)
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https://arxiv.org/abs/1007.1727

Upper limits - CLs

Derive upper limits on u by scanning for CL; = a

0.30
0.251
0.201
- 0.15-
0.101

0.05

Example a=0.05 = 95% confidence level
upper limit on signal strength

Nicholas Wardle
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Upper limits - CLs

Derive upper limits on u by scanning for CL; = a 0.30
0.25 - Exampl'e a=o.
upper limit on
Upper limit on p tells us the smallest amount
of signal that can be excluded 0.201 ®
—> every value larger is excluded at 95% CL .
—> every H(u) with u>~0.35 is excluded d 0.15-
0.10-
0.05 t------====mmmmmo-3 =
0.00 :
0.1 0.2 0.3 0.4 0.5 0.6
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arameters that
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Upper limits - CLs

o2
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WORLDS OF

Expected results

Significance and upper limits are also random variables!
- If we want to know how sensitive our analysis is, we can calculate expected results

Replace data with expectation
—> Asimov datasets
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End of lectures

We have covered the basic data analysis and statistics methods used mostly at the LHC, however, there are many
more techniques that have been [ are used depending on the analysis that we don’t have time to cover

F. James, “Statistical Methods in Experimental Physics”, ISBN: 978-9-812-70527-3 (2006).

G. Cowan, “Statistical Data Analysis”, ISBN: 978-0-198-50155-8 (1998).

G. Cowan, “Statistics” (section 39) in “Review of particle physics”, Chin. Phys. C 40,

: 100001 (2016).
Here are some further reading

links for LHC statistics in case
you are interested

L. Lista, “Statistical Methods for Data Analysis in Particle Physics”, ISBN 978-3-319-20176-
4, (2015).

\/ A. Stuart, K. Ord, S. Arnold, “Kendall's Advanced theory of Statistics”, Vol 2A: Classical
inference and the linear model, ISBN: 978-0-470-68924-0 (2010).

L. Lyons, N. Wardle, “Statistical issues in searches for new phenomena in High Energy
Physics”, Journal of Physics G: Nuclear and Particle Physics, Volume 45, Number 3.

O. Behnke, K. Kroninger, G. Schott, T. Schorner-Sadenius, “Data Analysis in High Energy
Physics: A Practical Guide to Statistical Methods", ISBN: 978-3-527-41058-3 (2013).

K. Cramner, “Practical Statistics for the LHC", Proceedings, 2011 European School of
High-Energy Physics, (2011).

You can also find some more interactive practical statistics examples in my GitHub area :
https://github.com/nucleosynthesis/IntroductionToStatistics?tab=readme-ov-file

& launch 'binder

Nicholas Wardle
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https://github.com/nucleosynthesis/IntroductionToStatistics?tab=readme-ov-file

Now it’s your turn

In tomorrow’s exercise, you will include control regions and
systematic uncertainties in your statistical analysis and see how

this degrades the sensitivity of the measurement e —
3500 1 3 jesUp
[ jesDown
Exercise 3 - Control Regions and Systematic 000 4
Uncertainties 2500 -
‘ : : i . 2000 1 [l
Launch the cms_combine container by typing the following into a terminal on your laptop (or by
clicking the play button next to the cms_combine container in the Docker desktop application
and using the terminal there). 1500 1
Bash 1000 -
docker start -i cms_combine 500 4
In today's exercise, we are going to use our 4j0b control region that we populated at the end of
exercise 2 to constrain our wjets process in our 4j2b signal region. Don't worry if you didn't ¢ 0.'0 2f5 5.'0 7_'5 10'_0 12'.5 15'_0 17'_5 20'_0
manage to process the samples to create the histograms for the 4j0b region. | have puta .csv Bin number

file exercise2solutions/allregions_mbjj.csv that has both the signal region and control
region histograms for you. You'll also find the datacard for the signal region in the same folder:

signalregion_mbjj.txt.

Don’t worry if you didn’t complete the previous exercise, all of the solutions can be found in
ttbarAnalysis/exercise2solutions
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(Extra Slide) Interpolation example

v ]
1 I 1 L] L]

The effects of correlated systematic uncertainties on n,are
modelled using quadratic(linear) interpo(extrapo)lation
function - simplified example of interpolation

==

bin content (&) x N(d)

=
o

f1(8) = 7 - ﬁ | [ 2z (65)
j

F(8) = 2_; f1(9)

5 4 -3 -2 -1 0 1 2 3
rl5j(5j — 1)k — (65 —1)(6; +1) + l5]-((5]- + 1)k}, for |0;] < 1
2 J 2 J
p1;(05) = < -%(35}} +Kp;) — > 05 — %(hﬁ}} +K7;) +2 for §; > 1
] :2_%(3“73'“*73'): 51—%(ﬂ1+j+f€7j)+2 for §; < —1
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(Extra Slide) p, distribution

The p-value is

* Arandom variable that depends on the observed data
(it’s a post-observation quantity )

 Distributed uniformly between 0 and 1 under the null
hypothesis

p = P(t > tobs|Ho) = 1 — P(t < tops|Ho) = 1 — F(t)

1- F(t) = P(t > tobs|HD) = ‘D(F(t) > F(tobs)lHO) =1- P(F(t) < F(tobs)|HO)

\_/

Since F(.)is monotonic and increasing

F(t) = P(F(t) < F(tos)|Ho) = F(t)is uniform

Whichis true for any t, - pis uniform

o
L 0.20 1

0.40 1

0.35 A

0.30 A

0.25 A

0.15 A

0.10 A

0.05 A

0.00 A

-
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(Extra Slide) p, distribution -

0.30
0.25
§0.20
0-15 tobs
0.10 l
p-value is flat under H,, 0,051
0.00
4 3 2 1 2 3 4
Toy 499
1.4 4
4_
1.2 -
2_
1.0
0.8
0_ ________ S VL W P T A —— p——
(EARN
_2_
0.4 -
0.2 1
_4_
0.0 T
0 2 4 6 8 0.0 0.2 0.4 0.6 0.8 1.0
p
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