
Flavors Symmetries in SM.

Limiter contains R.E. & gange interpolitions of the SM

Cormica Gelds: $\frac{\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{$ $P = Y^{n}D_{p} = Convariant derivative$ (3) The above Limiter is written using all left-handed fields. The left-handed charge-conjugate fields are related to the right-hander fields. Rocall the following charge-conjugate field definition

(4) $\psi^c = C \overline{\psi}^T = C (\psi^{\dagger} \chi^o)^T = C \chi^o T \psi^* = C \chi^o \psi^*$ $(5) \Rightarrow (4^{\circ})_{\perp} = P_{\perp} \psi^{\circ} = P_{\perp} C \delta^{\circ} \psi^{*} = C \delta^{\circ} P_{R} \psi^{*} = C \delta^{\circ} \psi^{*}_{R} = C \delta^{\circ$ Taking the Dirac adjoint, we have $\frac{(\psi^{c})}{(\psi^{c})} = C y^{o} \psi^{*} = (C y^{o} \psi^{*})^{\dagger} y^{o} = \psi^{\dagger} y^{o} t^{c} t^{o}$ $= \psi^{\dagger} y^{o} (c^{-1}) y^{o} \qquad (C = t^{-1} t^{o})^{c} + t^{-1} t^{o} t^{o}$ $= -\psi^{\dagger} c^{-1} y^{o} = -\psi^{\dagger} c^{-1} t^{o}$ $= -\psi^{\dagger} c^{-1} t^{o} = -\psi^{\dagger} c^{-1}$ $= -\psi^{\dagger} c^{-1} t^{o} = -\psi^{\dagger} c^{-1}$ $= 0 = \psi^{\dagger} c^{-1} t^{o} = -$ = -4T(-81)TFT (-81)TFT) $= \mathcal{Y}_{R}^{T} \mathcal{Y}_{R}^{T} \mathcal{Y}_{R}^{T} = (\mathcal{T}_{R} \mathcal{Y}_{R} \mathcal{Y}_{R}) = \mathcal{Y}_{R} \mathcal{Y}_{R} \mathcal{Y}_{R} \mathcal{Y}_{R}$ 中央研究院物理研究所 = -(4R) + 2R = -2(4R) + 4R + 4R = -2(4R) + 4

* Setting all intensition to zero

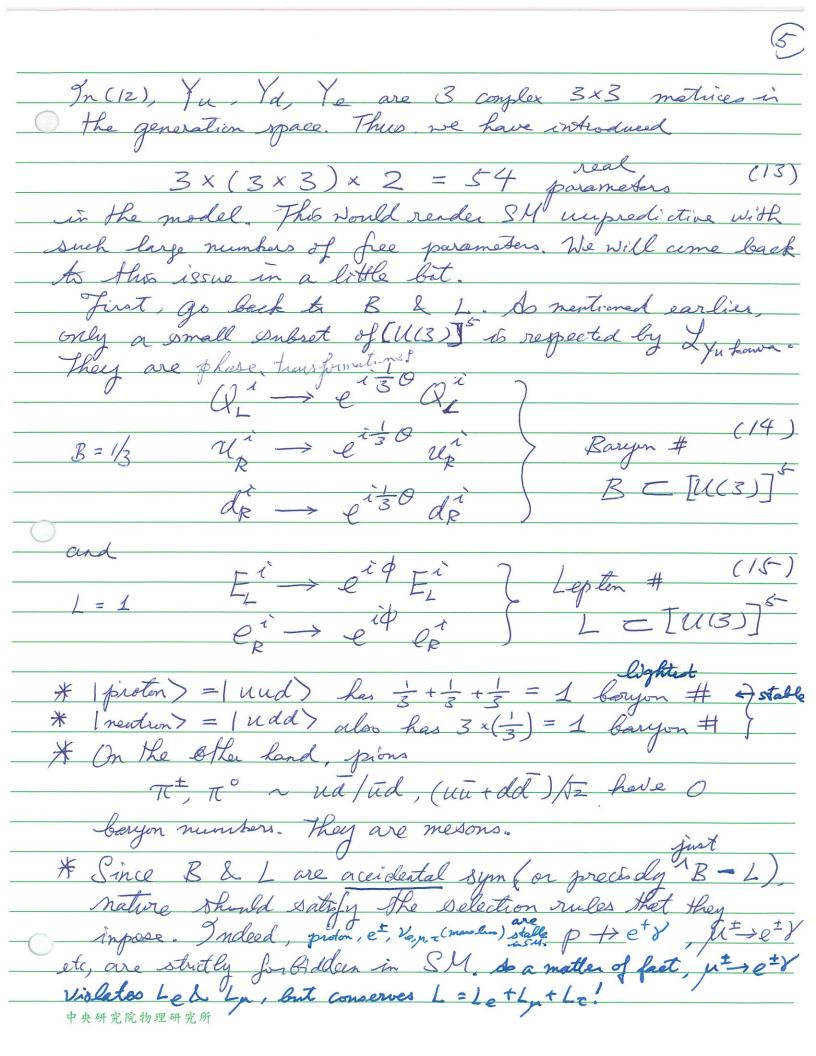
2 Matter in Standard form used in

mest text books: * Note that fermion mass terms are for Gidden in SM.

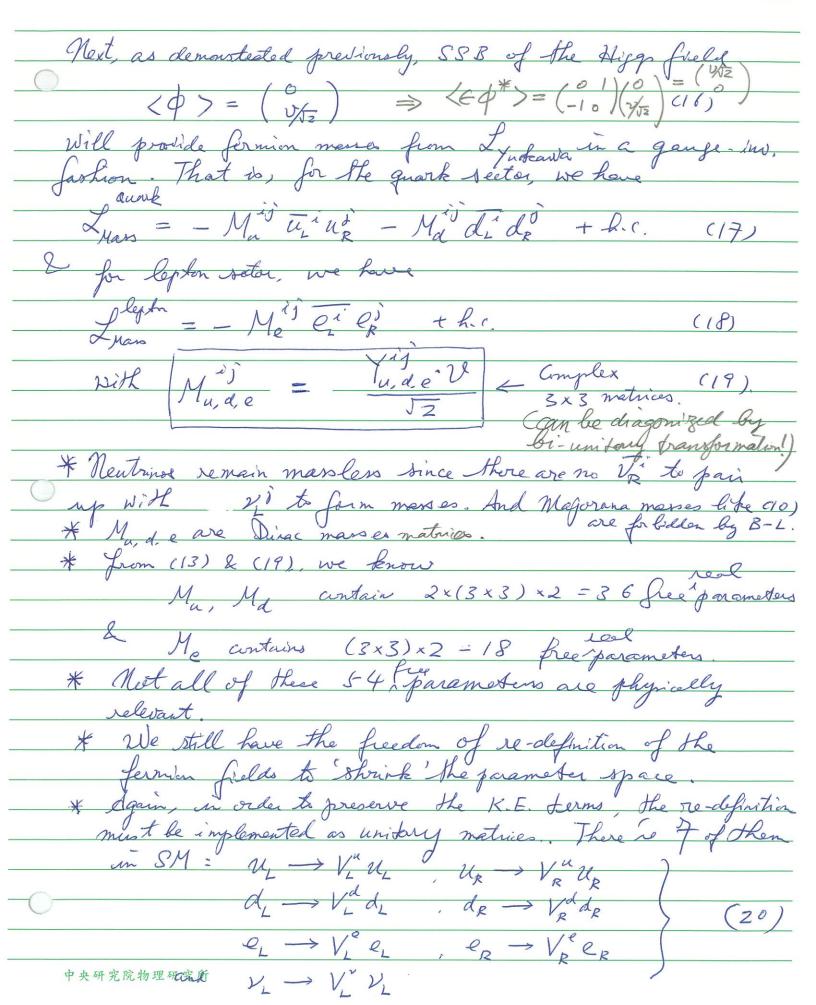
(bare) Dirac mass terms are forbidden because no fermion Stansforms under the complex-conjugate representation of another fermion. Majorana mass terms are forbidden because

(a) all fermions in SM carry no-zero hypercharge;
furthermore, (b) some fernions transform under complex ivreps of SUC32 (c) Some fermions transform under a pseudireal irveps. of SUCZ).

If one extends SM ley including sterile neutrinos N_R^{i} ,


then majorana man term is possible for N_R^{i} $-\frac{1}{2}M_R^{ij}N_R^{iT}CN_R^3 + h.c.$ (9) O Actually one can written a Majorano men term for - 1 Mid Vit C Vd + L.c. (10) Although this is Lorestz invariant, it breaks SU(2), x U(1), and also the global actidental lepton munter by two

The matter Lograngian Lotter in (8) has a lot of a cidental global symmetry, where UR, UR, Udr, UE, Uer are renidery


3x3 matrices (for 3 generations). Unitary Matrices 4 preserve K.E. This is the flavor symmetry group [U(3)] for 3 generations of quarks & leptons. However, This large global accidential flavor symmetry to Violated by the Tukawa couplings of the fernions with the Higgs field &: For F Lynakawe = - Y'' Q'' E & W' - Y'' Q' A Q' - Y² E¹ φ e² + h.c. (12) φ = φ = εφThe assual subset of (U(3)) is

is often used. respected by the Yn kawa interaction (12). They are the Caryon & lepton mulinher symmetries in SM.

* Jude carry generation indices, whereas it doesn't of the page of the page of the carry generation indices, whereas it doesn't of the page of the page of the page of the carry generation indices, whereas it doesn't of the page of the pa

* Thypico computation can be carried out in junique Yukawa molices & Yu, Yd, Ye } and hence & Mu, Md, Me }, which is allowed by field-redefinition, make the computation much easier & the pohysical meaning is * But what happen to the rest of the Lagragian Apparantly, Lgange & Lyigg are unaffected.

Show about I matter which has (U(3)) flavor symmetry

Certainly for the field-redefinition Unatives

Vi = Vi = Ua_ V_ = V_ = UE, $\in [U(3)]^{5}$ VR = WuR -VR = UdR Ve = Ver belong to [U(3)] o These should ledve I matter * Now, Vin + Vid is tenable because gauge invariant.

is broken by the Higgs Meckensom.

Thus performing the transformations in (20) is O.K. Hirrary The should subratt away the parameters.

That are related to the flavor [U(3)] except the global U/1) baryon number or U(1), lepton number. Recall that U(1) B & U(1), are accidental global Symmetries in SM. Hence they are physical, reflected by the selection rules in all firecesses in SM. i.e. the O& 中央研究院物理研究所 in (14) & (15) are garanesers that can't be used to do lield-redefinitions!

First we have the following countings of free parameters in the Yukawa conglings Yu, Yd, Ye using (U(3)). For the quark case, we have $2 \times (3 \times 3) \times 2 - (3(3 \times 3) - 1)$ # of free parameters # of free Baryon # parameters in Yu & Yd parameters in does n't count.

(or Mu & Ma)

UQ, UUR, UdR

(23) = 36 = 10 indep free 18 real + 18 phases - 1 global parameters Exercise: Show that a NXN unitary matrix has

\[
\frac{1}{2}N(N-1) real & \frac{1}{2}N(N-1) phases.
\]

* Note SO(N) = SU(N) P. free real parameters, \frac{1}{2}N(N+1) phases. The 10 parameters can be chosen as the 6 quark masses I'm, Md, Ms, Mc, Mb, Mt & plus the 3 angles & 1 (CP) place in the CKM mixing matrix $V_{CKM} = (V_u)^{\dagger}(V_d)$.

Repeating the counting exercise for the lepton case, we have $(3x3) \times 2 - (2x(3x3) - 1) = 1 (24)$ # of free garameters

in Ye (or Me)

parameters in UE le le count this counting is incorrect, since we have at least three masses Me, Mr, & Mz whih we all ondependent! * CKM: Cabbibo, Kobyashi, - Maskawa Oc 3 generations - CP of guarks

global Rym. : U(1) B × U(1) × U(1) × U(1) In fact, for the lepton case, L=Letln+Le. And we have individual lepton H symmetries Le, Lu L Lt. i.e. We should have subtracted 3 instead of 1 in (24). (24) becomes Le, Ly, L = $(3 \times 3) \times 2 - (2 \times (3 \times 3) - 3) = 3$ (24) These 3 free garameters are the three lepton morses me,

m, & m. There are no mixing angles & CP phase
in SH for massless neutrinos. Stogether, we have 18+1 free parameters in SM: 18 = 10 + 3 + (9,9,9s) + GF + λ + Occording (24)

(quark (lepton 3 gauge complex Fermi things (CD)

(m, ..., u) (me, mp, me)

(V) compling (24) * Now, back, to the Yukawas. Using field redefinitions, - sperform diagonalization of the Ynhawa Matrices (or equiv. Mass matrices) From previous lectures, we know, after diagonalization, the physical Diggs he complex to the SM firmiens diagonally, i.e. there's no FCVC in the Higgs' $L = -\sum m_f f f \left(1 + \frac{h}{v}\right) \left\{Fla \cdot diagoals\right\}$ $P(h \to f\bar{f}) = N_c(f(\frac{x m_R}{8\sin^2\theta_W}) \frac{m_f^2}{m_W^2} (1 - \frac{4m_f^2}{m_R^2})^2$ 中央研究院物理研究所 N_c(f) = { 3 lepton (color factor) (27)

We now know that	t reutrinos are	not massless	Experime	utoli to
observed neutrinos	can oscillate	burn one spo	rcies to ano	ther
which requires mass	eve neutrinos t	to do so. The	e simplest	
thing to do in St			/ /	-0
neutrinos NR (i=	1, 2,3) Which c	ary no SH	quantum.	number
but has a lepto	n #+1. 7	ien, just lik	se the ())")
Ynhawa Coupling	for the u-type	e quarke, w	e have a	on addition
Jukawa Coupling Juka	wa compling	for the next	ines	
/\ \all \all \	= +*			(28)
- (TV) V	ELEY NR	thic.		(20)
After symmetry bread	ting neutrinos	can pick up	s Pivac me	me
as /	V= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V		
$-(Y_{\nu})^{ij} \vec{E}_{L}^{i} \left(\longrightarrow -M_{\nu}^{ij} \vec{Z}^{i} \right)$	102 No + hic			***************************************
	0 /		1.	(29)
O > MiJ vi	Notla	$M^{\prime\prime} = +$	YV 1)	
-11v /L	The thick,	110	12	
M.	40 =	Λ	, ,	10
Mor, we can repeat lepton sector with ?	the counting o	of index para	moders on	the
lepton sector with o	nessive ments	ines, (which is	exactly a	nalogous
the grank seden)		_	0.0	
			lefter #	
2 × (3 × 3) × 2	- (3(3	(x3) - 1)	= 10	(30)
# 1 6 - 4 - 1	200 H of 6	el parameters		
# of fee paramet		g .	(· · · · · · · · · · ·	7:.)
in Me 2 My	in U	L. Her, UNR	un tary ma	(lives)
	gange	ins.		
	Ve =	Vi Chefore Sym	· presting)	(21)
* There 10 garan	refers are	V		- (31)
& Me, My, Mz,	my my m.	3 + VPMN	$c = (V_{i}^{\perp})$	Ve)
t to post	1) 5, 3	(3 pm	eles plus !	Direc
中央研究院物理研究所			CA	Share)

Since No is sterile, gange symmetry doesn't forbid a Majorana mass term - 1 Mid NiTC Ni + L.c. (Mi = Mi) (32) Which is renormalyable with dimension 3. Hivever it violettes lepton number by 2 write since NR has lysten + 1, according to (28). But lepton number (and baryon no reason to regard it as an exact symmetry if one extends SM (like introducing No and hence (32)!) So let's include (32) in our extension of SM by introduci. Næ. The Legrangian for NR ss now ZNE = i NR DNR (- EL Y, Ep NR - = NR MR CNR + h.c. There we have suppressed the generation indices.

Suppose now that Mp is much larger than its kinetic from so that we can ignore the 15t term in Z_N . Then the FOM for N_R as samply $\frac{\partial J_NR}{\partial N_R} = 0 \implies + \overline{E_L} Y_L \in \phi^* - \frac{1}{2} M_R C N_R + \frac{1}{2} N_R^T M_R C = 0$ Here we have flyped sign due to Grassmanian nature when INR moves to the right to act on the right most Np. Mon the last two terms can be can bined:

- 1/2 (NR C NR) = - 1/2 MR C C R NR = - 1/2 NR (-Cpx) MR

= + 1/2 (NR MR C) & same as the last term.

(35)

Solding NR from (36):

CMRNR = - + EYN FEL (MR) C- (CMRN) = (MR) C- (- + EXTY EX) $\Rightarrow N_R = -\phi^{\dagger} \in C' Y'' (M_R)^{-1} Y, T E_L^*$ $C = -C = \phi^{\dagger} \in C \, \gamma^{\circ} (\gamma_{\nu} M_{R})^{T} E_{L}^{*} \qquad (37)$ Plugging (37) back into the Lagrangian (33), we obtain a dim. 5 operator Lo. L= - ELYNCON NR - INT MRCNR + h.c. =- EX, E & + C & CY, MR) Ex + h.r. - = EL (Y,MR) 8°(-C)(-E) +* MR C. + EC8°(Y,MR)EL* Now using $\{\gamma^{\circ}, C\} = 0$, $C^{-1} = -C$, $\epsilon^{2} = -1$, and +h.c.be careful about the indices groupings, we have L-=+E, YOE +* CY, (Y, M,) + EE* + h.c. - - Et(80) E PC YV (YVMR) P E EL* " ELY" = Et & (Y°) = 1, we have $=+ (E_{L}^{\dagger} \in \phi^{\ast}C) \xrightarrow{C''} (\phi^{\dagger} \in E_{L}^{\ast \dagger}) + h.c.$ Phere (i)
中央研究院物理研究屏 + (Yu (Yu Mp)) = (39)

M Symmetric (39)

M generation space.

When of takes its VEV 1/52, (38) gives rise to a Majorano mass from to the left-handed neutrinos Vi: $\mathcal{L} \longrightarrow + \mathcal{V}_{L}^{\dagger i} \mathcal{C} \left(\frac{\mathcal{V}^{2} \mathcal{C}^{ij}}{2 M} \right) \mathcal{V}_{L}^{*j} + \mathcal{L}_{L} \mathcal{C}_{L}^{*j}$ $= + \frac{1}{2} \nu_{\perp}^{\dagger \dagger} C (M_{\perp}^{\dagger})^{\dagger} \nu_{\perp}^{\dagger \dagger} + h.c.$ $= + \frac{1}{2} \nu_{\perp}^{\dagger} C M_{\perp}^{\dagger} \nu_{\perp}^{\dagger} - \frac{1}{2} \nu_{\perp}^{\dagger} C M_{\perp} \nu_{\perp} \qquad (mote \ C = -C).$ (40) with M_ = \frac{v^2}{M} C^{\frac{1}{2}}, with \frac{C}{M} given by (39). (41). Eq. (38) is known as Weinberg's operator in the literature It's the only dim 5 gauge invariant operator in the So-called SM effective field theory (SMEFT). SMEFT = Long + 1 Long + - 12 Lo + - - (42) " fitted " SM gauge indurcant
in a T-shirt" while there's only I operator at din = 5. There are many din = 6 operators (80?) ---Now the majorana mans term (40) for the mentrinos was induced by a higher-dim. gange-invariant Weindey operator. Recall that (40) by itself was not allowed at tree level due to gampe invariance. And the Weinberg Operator can be viewed as a low-energy operator as a rasult of integrating out the heavy right-harled neutiens Nps. In fact, (41) to the See- Saw Mechanism.

Now we will take an effective theory point of when for the s	M.
How we will take an effective theory point of view for the S of one truncate the SMEFT at Dim 5, we have	
$\mathcal{L} = \mathcal{L}_{11} + \mathcal{L}_{22} $ (43)	
COMETT XCM 1 X5	
SMEFT = LCM + Lo (43). Where Low the Weinberg operator given by (38) & (39). The # of indep parameters for the lepton sector 16 now different	~
$(3\times3)\times2+3\times2\times2-(3\times3)\times2=12$ (44)	
Yeil (No Yo!) Ci) = Côi 2 Unitary UE, & Ue, (No UN!)	
These 12 parameters for the lepton sector can be taken as	
Ime, mu, mo, mv, mv2, mv3 } + VPMNS (45)).
3 angles + 3 (P) phases	
Pine, 2 Major	ana
* Note that we don't subtract the lepton number in (44)	
because lepton number is no-longer a symmetry in L. * Trom (41), assuming (C)'s so of order 1, to achieve) 5
* From (41), assuming (C)'s of order 1, to achieve	
neutrino brass of order 10 2eV, the high scale M is of	
order 10 "GeV which is close to the Grand Unification	
scale Mguz. In other words, Mg the right-kanded	0
scale Maur. In other words, MR the right handed wentring man scale MR is also close to the Maur	ale_
according to (39)	
* PMNS : Pontecovo, Maki-Nakagana-Sakata (1962) (1967)	
Bruno Pontecorvo: Halian & Soviet nuclear physicist, assistant of Fe	Zni
A consinced communest, deflected to Soviet Union	_
in 1950, (See Wikipedia)	
De predicted neutino ascillations in 1957	
to police the solar-neutino problem	
Ve -> Vn , finally observed in 1928 by	
中央研究院物理研究所 Ve → Vy , finally observed in 1998 by the Super-Kamio kande ex	4.

Gange Interaction: While the redefinition unitary transfe help us to diagonalize the Turawas, what happens to the gauge interaction for the matter welds?

Recall D= J, -ig, Taga -igTiWni -ig'YB, (5)

Field redifinition uniformy transferrations $u_L \to V_L^u u_L, u_R \to V_R^u u_R$ $d_L \to V_L^d d_L, d_R \to V_R^d d_R$ en - Veen, en - Veer V_ V_VL, (VR VR) about in SM * Obviously, the Kinetic terms are invariant under (6).

* So so the QCD part. 7 XITAGA 9 = FLYNTGA 9L + FRYTAGA FR -> que (V2) Tyr Taga(V2) qu + \(\frac{1}{2}\)\(\f -> 9 8 Tagaq. (OCD flavor Blind) -> Only the electroweak part needs to be concerned. gTiWn + g'YBn $= g(T'W_{\mu}' + T^{2}W_{\mu}^{2}) + gT^{3}W_{\mu}^{3} + g'YB_{\mu}$ (8) = 9= (=+Wn+ =-Wn) + gT3(Z16+A15) + gY(-Z150+A160) $= g \frac{1}{\sqrt{2}} \left(T^{+} W^{+} + T^{-} W^{-} \right) + \frac{7}{\sqrt{2}} \left(g C T^{3} - g' S_{0} (Q - T^{3}) \right) + A_{0} \left(g S_{0} T^{3} + g' C_{0} (Q - T^{3}) \right) + A_{0} \left(g S_{0} T^{3} + g' C_{0} (Q - T^{3}) \right)$ Recall that goo = g Co = e, the last term 15 Domply EQ Ay ; and the middle telm 15 G (T3-80Q) Zy

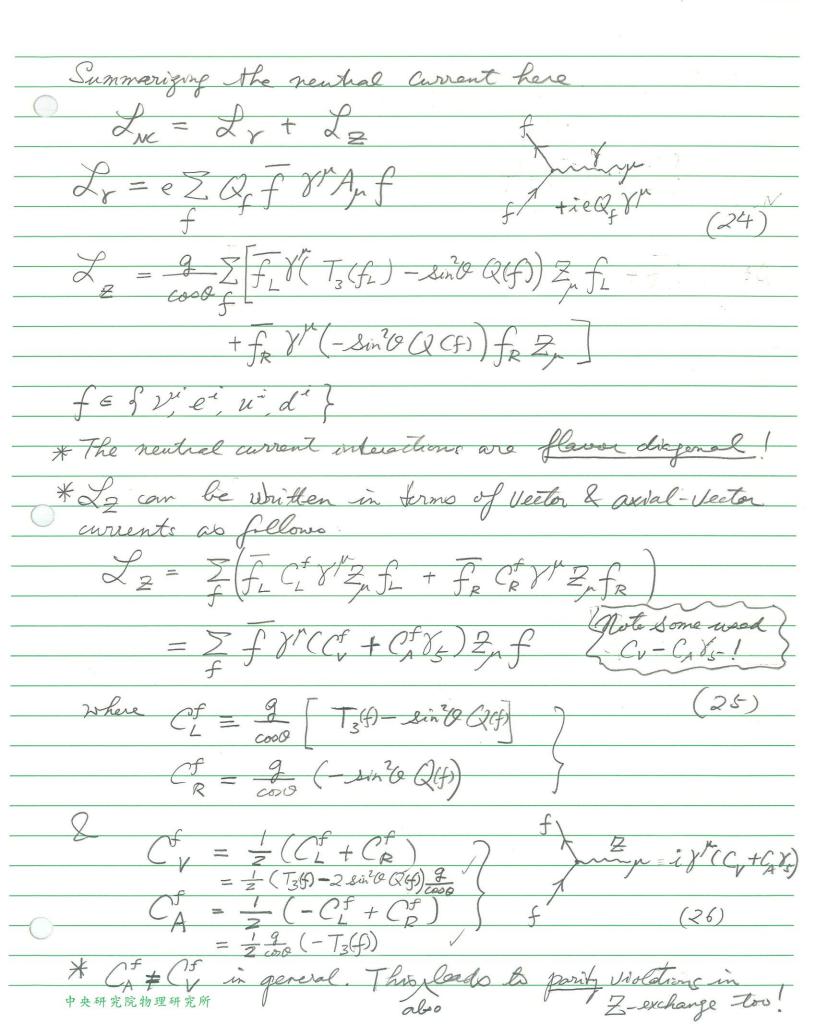
Since Vis are massless in SM, we can just rename the V_ -> V_ = (V_L) + V_L V_L = V_PMNS V_L (13) Without affecting any other terms in Loy New dropped
the prime for $V'_1 \rightarrow V_1$. So the charged current

for the lepton sector is simply

-i\frac{1}{2}\end{cappage}_1 \gamma V_1 \quad \tau_1 \quad V_1 \quad \tau_2 \quad V_1 \quad \quad V_2 \quad \quad V_1 \quad \quad V_2 \quad \quad \quad V_2 \quad $= i - \frac{g}{2J_2} \gamma'' (1 - \gamma_{-}) S^{ii}$ $= e^{i}$ Since the neutrinos are margine now, (1) should be modified to Lec = 252 [e i (VpMNs) 8 (1-8-) 2 Wy T + Vi (VpMNs) 8 (1-8-) ed Wy T (16) With VPMNS = unitary matrix = (V_L)(V_L) (17) * PMNS: Pontewwo-Maki-Nahagawa-Pakata * Wr et 12/2 (VPMNS) (1-8)

中央研究院物理研究所

The neutral current can be worked out similarly.


= (T3-50(e) \$\frac{1}{2} + eQA) \in \frac{1}{2} $= (\overline{\nu} e)_{L} \left[\left(\frac{1}{2} - \frac{1}{2} \right) - S_{0}^{2} \left(\frac{0}{-1} \right) \right] + e \left(\frac{0}{-1} \right) A \left[\frac{v}{e} \right]$ $= \sqrt{(\frac{1}{2})} 2 \sqrt{1 + e_1^2(-\frac{1}{2} + s_0^2)} 2 e_1^2 + e_1^2(-e) 4 e_1^2$ (18) $\angle e_{R}QAe_{R} = -\overline{e_{R}^{i}}Ae_{R}^{i}$ $\overline{e_{R}}(-s_{0}^{2}Q) \not\equiv e_{R} = +s_{0}^{2}\overline{e_{R}} \not\equiv e_{R}$ (19) The solution of the solution o (ii) (xuark sector The calculation is similar to the lepton case with

V, > U, & e, -> d, & W, -> V, & dp -> e, The charged current interaction is

Lec > \frac{2}{2\overline{12}} \left(\frac{1}{\ckm} \right) \frac{1}{\chi} \left(1 - \frac{1}{\sh} \right) \left(\frac{1}{\sh} \right) \left(\frac{1}{\sh} \right) \frac{1}{\chi} \frac{1}{\sh} \frac{1} (Z2) Vcky = (Vu) = unitary matrix

(KM = Cabibbo - Kobayashi - Markawa

(KM = Cabibbo - Kobayashi - Markawa And the newtral convent is LNC > 9 UL (= - So 3) \$ UL + dL (- = - & (- =) \$ dL (Z3) + Ui (-se 3) \$ Ui + di (-so(-3)) \$ di +e \uni= A \uni= + \un which are als Inverient under (6) gredificition transformations.

	4/4/2024
Accidental Global Symmetry Group of SM	大鸡节——
Accidental Global Symmetry Group of SM We want to show that	
$G = \mathcal{U}(1)_{\mathbb{R}} \otimes \mathcal{U}(1)_{1_{\mathbb{R}}} \otimes \mathcal{U}(1)$	U(1) (1)
is the global symmetry group of the SM La ZSM = Lgarge + Lmatter + Liggs + Lynkania	grangian t Lat. t Lghosts
Recall that, except for Lyntawa, Lon has (U(3)) Cor (U(N)) for N-generations) q	lobal symmetry
$Q_{L} \rightarrow \mathcal{U}_{Q_{L}}Q_{L} $ $E_{L} \rightarrow \mathcal{U}_{E_{L}}E_{L}$	7 .
CD CC)
$d_R \to \mathcal{U}_{d_R} d_R $ $N_R \to \mathcal{U}_{N_R} N_R$	€ BSM
(The gangl interactions break The ULTS)	(02 ((1111))
(The gauge interactions break the U(45) symmetry in the free Kinetic terms into (U)	(3)) (or (2(1N)))
The quotion is what symmetry left by in (U(3)) - Linkawa ?	broducing Lyn
(U(3)) Tukawa ?	(3)
Recall Lynkowa = - QL Yn Q UR - QLY	
- El Ye Per + h.c.	
(- El Y, PNR + h.	c.)
	BSM

Under (6) Tel Yn pour - Tel (Ma, Yn Une) pour QL Ya & dR -> QL (Wa Ya War) & dR E Ye & CR > E (UE Ye Ue) P CR (5) E, Y, & NR -> E, (UEY, UN) & NR) Thus, Ly is not invarient unless Up, Yu Uug = Yu Up Id Ud = Id Ut Ye Uc = Ye Ut Y UN = Y Taking (6) and consider (6) × (6) Uor Yn Yn Uo = -Yn Yn Uo, Ya Ya Vo, - Ya Ya Ut Ye Ye UE = Ye Ye (UE YN YN UE = YN XT)

Consider (6) x (6) leads us to Un Yn Yn Un = Yn Yn Ut Ya Ya Ude = Ya Ya (8) the Ye le the Her = Ye Ye (Ut Yt Y UN = Yt Y) Mon, in the basts where the Ynkawa coupling Matrices are diagonal, i.e (YY+), 2 (Y+Y), d.e, v are real & diagonal, ego. (7) & (8) imply UE, Mer, (UNR) must be diagonal (9).

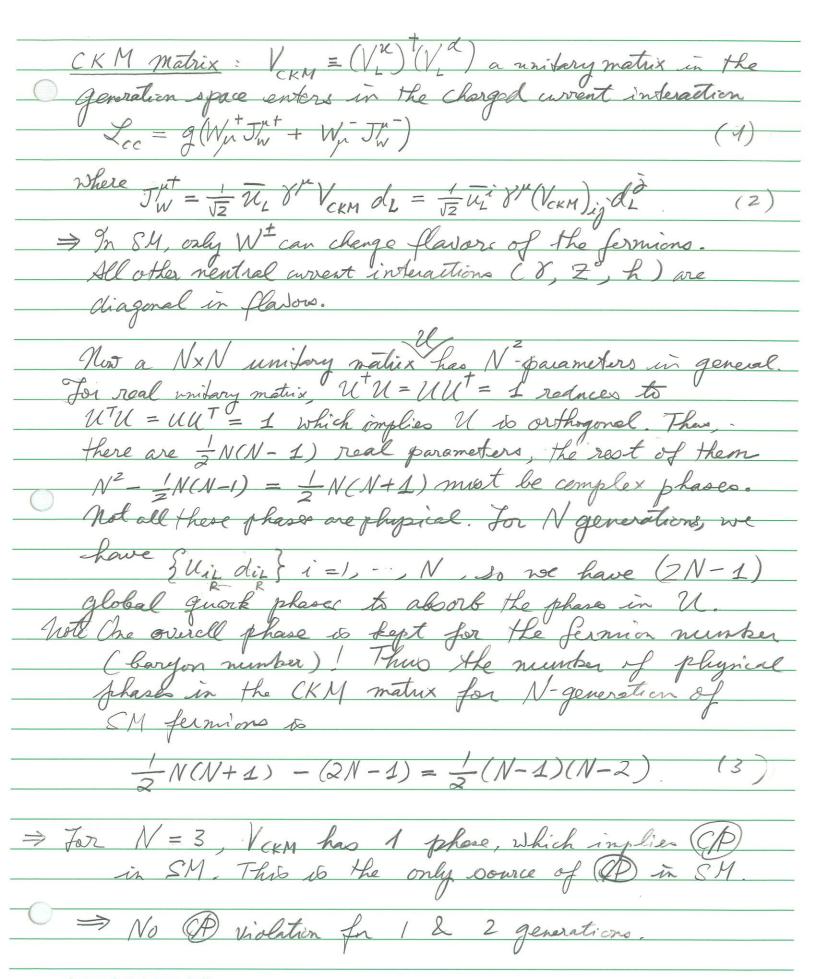
Ua, Mur, Mar phase matrices Furthermore, in the basis where Yu, d, e, w) are diagonal, eq (6)

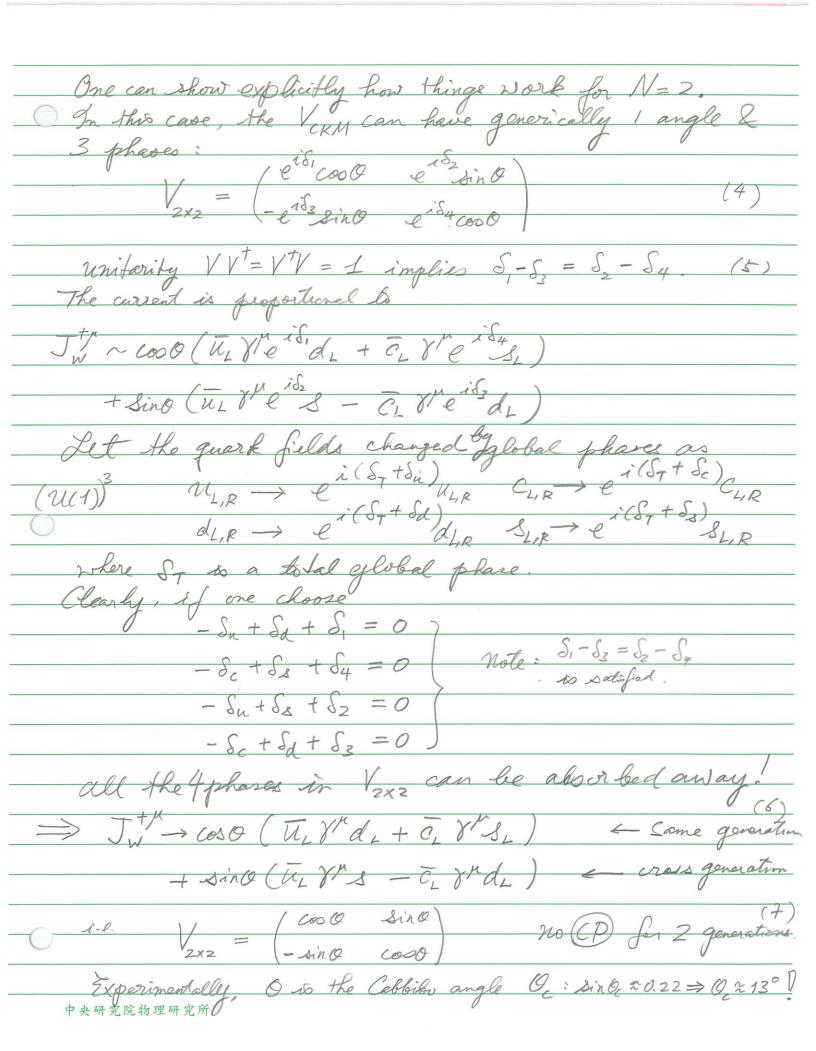
Thus the phase matrices $U_{E_L} = U_{e_R} = (U_{N_R})$ (11) $\mathcal{U}_{Q_{L}} = \mathcal{U}_{U_{R}} = D_{i}ag(e^{i\theta_{u}}, e^{i\theta_{c}}, e^{i\theta_{c}}) = \mathcal{U}_{d_{R}} = d_{i}ag(e^{i\theta_{d_{L}}}e^{i\theta_{d$ Eq. CID to the quark flavor symmetry in the Yukawas, furt like QCD, QED, & ZNC But not Lec. For the charged current interaction, we have the Vexy linking up type & down-type quarks in different generation. The only global symmetry that commutes with the general Vexy Liste only be up type along the list of the general Vexy Liste only global symmetry that commutes with the general Vexy Liste only listed by the list of the li

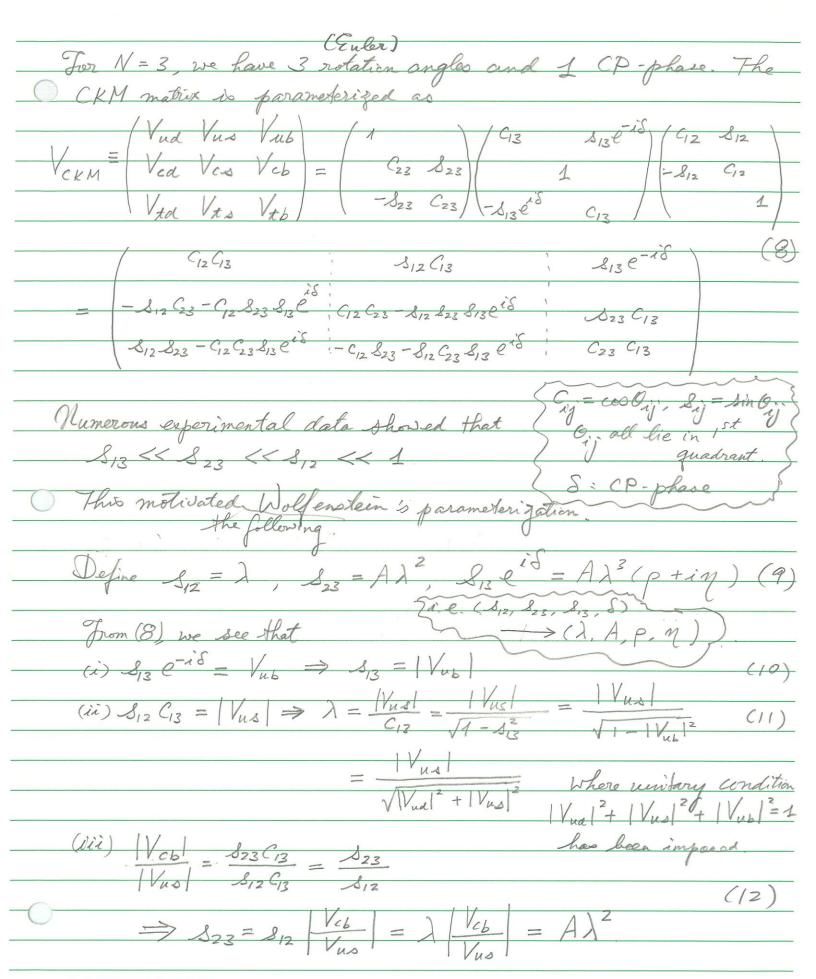
This is the global baryon number symmetry $U_{E}(1)$.

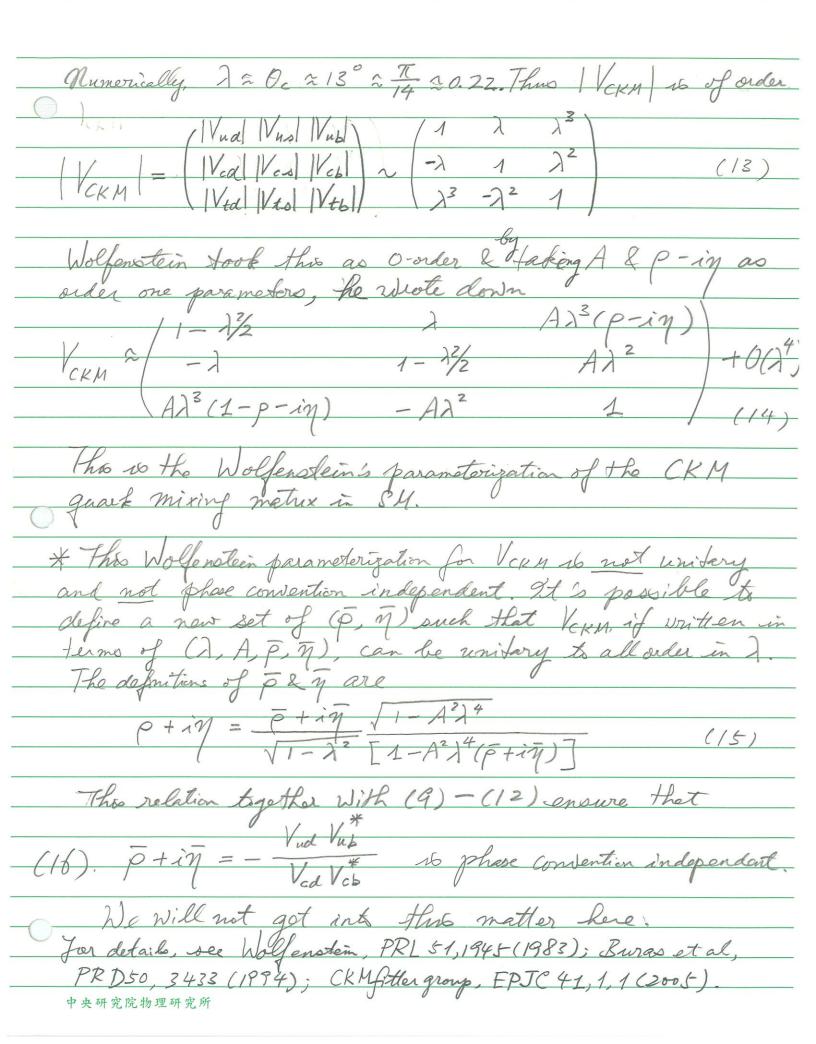
We choose 1/3 in the phase such that all quarks
have baryon # 1/3, which implies proton & neutron

have baryon # + 1.

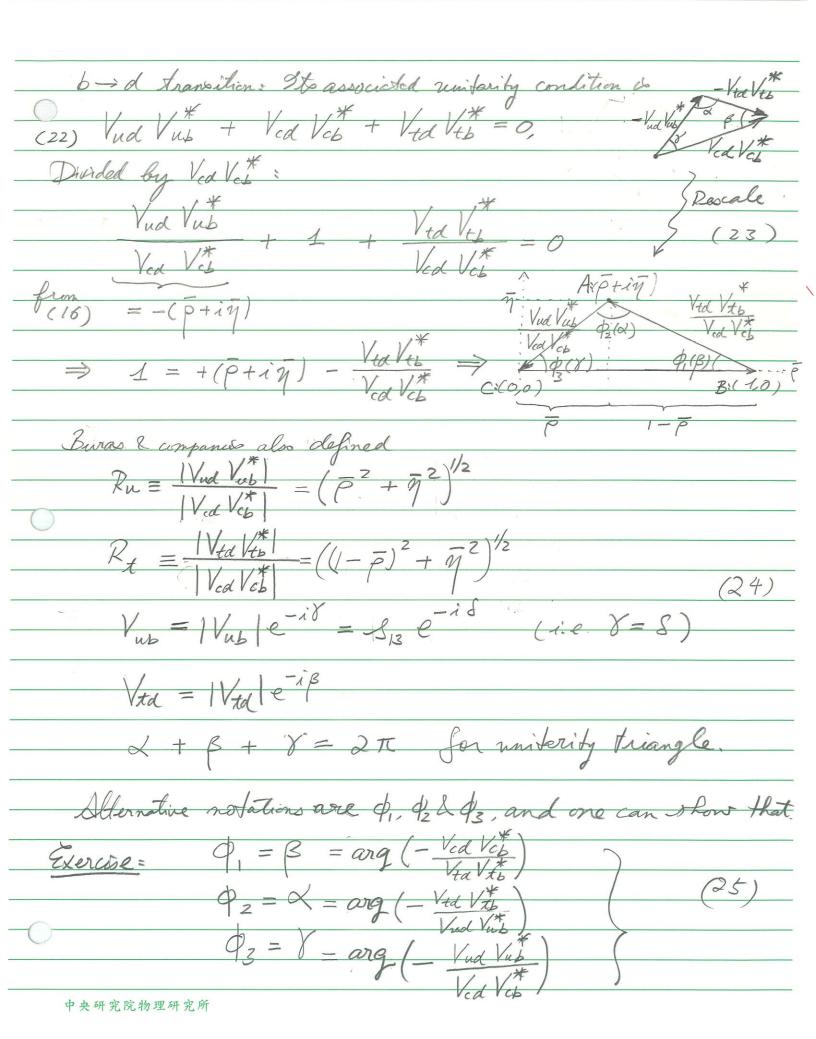

In the SM where there are no Na, we have $U_{E} = U_{e} = diag(e^{i\theta_{e}} e^{i\theta_{e}}) e^{i\theta_{e}}$ (14) which corresponds to be & by & be 3 lepton #5 In BSM, where Nosexist, we then have Vpuns
that connecting Vi & Ci in different generations.
In this case, we don't have the individual Les In &
La symmetry. The only possibility is $U_{\overline{L}} = U_{e_R} = U_{N_R} = diag(e^{iO_L}, e^{iO_L}, e^{iO_L}) cls)$ which corresponds to total lepton number L=L+L,+Lz conservation. Thus we have proved > In SM, the global flavor symmetry of LM 10 Uz(1) & U_2(1) & U_2(1) & U_2(1). (16). This symmetry probleds in the 8.


3 n BSM, the global flavor symmetry is


UB(1) & U(1)


C17)

* However non-perturbative (nontrivial topological) Solutions
* Bonever, non-perturbative (nontrivial topological) Solutions of for the SM electroneak theory exists due to
T(G) = 7 for any compact connected
Simple group G.
To G = Z for any compact connected Simple group G. [See 't Gooft, PRI37, 8 (1972)]
This non-perturbative solutions can violete B & L
This non-perturbative solutions can violete B & L such that only (B - L) remains unbroken.
generator. Since no manless gauge particle has
ever been observed other than the photon, this
* (B-1) emerges from some GUTs as a gauge U(1) generator. Since no maxless gauge particle has ever been observed other than the photon, this U(1) B-1 must be broken ct some high scale.
& Cummary for SM with 3 generations of guarks &
* Summary for SM with 3 generations of quarks & leptons
pure Rinetic Lerms A
ith 15 Yulana an Onal Onal
U(45) it (U(3)) - Yukawa U(1) & U(1) (D(1)) (D(1)) = 12
N P physico B-L



 $\frac{V_{CKM} \& unitary, so it eatisfies <math>VV^{\dagger} = V^{\dagger}V = 1.$ $(VV^{\dagger}) = 1 \implies \sum_{i,k} V_{ik}^{*} = S_{ij}, (i,j) = (u,c,t) (16, k)$ k = d, s, b $(V^{\dagger}V) = 1 \Rightarrow \sum_{k=u,c,t} V_{kj} = S_{ij}, (i,j) = (d, s, b) (17)$ (16) & (17) Simply mean that the three Troms & three columns in the CKM matrix are two sets of or thornarmal Thus, (16) implies for i=j=u,c,t, | Vud | 2 + | Vub | 2 + | Vub | 2 = 1 Sizes: n = 1 n = 1 n = 1(18) | Vcd + 1 Vcs | + 1 Vcb | = 1 $2 |V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$ $\sim \lambda^6 \sim \lambda^{\dagger} \sim 1$ For $i \neq j$, (i,j) = (u,c), (u,t), (c,t), we have $V_{ud} V_{cd} + V_{us} V_{cs} + V_{ub} V_{cb} = 0$ $C \rightarrow u \text{ frawition}$ $\sim 1.\lambda \sim \lambda \cdot 1 \sim \lambda^3 \cdot \lambda^2$ (19) $V_{ud}V_{td}^* + V_{us}V_{ts}^* + V_{ub}V_{tb}^* = 0$ $t \rightarrow u$ transition Ved Vtd + Vcs Vts + Vcb Vtb = 0 t → c Ananction. $\sim \lambda^2 \cdot \lambda^3 \sim 1 \cdot \lambda^2 \sim \lambda^2 \cdot 1$ * No top quark The other 3 cases of (e,u), (t,u) & (t,c) are
funt complex conjugate of the above conditions found state! t→Wb~100% 中央研究院物理研究所

Similarly, (17) implies for (i=j=d, s, b), we have | Vual 2 + | Vcd + | Vtal 2 = 1 $\frac{1}{|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2} = 1 \tag{20}$ λ^2 ~ 1 $\sim \lambda^4$ $\frac{|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 = 1}{\sim \lambda^6 \qquad \lambda^4 \qquad 1}$ For i + j, (i, j) = (d, s), (d, b), (s, b), we have $\frac{V_{ud}}{V_{us}} + \frac{V_{cd}}{V_{cs}} + \frac{V_{td}}{V_{ts}} = 0$ Vus Vub + Vcs Vab + Vts Vtb = 0 b >> s $\sim \lambda \cdot \lambda^3 \sim 1 \cdot \lambda^2 \sim \lambda^2 \cdot 1$ * (S,d), (b,d), (b,s) are complex conjugate of the above case. One can see that the b -> d transition is the most interesting case since the uniterity andition implies a triangle (The three complex terms define a triangle in the complex plane) with roughly equal length on
the three sides. This triangle together with others 5.

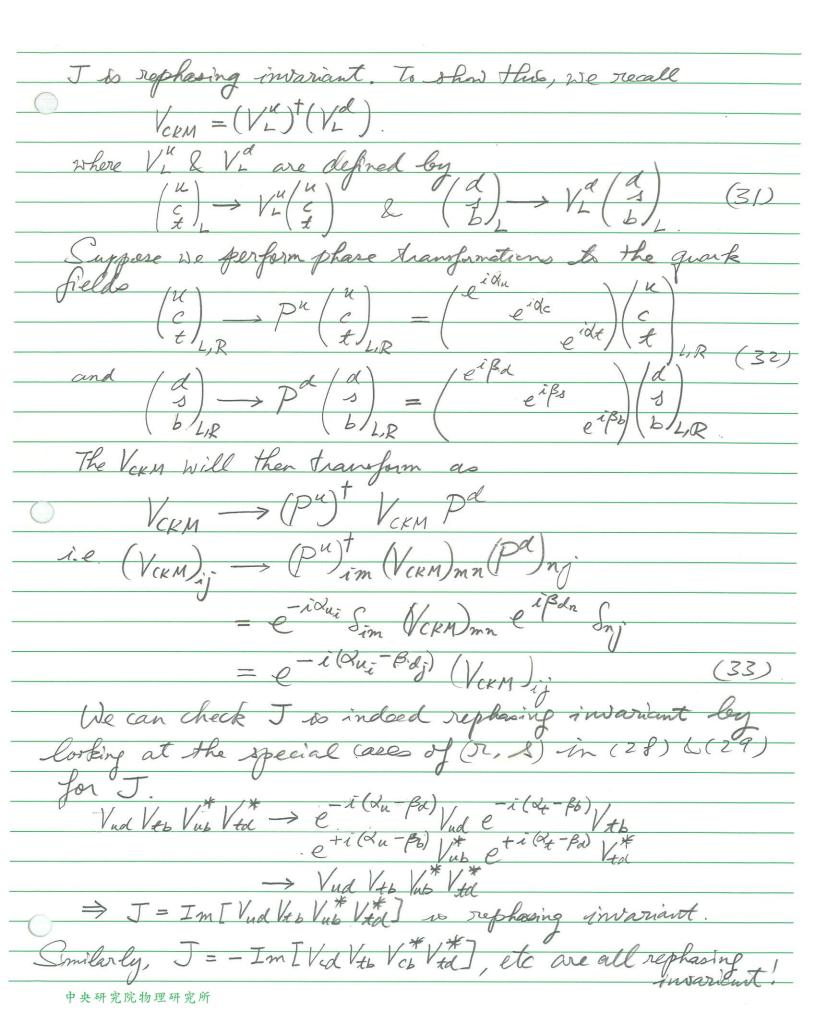
are called the unitarity triangles in the E-physics
community. All 6 unitarity triangles have the same area.

[C. Jarlskog, PRL55, 1039(1985); Z.Phys.C 29 491(1985)] Jerlskog Invariant J

To measure CD in phase-consention independent way,

the Jarlskog invariant J was introduced as

Im[VijVke Vie Vkj] = J Z E E E (26)


m,n ikm jln The area of all unitarity triangles are all the same, and equal to J/z.

Sometimes, J to also written as r+s mes, J sto also written as

T+S Im [Vij Vzl Vil Vzj] (27) For example, $\delta = 2$, $\Delta = 2$,

\[
\begin{align*}
\left[\frac{1}{\text{vab}} \frac{1}{\text{vab}} \\ \text{vab} \end{align*}
\]
\[
\begin{align*}
\left[\frac{1}{\text{vab}} \frac{1}{\text{vab}} \\ \text{vab} \end{align*}
\]
\[
\begin{align*}
\left[\frac{1}{\text{vab}} \frac{1}{\text{vab}} \\ \text{vab} \\ => J = = Im [Vcd Vtb Vcb Vtd] etc. 29) * J = S12 C12 S23 C22 S13 C13 Sin & for all nine possible (1,8).

* If S (or M in Wolfenstein's parameterization) vanshes, J >0. * In terms of the Wolfenstein's grameterization in (14), one can check that $J \sim A^2 \lambda^6 M$. Despite M, A are of order M, M and because it is suppressed by M. Experimentally, one has $J = (3.12 - 0.13) \times 10^{-5}$ $+ \times 10^{-$

According to the PDG(2024), the least fit values for the CKM matrix elements are

$$Sin \theta_{12} = 0.2250 \pm \pm 0.00068$$

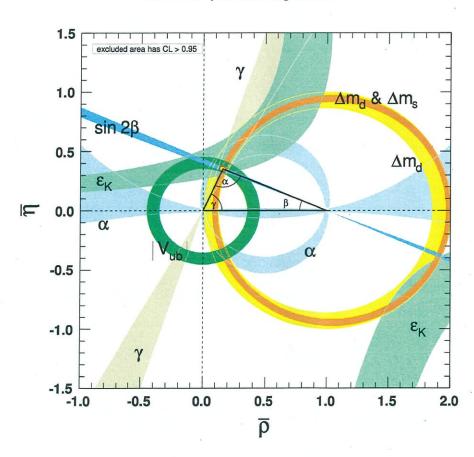
$$Sin \theta_{13} = 0.603732 \pm 0.000090$$

$$Sin \theta_{23} = 0.04183 \pm 0.00079$$

$$S = 1.147 \pm 0.026$$

Wolfenstein's parameter lost fit values
$$\lambda = 0.22501 \pm 0.00068$$

$$A = 0.826 \pm 0.016$$


$$-0.015$$

$$P = 0.1591 \pm 0.0094$$

$$\bar{\eta} = 0.3523 \pm 0.0073$$

$$|V_{\text{CKM}}| = \begin{pmatrix} 0.97435 \pm 0.00016 & 0.22501 \pm 0.00068 & 0.003732^{+0.000090}_{-0.000085} \\ 0.22487 \pm 0.00068 & 0.97349 \pm 0.00016 & 0.04183^{+0.00079}_{-0.00069} \\ 0.00858^{+0.00019}_{-0.00017} & 0.04111^{+0.00077}_{-0.00068} & 0.999118^{+0.000029}_{-0.000034} \end{pmatrix}$$

12. CKM Quark-Mixing Matrix

