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Uncertainties @ the LHC Recap

2Nicholas Wardle

When we see a plot like this… 
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And we know that the error bars are derived 
from the region for which 
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We know the points represent the 
Maximum Likelihood estimates
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We know the points represent the 
Maximum Likelihood estimates

What does this part of the error bar mean?



Systematic Uncertainties
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Experimental/Detector systematics:
• Object efficiencies, energy calibrations, luminosity 

Signal theory uncertainties:
• Inclusive x-section uncertainties, QCD scale, pdf, UEPS, 

Branching ratios, jet counting

Background theory uncertainties:
• Often rather different phase-spaces considered for 

extrapolating from control regions for data-driven estimates
• Limited simulation size to predict p(B)
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Cross-section example
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Remember our formulae for the number of expected events 

This tells us the total (inclusive) expected rate 
of events but from lecture 1, we know that we 
don’t keep all of the events → selection!



Acceptance
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David d'Enterria

p p

Need to account for acceptance of detector for different physics objects  

Event kinematics not known precisely 
→ Acceptance uncertainty 

https://www.researchgate.net/profile/David-Denterria-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ


Efficiency
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Not all particles reconstructed with perfect efficiency 
(missing hits in tracker, leakage/gaps in calorimeter…) 

→ Uncertainty in measurements offline and online can 
lead to uncertainty in total efficiency of selection 

Muons @ 
CMS trigger

μ

μ

Z



Nuisance parameters
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We model the effects of systematic uncertainties through the introduction of nuisance parameters into our 
model

Parameters of interest: cross-section, Top mass, …           

Nuisance parameters: Jet energy scale, Luminosity, …           

Nuisance parameter ν

L.
 H

ei
n

ri
ch

We need to choose a parameterization for the effects 
of each of our nuisance parameters



Nuisance parameters
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We model the effects of systematic uncertainties through the introduction of nuisance parameters into our 
model

Parameters of interest: cross-section, Top mass, …           

Nuisance parameters: Jet energy scale, Luminosity, …           

We often use “log-normal” uncertainties to model the effect of 
each nuisance parameter – eg for luminosity uncertainty

Log-normal cannot be negative

L is “distributed” 
as log-normal

L



Shape uncertainties
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For distributions (shapes) this is more complicated as whole distribution can 
change as a result of varying nuisance parameters 

We use morphing / interpolation from nominal and alternative 
templates to derive continuous parameterization of shape 

Nuisance parameter νNuisance parameter ν

B
in

 1

B
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 2 …



Enhancing the Likelihood function
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Nuisance parameters often constrained through measurements 
→ calibration measurements for energy scale, tag-and-probe for efficiencies etc …

We can include these constraints in the likelihood function!

Eg for a Poisson likelihood, 

ν

L
(ν

)



Profiled likelihood

12Nicholas Wardle

For statistical inference, we replace the likelihood function with the profiled likelihood function 
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As expected, including systematic uncertainties increases total uncertainty!

Stat only
Stat+Syst
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Analysis strategies

When designing an analysis, we try to consider the balance between systematic and statistical effects! 
For example, lets consider  cross-section measurements of pp→W→eν

Large background from QCD multijet events 

Strategy 1: Use simulated events to estimate background 

contribution

Systematic effects: luminosity, hadronization model, missing 

momentum model … 

Missing transverse momentum
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Analysis strategies

When designing an analysis, we try to consider the balance between systematic and statistical effects! 
For example, lets consider  cross-section measurements of pp→W→eν

Large background from QCD multijet events 

Strategy 1: Use simulated events to estimate background 

contribution

Systematic effects: luminosity, hadronization model, missing 

momentum model … 

Missing transverse momentum

Strategy 2: Use ABCD method to estimate contribution from 

data

Systematic effects: luminosity, hadronization model, missing 

momentum model, limited events in data to estimate, 
correlation assumptions

Need to study total systematic 
uncertainties in different scenarios! source

https://www.particlebites.com/?p=8499


Warning about combining likelihoods
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Remember that for N independent observations X = {X1,X2,...,XN}, the likelihood 
function is, 

This means 

θ1θ2

θcomb
^

^
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Warning about combining likelihoods

16Nicholas Wardle

Remember that for N independent observations X = {X1,X2,...,XN}, the likelihood 
function is, 

This means 

We can sum the negative log likelihood curves to obtained the 
combined negative log likelihood → measurements can be 
easily combined 

θ1θ2

θcomb
^

^

^
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Warning about combining likelihoods

This is not true for profiled likelihoods!

Imaging fitting a straight line 
to the points
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Warning about combining likelihoods

This is not true for profiled likelihoods!

Imaging fitting a straight line 
to the points

The profiled likelihoods as a 
function of the slope do not sum 
to give the correct combined 
profiled likelihood!

Wrong!



Hypothesis testing
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Now we know how measurements are made, 
what about results like this one?
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Hypothesis testing
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Suppose that we have to choose between two hypotheses labelled H0 
and H1 . We typically distinguish the two as;

     H0 := the null hypothesis 
     H1 := the alternate hypothesis

X is a function of the experimental observations which is supposed to 
summarize the observations – this is known as a test statistic. 

Example : H0 = Standard Model, H1 = Supersymmetry

Data



Type-I/Type-II Errors
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Suppose then that we have our chosen test 
statistic 

We divide this region        into a critical region       
and a region of acceptance   

Observations of X falling into w would 
lead us to believe that our null hypothesis 
is not true. 

Defining a test of H0 , given we’ve 
decided on our test statistic, then becomes choosing a critical region w 
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Type-I/Type-II Errors

Type-I Error : In practise, we often tune the critical region so as to obtain a 
particular probability (known as the size of the test) α that X falls into the critical 
region when H0 is true (we usually say “under H0”)

You can see then that α is exactly the probability to reject the null hypothesis if 
the null hypothesis is true
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Type-II Error: Of course, we also want to know how useful a test is at discriminating 
against the alternate hypothesis. This is known as the 
power of the test, and is defined as the probability 
of X falling into the critical region if H1 is true (under H1), 

Clearly this is related to the probability that X 
falls into the acceptance region via 

Then β is the probability that we would accept the null hypothesis when the alternative 
hypothesis is true 

Type-I/Type-II Errors
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Type-I/Type-II Errors



Hypothesis tests
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There are a huge number of hypothesis tests on the market for use in various 
problems, however they generally follow the same routine; 

1. Define a test (summary) statistic          that summarizes the observations and 
has some separation between H0 and H1

2. Define a critical region w such that 
 
       
       where α is a predefined value between 0 and 1. 

w



Hypothesis tests

26Nicholas Wardle

There are a huge number of hypothesis tests on the market for use in various 
problems, however they generally follow the same routine; 

1. Define a test (summary) statistic          that summarizes the observations and 
has some separation between H0 and H1

2. Define a critical region w such that 
 
       
       where α is a predefined value between 0 and 1. 

3. Determine the value of t in the observed data, 
4. Reject H0 if 

w



Example – Student’s t-test

27Nicholas Wardle

The Student's t-test is a simple hypothesis test based on the 
expectation values of distributions

Small and large values of t indicate 
that the data has a significantly 
different expectation compared to H0
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Example – Student’s t-test
Choosing α = 0.05, we can define tmin and tmax such that 

data

μ=0

Power will depend on H1

w



The most powerful test
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For a fixed value of α can we find the test that gives the best power (1-β) ? 



The most powerful test
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For a fixed value of α can we find the test that gives the best power (1-β) ?
Yes → Neyman-Pearson lemma 

Let’s think about some observed data X and suppose it has a probability distribution function  f(X;θ), 
where θ is used to represent our hypotheses:

θ = θ0 represents the null hypothesis H0 

θ = θ1 represents the alternate hypothesis H1 

What I mean is 



The most powerful test
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For a fixed value of α can we find the test that gives the best power (1-β) ?
Yes → Neyman-Pearson lemma 

Let’s think about some observed data X and suppose it has a probability distribution function  f(X;θ), 
where θ is used to represent our hypotheses:

θ = θ0 represents the null hypothesis H0 

θ = θ1 represents the alternate hypothesis H1 

What I mean is 

For a specific size of test α we choose w such that, 

and we want to find the region w which maximises 1 − β 



The most powerful test
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Expectation value in a 
restricted space w

w



The most powerful test
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Expectation value in a 
restricted space w

Define

This quantity is the ratio of the likelihood function, evaluated under the two hypotheses

1-β will be maximal when w is chosen to contain the largest values of Λ
→ The  best critical region is the set of points for which Λ ≥ cα ∈ R, where cα satisfies 

→ If Λ > cα, we would choose H1, while Λ ≤ cα leads us to choose H0! 

The likelihood ratio is the most powerful test 
(fact used very often in Machine Learning!)

w



Example: Gaussian distributions
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H0 and H1 are both Gaussian distributions with 
the same mean (μ) but different width (σ) or 
vice-versa



Example: Gaussian distributions
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H0 and H1 are both Gaussian distributions with 
the same mean (μ) but different width (σ)

α=0.05
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Compatibility of data and prediction ( H0 ) in distributions

f i

Profiled likelihood ratio based test

H0
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Make use of the saturated likelihood as alternative H1 

 → Best possible fit to data

f i

Profiled likelihood ratio based test

H0

H1

Compatibility of data and prediction ( H0 ) in distributions



38Nicholas Wardle

f i

Generate pseudo-data to 
calculate p-value

O
b

serve
d

 va
lu

e

Profiled likelihood ratio based test

p
(x

)

p(x) distributed as χ2(n)
(Wilks’ theorem) for large 
event samples!

Make use of the saturated likelihood as alternative H1 

 → Best possible fit to data

Compatibility of data and prediction ( H0 ) in distributions

H0

H1



Searches for new physics 

39Nicholas Wardle

Let’s imagine we are searching for a new particle X:
• Our null hypothesis H0 is the standard model - sometimes called “background only”
• The alternate hypothesis H1 is the standard model + the new particle  - or signal + background

H0

H1

observable

Cross-section parameterized with signal strength 

If we assume                            , then we can think of  



Searches for new physics 
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Let’s imagine we are searching for a new particle X:
• Our null hypothesis H0 is the standard model - sometimes called “background only”
• The alternate hypothesis H1 is the standard model + the new particle  - or signal + background

H0

H1

The test-statistic we use 

Where μ is the signal strength (μ=0 → 
background only)

observable



Searches for new physics 
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Let’s imagine we are searching for a new particle X:
• Our null hypothesis H0 is the standard model - sometimes called “background only”
• The alternate hypothesis H1 is the standard model + the new particle  - or signal + background

We calculate a p-value using the 
distribution under the null 
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Searches for new physics 

In the large statistics limit, the distribution of the test 
statistic is known (see Eur.Phys.J.C71:1554,2011 )

μ̂

f(
μ

)
^

q0

f(
q

0
)

We convert p-values into significances 
(Z-score) through simple formula 

Central limit theorem

https://arxiv.org/abs/1007.1727


Searches for new physics
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If p0 very small or Z large we reject H0 → discovery of new physics!

This is exactly how we discovered the 
Higgs boson in 2012!

Z

Phys. Lett. B 716 (2012)



Upper limits
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What about if we don’t see any excess in the data? 

observable



Upper limits
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What about if we don’t see any excess in the data? → We invert the hypotheses
• Our null hypothesis H0 is the standard model + new particle - sometimes called “background only”
• The alternate hypothesis H1 is the standard model

observable

H1

H0

Test-statistic for upper limits at the LHC

Test-statistic is a function of the signal 
strength: H0 → H(μ)
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Upper limits - CLs

We need to be careful in this case to avoid excluding a signal when the data also doesn’t agree 
well with the background hypothesis → replace p-value with ratio of p-values

Asymptotic formulae for 

these distributions also in 
Eur.Phys.J.C71:1554,2011 

https://arxiv.org/abs/1007.1727
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Upper limits - CLs

Derive upper limits on μ by scanning for CLs = α

Example α=0.05 → 95% confidence level 
upper limit on signal strength  
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Upper limits - CLs

Derive upper limits on μ by scanning for CLs = α

Example α=0.05 → 95% confidence level 
upper limit on signal strength  

Upper limit on μ tells us the smallest amount 
of signal that can be excluded 
→ every value larger is excluded at 95% CL 
→ every H(μ) with μ>~0.35 is excluded

EXCLUDED
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Upper limits - CLs
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Remember that 

So whenever                 we exclude the 
signal model (at 95% CL)

Many BSM theories will include parameters that 
must be specified to predict
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Upper limits - CLs
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Remember that 

So whenever                 we exclude the 
signal model (at 95% CL)

Many BSM theories will include parameters that 
must be specified to predict

→ Scan over parameters and shade region for 
which    

→ excluded region of the BSM theory! 
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Expected results
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Significance and upper limits are also random variables! 
 → If we want to know how sensitive our analysis is, we can calculate expected results 

Replace data with expectation 
→ Asimov datasets 



End of lectures
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We have covered the basic data analysis and statistics methods used mostly at the LHC, however, there are many 
more techniques that have been / are used depending on the analysis that we don’t have time to cover

You can also find some more interactive practical statistics examples in my GitHub area : 
https://github.com/nucleosynthesis/IntroductionToStatistics?tab=readme-ov-file 

Here are some further reading 
links for LHC statistics in case 
you are interested 

https://github.com/nucleosynthesis/IntroductionToStatistics?tab=readme-ov-file


Now it’s your turn

53Nicholas Wardle

In tomorrow’s exercise, you will include control regions and 
systematic uncertainties in your statistical analysis and see how 
this degrades the sensitivity of the measurement

Don’t worry if you didn’t complete the previous exercise, all of the solutions can be found in 
ttbarAnalysis/exercise2solutions



(Extra Slide) Interpolation example
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The effects of correlated systematic uncertainties on nI are 
modelled using quadratic(linear) interpo(extrapo)lation 
function – simplified example of interpolation



(Extra Slide) p0 distribution
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The p-value is
• A random variable that depends on the observed data 

(it’s a post-observation quantity )
• Distributed uniformly between 0 and 1 under the null 

hypothesis

tobs

p

Since F(.) is  monotonic and increasing

→ F(t) is uniform
→ p is uniformWhich is true for any tobs
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(Extra Slide) p0 distribution

p-value is flat under H0

tobs

p
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