

Data analysis and Statistics at the LHC

Dr. Nicholas Wardle

VSOP Quy Nhon, Vietnam 15-26 July 2024

Uncertainties @ the LHC Recap

Uncertainties @ the LHC Recap

Nicholas Wardle

Systematic Uncertainties

Experimental/Detector systematics:

• Object efficiencies, energy calibrations, luminosity

Signal theory uncertainties:

• Inclusive x-section uncertainties, QCD scale, pdf, UEPS, Branching ratios, jet counting

Background theory uncertainties:

- Often rather different phase-spaces considered for extrapolating from control regions for data-driven estimates
- Limited simulation size to predict p(B)

Cross-section example

Remember our formulae for the number of expected event

$N = L\sigma$

This tells us the total (inclusive) expected rate of events but from lecture 1, we know that we don't keep all of the events \rightarrow selection!

proton - (anti)proton cross sections

Acceptance

Need to account for acceptance of detector for different physics objects

Efficiency

$N = L\sigma A\epsilon$

Not all particles reconstructed with perfect efficiency (missing hits in tracker, leakage/gaps in calorimeter...)

→ Uncertainty in measurements offline and **online** can lead to **uncertainty in total efficiency** of selection

Nuisance parameters

We model the effects of systematic uncertainties through the introduction of nuisance parameters into our model

 $p(X;\theta) \to p(X;\mu,\nu)$

- μ Parameters of interest: cross-section, Top mass, ...
- *V* **Nuisance parameters:** Jet energy scale, Luminosity, ...

We need to choose a parameterization for the effects of each of our nuisance parameters

Nuisance parameters

We model the effects of systematic uncertainties through the introduction of nuisance parameters into our model

 $p(X;\theta) \to p(X;\mu,\nu)$

$$\mu$$
 Parameters of interest: cross-section, Top mass, ...

V Nuisance parameters: Jet energy scale, Luminosity, ...

$$N = \mu \cdot \sigma L_0(\kappa)^{\nu} A \epsilon$$

We often use "log-normal" uncertainties to model the effect of each nuisance parameter – eg for luminosity uncertainty

Shape uncertainties

For distributions (shapes) this is more complicated as whole distribution can change as a result of varying nuisance parameters

templates to derive continuous parameterization of shape

Enhancing the Likelihood function

Nuisance parameters often constrained through measurements → calibration measurements for energy scale, tag-and-probe for efficiencies etc ...

We can **include these constraints** in the likelihood function!

Eg for a Poisson likelihood,

 $\lambda(r,\nu) = r\sigma L_0(1.3)^{\nu} A\epsilon$

0.4

0.3

0.2

۲ ۲

Profiled likelihood

For statistical inference, we replace the likelihood function with the **profiled likelihood function**

$$L(\mu,\nu) \to L(\mu,\hat{\nu}(\mu)) \quad \& \quad \zeta_{\mu,\nu} \to \zeta_{\mu} = -2\log\frac{L(\mu,\hat{\nu}(\mu))}{L(\hat{\mu},\hat{\nu}(\hat{\mu}))}$$

Analysis strategies

When designing an analysis, we try to consider the balance between systematic and statistical effects! For example, lets consider cross-section measurements of $pp \rightarrow W \rightarrow ev$

Analysis strategies

When designing an analysis, we try to consider the balance between systematic and statistical effects! For example, lets consider cross-section measurements of $pp \rightarrow W \rightarrow ev$

Large background from **QCD multijet events**

Strategy 1: Use simulated events to estimate background contribution

Systematic effects: luminosity, hadronization model, missing momentum model ...

Strategy 2: Use ABCD method to estimate contribution from data

Systematic effects: luminosity, hadronization model, missing momentum model, limited events in data to estimate, correlation assumptions

Need to study total systematic uncertainties in different scenarios!

Remember that for N independent observations $X = \{X_1, X_2, ..., X_N\}$, the likelihood function is,

Remember that for N independent observations $X = \{X_1, X_2, ..., X_N\}$, the likelihood function is, N

$$L(\theta) := \prod_{i=1}^{n} f_i(X_i; \theta),$$

This means
$$-\ln L(\theta) = -\sum_{i=1}^{N} \ln(f_i(X_i; \theta)) = \sum_{i=1}^{N} -\ln(L_i(\theta))$$

We can sum the negative log likelihood curves to obtained the **combined negative log likelihood** → measurements can be easily combined

$$-\ln L_{\text{comb}}(\theta) = -\ln L_1(\theta) - \ln L_2(\theta)$$

This is **not true** for **profiled likelihoods**!

$$-\ln L_{\text{comb}}(\mu, \hat{\nu}(\mu)) \neq -\ln L_1(\mu, \hat{\nu}(\mu)) - \ln L_2(\mu, \hat{\nu}(\mu))$$

This is **not true** for **profiled likelihoods**!

$$-\ln L_{\text{comb}}(\mu, \hat{\nu}(\mu)) \neq -\ln L_1(\mu, \hat{\nu}(\mu)) - \ln L_2(\mu, \hat{\nu}(\mu))$$

Hypothesis testing

Now we know how measurements are made, what about results like this one?

Hypothesis testing

Suppose that we have to choose between two hypotheses labelled Ho and H1. We typically distinguish the two as;

```
H_0 := the null hypothesis
H_1 := the alternate hypothesis
```

Example : H_o = Standard Model, H₁ = Supersymmetry

X is a function of the experimental observations which is supposed to summarize the observations – this is known as a *test statistic*.

Suppose then that we have our chosen test statistic $X \in \mathcal{W}$

We divide this region W into a **critical region** W and a **region of acceptance** W - W

Observations of X falling into w would lead us to believe that our null hypothesis is **not true**. Reject H_0 if X in \bigvee

Accept H_0 if X in

 \mathcal{W}

 $\mathcal{W} - w$

Defining a test of H_o , given we've

decided on our test statistic, then becomes choosing a critical region w

W

Type-I Error : In practise, we often tune the critical region so as to obtain a particular probability (known as the size of the test) α that X falls into the critical region when H₀ is true (we usually say "under H₀")

You can see then that **α** is exactly **the probability to reject the null hypothesis if the null hypothesis is true**

Type-II Error: Of course, we also want to know how useful a test is at discriminating against the alternate hypothesis. This is known as the **power of the test**, and is defined as the probability of X falling into the critical region if H₁ is true (under H₁),

 $P(X \in w | H_1) = 1 - \beta$

Clearly this is related to the probability that *X* falls into the acceptance region via

$$P(X \in W - w|H_1) = 1 - P(X \in w|H_1) \neq \beta$$

Then β is the probability that we would accept the null hypothesis when the alternative hypothesis is true

Hypothesis tests

There are a huge number of hypothesis tests on the market for use in various problems, however they generally follow the same routine;

- 1. Define a test (summary) statistic $t \in \mathbb{R}$ that summarizes the observations and has some separation between H_o and H_1
- 2. Define a critical region w such that

$$\int_{w} f(t|H_0) = \alpha$$

where α is a predefined value between 0 and 1.

Hypothesis tests

There are a huge number of hypothesis tests on the market for use in various problems, however they generally follow the same routine;

- 1. Define a test (summary) statistic $t \in \mathbb{R}$ that summarizes the observations and has some separation between H_o and H_1
- 2. Define a critical region w such that

$$\int_{w} f(t|H_0) = \alpha$$

where α is a predefined value between 0 and 1.

3. Determine the value of t in the observed data, $t_{\rm obs}$ 4. Reject ${\rm H_o}$ if $t_{\rm obs}\in w$

Example – Student's t-test

The Student's t-test is a simple hypothesis test based on the expectation values of distributions

$$t = \sqrt{rac{N}{ar{V}}} \left(ar{X} - \mu
ight)$$

Small and large values of t indicate that the data has a significantly different expectation compared to H_0

Example – Student's t-test

Choosing
$$\alpha$$
 = 0.05, we can define t_{min} and t_{max} such that

$$\int_{-\infty}^{t_{\min}} f(t|H_0) dt = \int_{t_{\max}}^{+\infty} f(t|H_0) dt = 0.025$$

Nicholas Wardle

For a fixed value of α can we find the test that gives the best power (1- β)?

For a fixed value of α can we find the test that gives the best power (1- β)? Yes \rightarrow Neyman-Pearson lemma

Let's think about some observed data **X** and suppose it has a probability distribution function $f(X;\theta)$, where θ is used to represent our hypotheses:

 θ = θ_{o} represents the null hypothesis $H_{^{0}}$

 $\theta = \theta_1$ represents the alternate hypothesis H₁

What I mean is $f(X|H(\theta)) = f(X;\theta)$

For a fixed value of α can we find the test that gives the best power (1- β)? Yes \rightarrow Neyman-Pearson lemma

Let's think about some observed data **X** and suppose it has a probability distribution function $f(X;\theta)$, where θ is used to represent our hypotheses:

 θ = θ_{o} represents the null hypothesis $H_{^{0}}$

 $\theta = \theta_1$ represents the alternate hypothesis H₁

What I mean is $f(X|H(\theta)) = f(X;\theta)$

For a specific size of test α we choose w such that.

$$\int_{w} f(\mathbf{X}; \theta_0) d\mathbf{X} = \alpha$$

and we want to find the region w which maximises 1 – β

$$1-eta = \int_w f(\mathbf{X}; \theta_1) d\mathbf{X}$$

$$1 - \beta = \int_{w} f(\mathbf{X}; \theta_{1}) d\mathbf{X}$$
$$= \int_{w} \frac{f(\mathbf{X}; \theta_{1})}{f(\mathbf{X}; \theta_{0})} f(\mathbf{X}; \theta_{0}) d\mathbf{X}$$

Expectation value in a restricted space w

$$= E\left[\frac{f(\mathbf{X};\theta_1)}{f(\mathbf{X};\theta_0)}\middle|\theta=\theta_0\right]_w$$

This quantity is the **ratio of the likelihood function**, evaluated under the two hypotheses

1- β will be maximal when w is chosen to contain the largest values of Λ

→ The best critical region is the set of points for which $\Lambda \ge c_{\alpha} \in R$, where c_{α} satisfies

$$\int_{w} f(\mathbf{X}; \theta_0) d\mathbf{X} = \alpha$$

The likelihood ratio is the most powerful test (fact used very often in Machine Learning!)

→ If $\Lambda > c_{\alpha}$, we would choose H₁, while $\Lambda \leq c_{\alpha}$ leads us to choose H₀!

Example: Gaussian distributions

 H_o and H_1 are both Gaussian distributions with the same mean (μ) but different width (σ) or vice-versa

Example: Gaussian distributions

Profiled likelihood ratio based test

Compatibility of data and prediction (H_o) in distributions

$$x = -2\ln\frac{L(H_0)}{L(H_1)}$$

Profiled likelihood ratio based test

Compatibility of data and prediction ($\rm H_{\rm o}$) in distributions

Make use of the **saturated likelihood as alternative H**₁ → Best possible fit to data

$$x = 2\sum_{i} f_i(\hat{\theta}) - d_i + d_i \ln \frac{d_i}{f_i(\hat{\theta})}$$

Profiled likelihood ratio based test

Compatibility of data and prediction ($\rm H_{\rm o}$) in distributions

Make use of the **saturated likelihood as alternative H**₁ → Best possible fit to data

Let's imagine we are searching for a new particle X:

- Our null hypothesis H_o is the standard model sometimes called "background only"
- The alternate hypothesis H_1 is the standard model + the new particle or signal + background

Let's imagine we are searching for a new particle X:

- Our null hypothesis H_o is the standard model sometimes called "background only"
- The alternate hypothesis H_1 is the standard model + the new particle or signal + background

Let's imagine we are searching for a new particle X:

- Our null hypothesis H_0 is the standard model sometimes called "background only"
- The alternate hypothesis H_1 is the standard model + the new particle or signal + background

In the large statistics limit, the distribution of the test statistic is known (see <u>Eur.Phys.J.C71:1554,2011</u>)

We convert p-values into significances (Z-score) through simple formula

If p_o very small or Z large we reject $H_o \rightarrow$ discovery of new physics!

Upper limits

What about if we don't see any excess in the data?

Upper limits

What about if we don't see any excess in the data? \rightarrow We invert the hypotheses

- Our null hypothesis H_o is the standard model + new particle sometimes called "background only"
- The alternate hypothesis H_1 is the standard model

Test-statistic for upper limits at the LHC

$$\widetilde{q}_{\text{LHC}}(\mu) = \begin{cases} -2\ln\left(\frac{\mathcal{L}(\mu, \hat{\vec{v}}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\vec{v}})}\right) & \text{if } 0 \leq \hat{\mu} \leq \mu, \\ -2\ln\left(\frac{\mathcal{L}(\mu, \hat{\vec{v}}(\mu))}{\mathcal{L}(0, \hat{\vec{v}}(0))}\right) & \text{if } \hat{\mu} < 0, \\ 0 & \text{if } \hat{\mu} > \mu, \end{cases}$$

Test-statistic is a function of the signal strength: $H_o \rightarrow H(\mu)$

Upper limits - CLs

We need to be careful in this case to avoid excluding a signal when the data also doesn't agree well with the background hypothesis \rightarrow replace p-value with ratio of p-values

Upper limits - CLs

Derive upper limits on μ by scanning for $CL_s = \alpha$

<u>Upper limits - CLs</u>

Derive upper limits on μ by scanning for $CL_s = \alpha$ 0.30 Example $\alpha = 0.05 \rightarrow 95\%$ confidence level 0.25 upper limit on signal strength Upper limit on μ tells us the *smallest* amount 0.20 of signal that can be excluded \rightarrow every value larger is excluded at 95% CL പ് 0.15 \rightarrow every H(μ) with μ >~0.35 is excluded 0.10 **EXCLUDED** 0.05 0.00 0.3 0.2 0.5 0.4 0.6

0.1

 μ

Upper limits - CLs

Remember that

 σ \overline{X} $\sigma(pp -$

So whenever $\mu < 1$ we exclude the signal model (at 95% CL)

Many BSM theories will include parameters that must be specified to predict $\sigma(pp \to X)$

Upper limits - CLs

Remember that $~~\mu=~$

$$\frac{\sigma}{\sigma(pp \to X)}$$

So whenever $\mu < 1$ we exclude the signal model (at 95% CL)

Many BSM theories will include parameters that must be specified to predict $\sigma(pp \to X)$

- $\textbf{\textbf{\rightarrow}}$ Scan over parameters and shade region for which $\,\mu < 1$
- ightarrow excluded region of the BSM theory!

Expected results

Significance and upper limits are also random variables!

 \rightarrow If we want to know how sensitive our analysis is, we can calculate expected results

End of lectures

We have covered the basic data analysis and statistics methods used mostly at the LHC, however, there are many more techniques that have been / are used depending on the analysis that we don't have time to cover

Here are some further reading links for LHC statistics in case you are interested

- F. James, "Statistical Methods in Experimental Physics", ISBN: 978-9-812-70527-3 (2006).
- G. Cowan, "Statistical Data Analysis", ISBN: 978-0-198-50155-8 (1998).
- G. Cowan, "Statistics" (section 39) in "*Review of particle physics*", Chin. Phys. C 40, 100001 (2016).
- L. Lista, "Statistical Methods for Data Analysis in Particle Physics", ISBN 978-3-319-20176-4, (2015).
- A. Stuart, K. Ord, S. Arnold, "*Kendall's Advanced theory of Statistics*", Vol 2A: Classical inference and the linear model, ISBN: 978-0-470-68924-0 (2010).
 - L. Lyons, N. Wardle, "*Statistical issues in searches for new phenomena in High Energy Physics*", Journal of Physics G: Nuclear and Particle Physics, Volume 45, Number 3.
 - O. Behnke, K. Kroninger, G. Schott, T. Schorner-Sadenius, "*Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods*", ISBN: 978-3-527-41058-3 (2013).
 - K. Cramner, "*Practical Statistics for the LHC*", Proceedings, 2011 European School of High-Energy Physics, (2011).

Now it's your turn

In tomorrow's exercise, you will include control regions and systematic uncertainties in your statistical analysis and see how this degrades the sensitivity of the measurement

Exercise 3 - Control Regions and Systematic Uncertainties

Launch the cms_combine container by typing the following into a terminal on your laptop (or by clicking the play button next to the cms_combine container in the Docker desktop application and using the terminal there).

Bash	
docker start -i cms_combine	

In today's exercise, we are going to use our 4j0b control region that we populated at the end of exercise 2 to constrain our wjets process in our 4j2b signal region. Don't worry if you didn't manage to process the samples to create the histograms for the 4j0b region. I have put a .csv file exercise2solutions/allregions_mbjj.csv that has both the signal region and control region histograms for you. You'll also find the datacard for the signal region in the same folder: signalregion_mbjj.txt.

Don't worry if you didn't complete the previous exercise, all of the solutions can be found in ttbarAnalysis/exercise2solutions

(Extra Slide) Interpolation example

The effects of correlated systematic uncertainties on n_i are modelled using quadratic(linear) interpo(extrapo)lation function – simplified example of interpolation

$$f_I(\boldsymbol{\delta}) = f_I^0 \cdot \frac{1}{F(\boldsymbol{\delta})} \prod_j p_{Ij}(\delta_j)$$

 $F(\boldsymbol{\delta}) = \sum_{I} f_{I}(\boldsymbol{\delta})$

$$f_{II}(\delta) = f_{I}^{0} \cdot \frac{1}{F(\delta)} \prod_{j} p_{Ij}(\delta_{j})$$

$$F(\delta) = \sum_{I} f_{I}(\delta)$$

$$\int_{I} \frac{1}{2} \delta_{j}(\delta_{j} - 1) \kappa_{Ij}^{-} - (\delta_{j} - 1)(\delta_{j} + 1) + \frac{1}{2} \delta_{j}(\delta_{j} + 1) \kappa_{Ij}^{+} \text{ for } |\delta_{j}| < 1$$

$$p_{Ij}(\delta_{j}) = \begin{cases} \frac{1}{2} \delta_{j}(\delta_{I} - 1) \kappa_{Ij}^{-} - (\delta_{j} - 1)(\delta_{j} + 1) + \frac{1}{2} \delta_{j}(\delta_{j} + 1) \kappa_{Ij}^{+} \text{ for } |\delta_{j}| < 1$$

$$\left[\frac{1}{2} (3\kappa_{Ij}^{+} + \kappa_{Ij}^{-}) - 2 \right] \delta_{j} - \frac{1}{2} (\kappa_{Ij}^{+} + \kappa_{Ij}^{-}) + 2 \text{ for } \delta_{j} > 1$$

$$\left[2 - \frac{1}{2} (3\kappa_{Ij}^{-} + \kappa_{Ij}^{+}) \right] \delta_{j} - \frac{1}{2} (\kappa_{Ij}^{+} + \kappa_{Ij}^{-}) + 2 \text{ for } \delta_{j} < -1 \end{cases}$$

(Extra Slide) po distribution

The p-value is

- A random variable that depends on the observed data (it's a post-observation quantity)
- Distributed uniformly between 0 and 1 under the null hypothesis

 $p = P(t > t_{obs}|H_0) = 1 - P(t < t_{obs}|H_0) = 1 - F(t)$

 $1 - F(t) = P(t > t_{obs}|H_0) = P(F(t) > F(t_{obs})|H_0) = 1 - P(F(t) < F(t_{obs})|H_0)$

Since F(.) is monotonic and increasing

 $F(t) = P(F(t) < F(t_{obs})|H_0) \rightarrow F(t) \text{ is uniform}$ Which is true for any t_{obs} \rightarrow p is uniform

(Extra Slide) p_o distribution

p-value is flat under $\rm H_{\rm o}$

