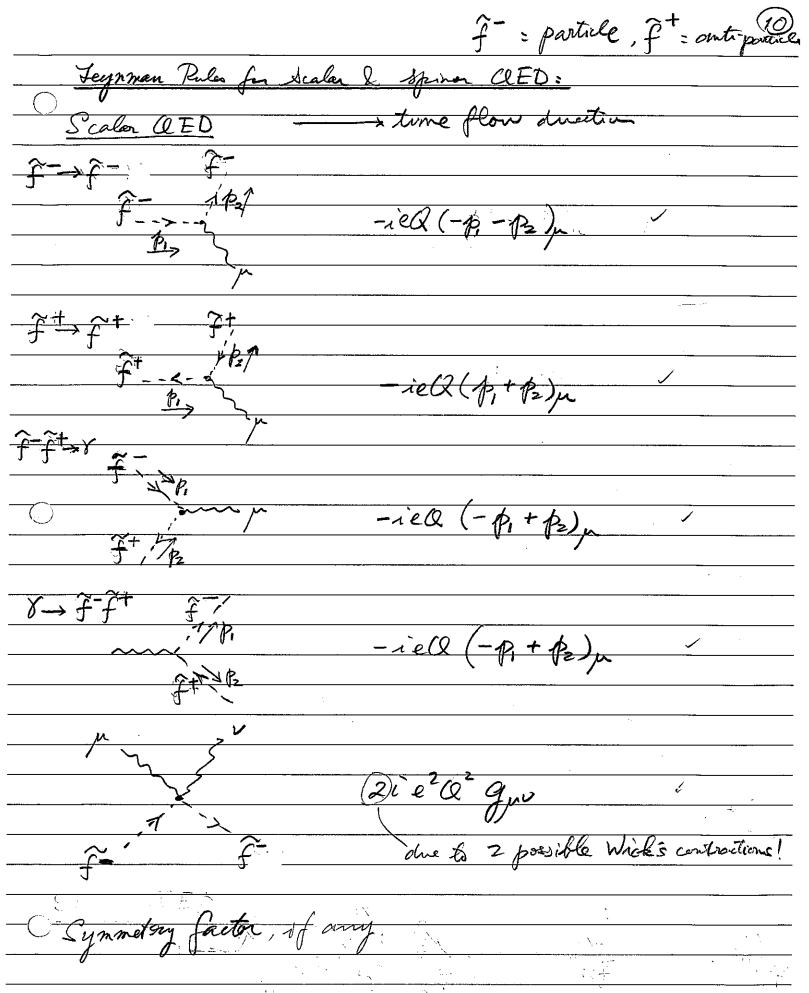


More generally, we have
More generally, we have $ \varphi_n \to e^{iQ_n \times (x)} \varphi_n , Q_n : \text{charge of } \varphi_n (7.4) $
$\mathcal{D}_{\mu}\phi_{n} = (\partial_{\mu} - iQ_{n}eA_{\mu})\phi_{n} \qquad (8)$
·
In SM, $Q(e^-) = -1$, $Q(v_e) = 0$, $Q(u) = +\frac{2}{3}$, $Q(d) = -1/3$. Of course, the matter fields of CM are fermion, not scalars. But the idea of covariant derivative applies to Dirac eq. as well.
Of course, the matter Golds of CM are fermions not scalars.
But the idea of covariant derivative appole to Direc og
as well.
Fift to not invariant under 4 - e-12(X)4
But Dut = (2, -ie QAn) 4 -> e-ix(x) Dy
Put=19-100An19-00 Dyg
$O \xrightarrow{if} A_{p} \rightarrow A_{p} - \frac{i}{eQ} \partial_{p} Q$
ve Duly transf. covariantly under local U(1) gauge transf.
7
Thus, TD4 - TD4 so in. as well.
So so the mass term. my 4.
Thus the Jollanding Lagrangian
$\mathcal{L} = \overline{\psi}(i\not p - m)\psi$, $\mathcal{D}_{n} = \partial_{n} - ieQA_{n}$ (10)
is invariant under local U(1). Q & the charge of 4
in unit of C. (Our consention is e>0.)
* (6) & (10) provide the intensitions of redoct forming
(6) & (10) provide the intenations of scalar & fermion Couple & the gauge field An.

The experimental limit of photon's mass is	
$m_{\chi} < 1 \times 10^{-18} eV$	
In fact, from PDG (2022) Prog. Theor. Exp. Phys. 2022,	083001,
In fact, from PDG (2022). Prog. Theor. Exp. Phys. 2022, we have the profile of photon:	<u>,</u>
8 (Photon) JPC = 1	, <u>a</u>
Mess m < 1×10-18 eV	
Mass $m_{\chi} < 1 \times 10^{-18} \text{ eV}$ Charge $q < 1 \times 10^{-46} \text{ e}$ (Mixed Charge) $< 1 \times 10^{-35} \text{ e}$ (single Charge)	(17)
Mean life Z = Stable (Single Charge)	
* 117) For to Vanishing small, Tokotor doesn't interest among the	hoton
Print of the same and small of all all	Ontacción :
But it is quite popular to use Streckelberg Moc for dark photon from a hidden U(1) sever	ia BSH.
Now we have the Kinetic term - 4 Fr. Fm for the What is the propagator for the photon? Recoll that the propagator is the inverse of the	photon.
What's the propagator for the photon?	W
Recall that the propagator is the inverse of the	
Kiretic operator for example for the scalar of	<u> </u>
<0/TEφ(x) φ(y)) 0) = <x (="" +="" 1="" m²)="" qe<="" td="" y)="fex"><td>ρ·α-4)</td></x>	ρ·α-4)
	- P-m
for the Lagranian $\mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi)^2 - \frac{1}{2}m^2 = -\frac{1}{2}\phi(\Box + \Box +$	t total derivation
And for Dunc formion with L = \$\frac{7}{4}(i\psi-m)24,	
20 T[40x)40y)](0) = 22 1/2-1/2) = (2/2 e-ip.	(x-y)
	1191
 ζο Τ[ψων(y)] (ο) = ∫ α/2 e (p α-y) x (p+m) μρ / p²- m² 	
p-m	

Now for the photon field, we have = - 4 2, Av dr Ar - 4 du And Ar + 4 2, Av dr Ar + 4 du And Ar dr Ar $= -\frac{1}{2} \left(\partial_{\mu} (A_{\nu} \partial^{\nu} A^{\nu}) - A_{\nu} \Box A^{\nu} \right) + \frac{1}{2} \left(\partial_{\mu} (A_{\nu} \partial^{\nu} A^{\mu}) - A_{\nu} \partial_{\mu} \partial^{\nu} A^{\mu} \right)$ total derivative Drop total derivative willow impact on EOM. = + 1 A agrad - 1 A (3, 3) A $=\frac{1}{2}A^{\mu}\left(g_{\mu\nu}\Box-\partial_{\mu}\partial_{\nu}\right)A^{\nu}$ (20) The trouble to this Kinetic operator to not invertible.

Her to see this? In momentum space, $g_{\mu\nu} \Box - g_{\mu\nu} Q_{\nu} \longrightarrow (-g_{\mu\nu} q^2 + g_{\mu} q_{\nu}) . \tag{21}$ Since (- grag + grgv) q = -q2qu + grg2 = 0, that means go an eigenvector of (-grag + grage) with O eigenvalue! > Det (-g, q2 + q, q,) must be vanshing. => (-gryq2+quq) has no interse / (Linear algebra) the solution is gauge fixing because the non-invertible so a manifestation of gauge invariance. One has to break the gauge symmetry somehow! Exercise: Show that Det (-9, 9, 9, 9,) = 0 & (-grv9+9r9r) 2 = 0. 中央研究院物理研究所


The dwerse of $(-q^2q_{yy} + (1-\frac{1}{\epsilon})q_y q_y)$ is $TT = -\left(\frac{q_{yy} - (1-\frac{\epsilon}{2})q_y^2}{q^2}\right) \qquad (R_{\epsilon} \text{ gauge}) \qquad (26)$ One can check easily that $Q_{\epsilon} = \frac{q_{yy} - (1-\frac{\epsilon}{2})q_y^2}{q_z^2} \qquad (26)$ (-q2g,v+(1->)qnqv)TT = gn = 5, x (27) This implies the shoten gropagator is given by $\langle o|T[A_{\mu}(x)A_{\nu}(y)]|o\rangle = \langle x|\frac{1}{g_{\mu}\Box - (1-\frac{1}{2})g_{\mu}a_{\nu}}|y\rangle$ $= \int \frac{dq}{Q\pi} e^{-iq \cdot (x-y)} (-i) \frac{1}{q^2 + i \cdot d} (q_{yy} - (1-\frac{1}{2}) \frac{q_y}{q^2})$ $= \int \frac{d^4q}{(2\pi)^4} e^{-iq \cdot (x-y)} i \pi_y(q)$ (28) Covariant Janges

(1) 't Hooft- Juynman gange \(\xi = 1 \) $i T_{pol}(q) = \frac{-i g_{pol}}{q^2 + i 0^+}$ (29) (2) Lorenz gauge \(\varepsilon = 0 \) (Invert first and set \(\varepsilon \rightarrow \) afterward!) (30) $i \pi (q) = -\frac{i}{q^2 + i 0^+} (q_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}) (* \tilde{\xi} \to 0 \text{ forces})$ (3) Unitary gauge $\tilde{\xi} \to 0$ (3) Unitary gauge $\tilde{\xi} \to 0$ (3) Unitary gauge $\tilde{\xi} \to 0$ Non-usefull for photon. But important for EW garge theory. (later)

Moncovarient ganges:
(1) Light cone gange ny A'= 0, ny n' = 0 (light-like)
(2) Contours gange $\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0$
(3) Radial (Fock-Schwinger) gampe 2/2 Aix) = 0.
* for QED most calculations are performed in covariant garages.
* Lorents-invariant anostition must be garage independent
is independent of the & manustra is the arms to
* For QED, most calculations are performed in covariant garages. * Lorentz-invariant quantities must be gauge-independent, i.e. independent of the Exparameter. N. e. the q'g' furn in i TI'(q) should not have physical effects! See proof in QFT textbook, e.g. M. Schrarty.
Con to the OFT of the on M. Coloret
The france of the schools
Quantization = 12w k, E(k,) = ag(1) 0> <0 A(x) k. E = E(k,) e
$A_{\mu}(x) = \sum_{i \neq 1} \frac{d^{i}k}{2\pi^{i}} \frac{1}{2\pi^{i}} \left[\alpha_{i}(\lambda) \in (k,\lambda)e^{-ik\cdot x} + \alpha_{i}(\lambda) \in (k,\lambda)e^{-ik\cdot x} \right]$
En so transverse = pr E = 0 annihilates creates a photon
En transverse : $p^n \in = 0$ annihilates creates a photon $a_p(\lambda)$, $a_p(\lambda)$] = $p^n \hat{S}(\vec{k} - \vec{k}) \hat{S}_{\lambda}$
the the state of t
(), planifation Wave
function of helicity of
and momentum for
Linear polarization
E = 0 E = 1 Wave shavels in \(\frac{1}{2} \) divedis
P = (E, o, o, E)
Polarization Denn:
Circular policipation:
$C_{L} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad C_{R} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad C_{R} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$\underline{G}' = \frac{1}{12} (\underline{G}'' - \underline{i}\underline{G}''), \ \underline{G}'' = \frac{1}{12} (\underline{G}'' + \underline{i}\underline{G}'')$
中央研究院物理研究所

Ment back to Scalar COED in spinor COED in (12) & (13). $\angle Scalar COED = (D_p \Phi)^{\dagger} D^p \Phi - m^2 \Phi \Phi - \frac{1}{4} F_{pv} F^{pv} + gavge (31)$ $= \mathcal{L}_{\sigma} + \mathcal{L}_{int}$ $\angle \mathcal{L}_{\sigma} = (\partial_p \Phi)^{\dagger} (\partial_p \Phi) - m^2 \Phi \Phi - \frac{1}{4} F_{pv} F^{pv}$ (32) $\frac{1}{\sqrt{1+1}} = +ieQ\phi^{\dagger}A_{\mu}J^{\mu}\phi - ieQ(\partial_{\mu}\phi^{\dagger})A^{\mu}\phi + e^{2}Q^{2}A_{\mu}A^{\mu}\phi^{\dagger}\phi$ (33) $= eQJ_{\mu}A^{\mu}$ $J_{\mu} \equiv -i(\partial_{\mu}\phi^{\dagger})\phi - \phi^{\dagger}\partial_{\mu}\phi) + eQA_{\mu}\phi^{\dagger}\phi \qquad (34)$ Now the Jose the electromagnetic current. In fact, one can show this is a conserved current.

Exercise: Chow that Just = 0 using EOM. I Hist: Derive the eq of motion for \$2 \$\psi^* first from
the Legrangian (31).] Next $f = \overline{\psi}(i \not p - m) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + gauge fixing (35)$ = Lo + Lint where Lint = 4 i (ie Qy) AMY = eQJn AM (36) WITH Ju = Tyy = Thy the + TRYTR (37) = Noëther's current One can also show that of JM = 0 using EOM for 44.4. * Jange field couples to conserved charge current!

Exercise: ((Calar QED: SQED)
O Use the SCRED Jeynman rules to draw the Jeynman d'agrams
and write down the Lorentz invariant anylitudes for
each of the following processes to leading order:
(1) ê-ê- > ê-ê (Selectron Scattering)
(1) $e^-\tilde{e}^- \rightarrow \tilde{e}^-\tilde{e}^+$ (Selectron Scattering) (2) $\tilde{e}^-\tilde{e}^+ \rightarrow \tilde{e}^-\tilde{e}^+$ (Selectron - Positron Scattering)
(3) E- Y -> E- Y (Compton Scattering)
(3) $e^- Y \rightarrow e^- Y$ (Compton Scattering) (4) $e^- e^+ \rightarrow Y $ (Selectron Spoodson annihilation)
Exercise: Repeat the above exercise for COED.
Spinor
•
ACTES TO THE PROPERTY OF THE P

Non-Abelian Gange Theories Consider Namplex Dirac fields 4° , a=1,2,..., N. $\frac{\int_{0}^{N} \int_{0}^{N} (i \partial - m) \psi^{a}}{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ $\psi(x) \rightarrow \psi(x) = \mathcal{U} \psi(x), \quad \mathcal{U} \in \mathcal{U}(N)$ any unitary NXN matrix

* If not all the masses are equal, we will have a

Smaller subgroup symmetry of U(N). In general

[Ya] will belong to some reducible representation R of

Le group (algebra) G.

* Classical groups G:

Orthogonal, SO(N), SU(N), Sp(2N) (Controgonal, SO(N), SU(N), Sp (2N)

Linitary, Source G2 Fig.

Symptotic)

Groups F6: F7, F8

St(N) in those Lectures. Let $U \in G$, a generic element, then M = exp (ixA TA), {TA} A=1, Z, dim. of G Freal are the generators of G, i.e.

Lie Agebra of G

[TA, TR] = if ABC Te

[ABC] : Structure court. * For real constants, QA, Tare Hermitian of the Algebra of G. They can be Chosen & be NXN metices. They can be chosen to to A, B & C. satisfy the normalization for fundamental F in ABLO.

** Tr[TATB] = 1 SAB 18729. Fix fABC normalization + $TA = (TA)^{\dagger}$ Tr TA = 0 Simple (No UCI) factor)

We note that IT's are abstract objects in general. The
Ve note that T^A are abstract objects in general. The O Lie algebra T^A , $T^BJ = if^{ABC}T^c$
implies the Jacobi identity
[T/[TB]T]+[TB, [T, T4]]+[T, [T/T8]]=0
which is satisfied by metures too.
Jaeobi-identity implies constraints on structure constants
fADECED + FEDETCAD + COETABD = 0.
Adjoint irrep: dim (adr) = dim (G)
Adjoint irrep: dim(adj) = dim(G) (TA(adj.)) _{BC} = -if ABC
$(1 (aaj.))_{BC} = -i J$
- Fundamental
Fundamental dim (F) smallest dim.
fundamental $dim(F)$ Smallest dim . with $Tr(T^{A}(F)T^{B}(F)) = \frac{1}{2} \int_{AB}^{AB}$
In general, $Tr(TA(R)T^{B}(R)) = I(R)S^{AB}$
I(R) is called the Dynkin index. I(F)=1/2.
Quadratic Casimir operator: > Casimin.
$T^{A}(P) T^{A}(R) = G(P) \cdot \overline{I}$
1 -
Exercise = Show-that
$I(R) \cdot D_{Im}(G) = G_{CR} \cdot D_{Im}(R)$

					10 U	(1)5	floct	ing I
CL	essical Lie	Algebras G	(Compac	t. s.	mpl	à);	Other	wise
G	SU(N)	SOCN)	Sp (2N)	G	Ę,	E,	E2	Ip_
Dim G	N^2-1	± N(N-1)	N(2N+1)	14	52	78	183	24P
Rank	N-1	N for N=2n+ n for N=2n	<u>. N</u>	2	4	6	<u>7</u>	8_
* F : '	Fundamental	vrrep. (Sma	llest sor	ep.)				
* Sp((2) = SU(2)	· · · · · · · · · · · · · · · · · · ·		<i>V</i>				
<i>D</i> \$7	her notations	for Sp(2N) = Sp(.	N) o	\mathcal{U}	Spl	2N)	-
* Carī	lan's Notalic	no ·						
,	_ /-	= SU(n+1)						
	, -	= SO(2n+1)						
		= Sp(2n)				•		
	, , -	= SO(2n) T						
	(1 2)	F4, E6, E7	, -					
			·					
	****							***
							•	
V								

	P. Archandras and			·•··			***	
,								
-(`)								

* Nonabelian feature of Gimphies in general that exp(idATA) exp(iBATA) + exp(iBATA) exp(iXATA) # The conserved globel noether current can be easily

generalized to the non-abelian case with multiple fields

\$\frac{2}{5\place{2}} = 0 \\

\$\frac{1}{7} = + \frac{2}{7} \\

\$\frac{2}{7} \\

\$\frac{2}{7} \\

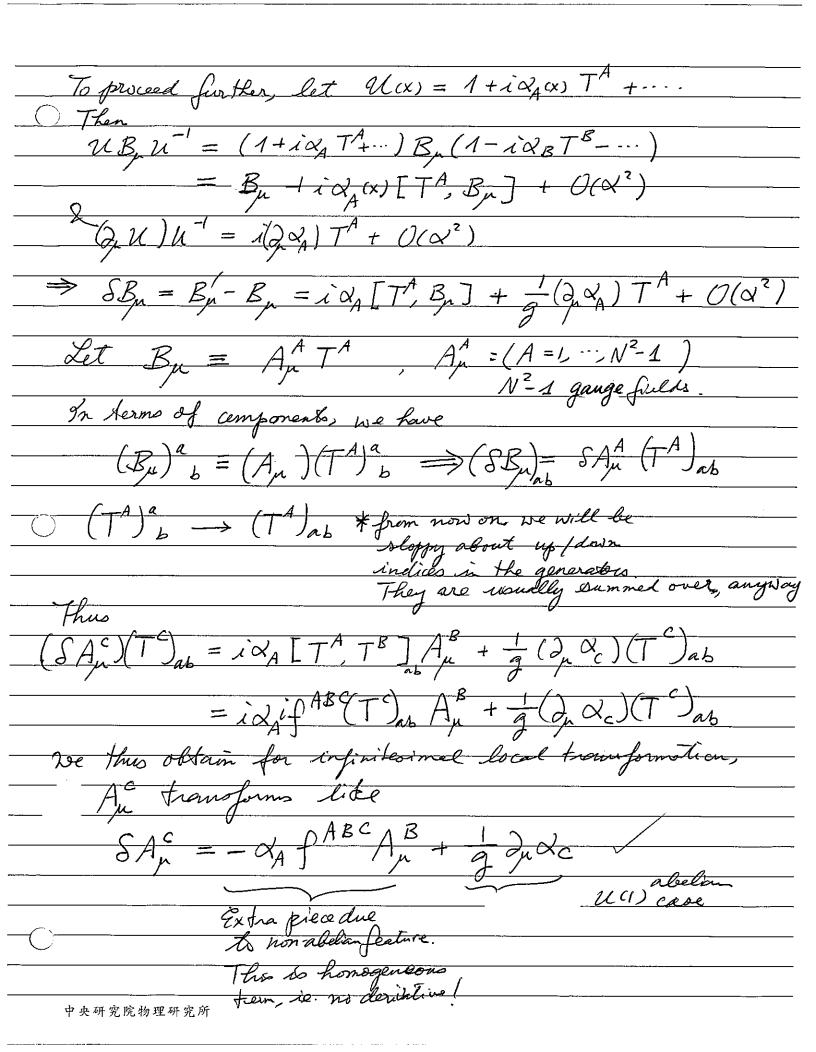
\$\frac{1}{7} \\

\$ where $S \phi^a$ is the infinitesimal transf. undergone By the field ϕ^a .

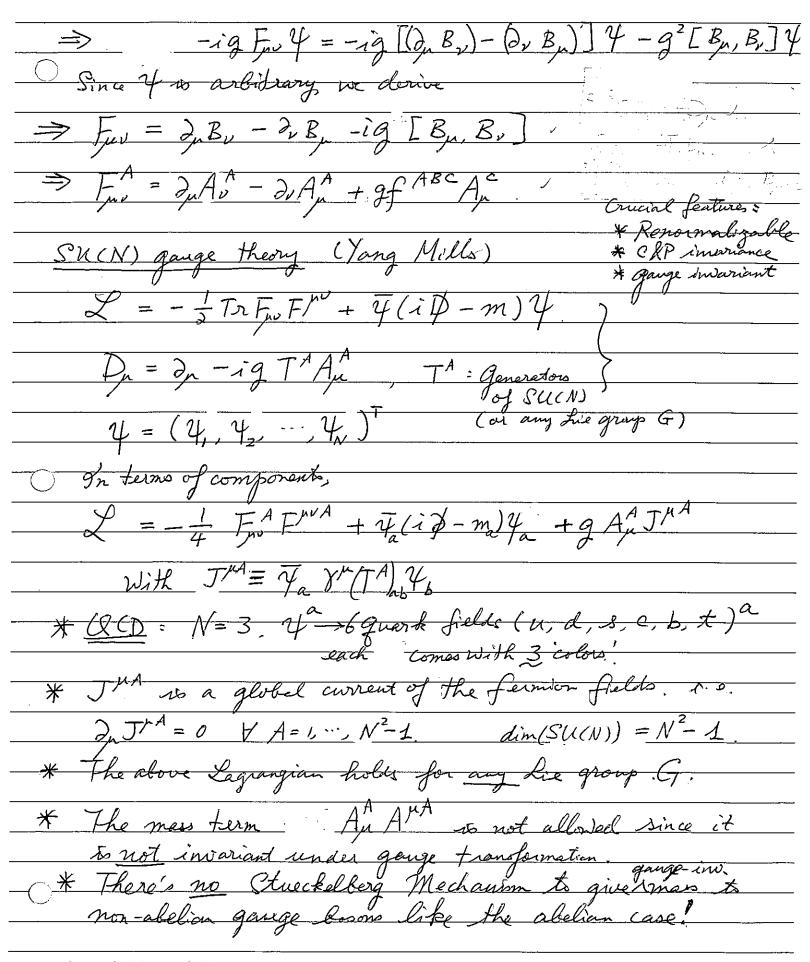
Conserved Charge is $Q = \int d^3\vec{z} J^o = + \int d^3\vec{z} \frac{\partial L}{\partial \phi^a} S \phi^a = + \int d^3\vec{z} T ds \phi^a$ $\begin{array}{c|c}
\hline
\text{Re all} & \frac{1}{2} & \frac{$ For infinitesimal small &s, we have $U = \exp\left(i\partial_A T^A\right) = 1 + i\partial_A T^A + \cdots$ $\delta \phi^{\alpha} = i Q_A (T^A)^{\alpha}_b \phi^b$ Then, $J\mu = +i\alpha_A \frac{\partial \mathcal{L}}{\partial a} \left(T^A \right)^{\alpha} \phi^b = +\alpha_A \frac{j\mu^A}{[e.g.\ N^2.1]}$ So the corresponding conserved charge is QA = Sota joA = +i fota TTa(TA) for each A. # In COM, (or the Hamiltonian furnitation of classical physics), given conserved charges, we can reconstruct the symmetry: For any months in Sperator (), associated $A = i[Q^A, O] \Rightarrow S_A = i[Q^A, \phi^A] = i(T^A)_b^a \phi^b / P$

Jacobi-identity 2 [QA, QB] = if ARCQ "Swerse Noëther,"
Heorem So for, it is quite general. We can apply to N Diace formions I da? . Then the conserved current is $\frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \frac{\partial \mathcal{L}_{o}}{\partial \mu^{2}} \left(+ A \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i \left(-i \sqrt{a} \cdot \sqrt{a} \right)^{a} \frac{\partial^{\mu}A}{\partial \mu^{2}} = +i$ i.f. for each generator TA, we have a conserved current Jr = 4 TA XMY, 4 = (4, 4, -, 4"). Corresponding to the SUCN). I.e Lo Rab a SU(N) symmetry. Exercise: What to the maximal internal symmetry of a system of Ni Direc fields 4 a (a=1, ..., N)

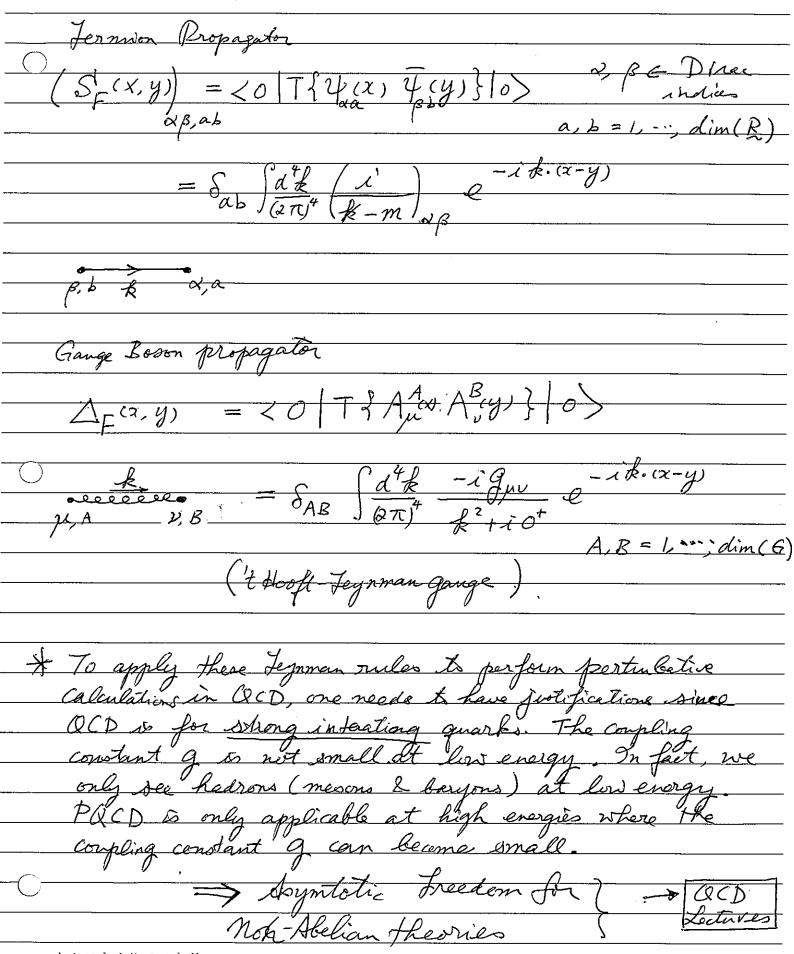
- Specified by the following Lagrangian Lo = = 4a (i8hg) 4a Hint: 4 = 4 + 4 ,

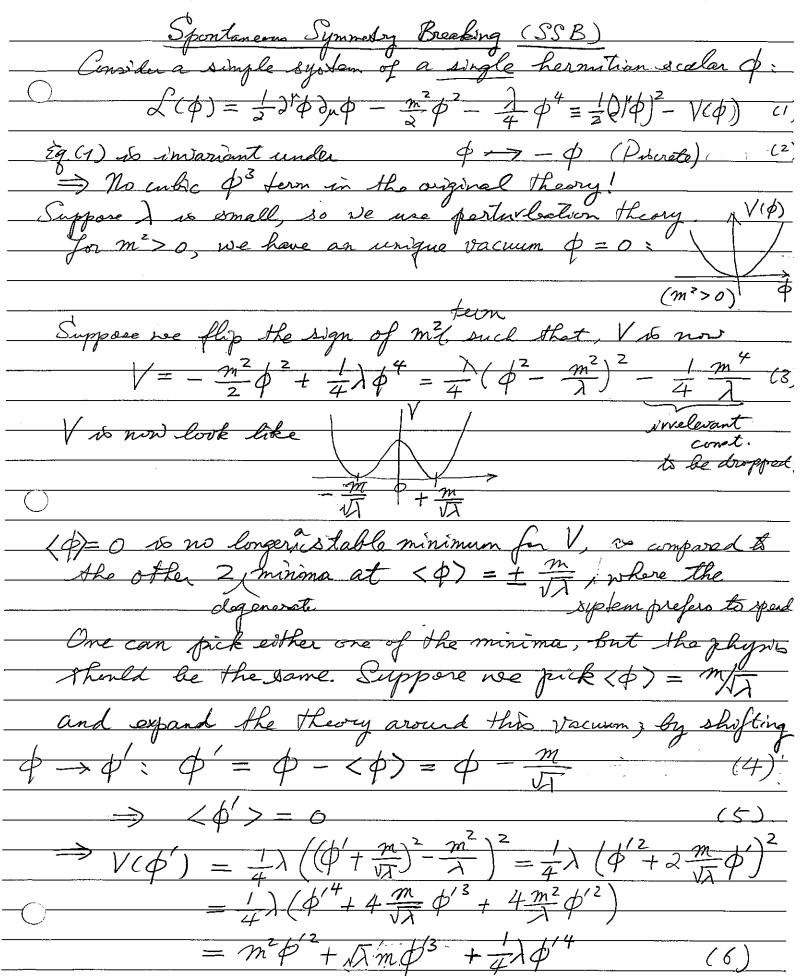

If one promotes $2 \rightarrow 2(x)$ for bal transformation, then $2\mu \psi \longrightarrow \exp(i \chi_A x T^A) \partial_\mu \psi$. So in the abelian U(1) case, we introduce covariant donivation Du such that Dy(x) -> exp(ix,x)TA) Dy(x). i.e. Dp. 4 & 4 transform the same way, which implies
(Dp. Dr) 4 transf. like 4 as well. D = 2, -iq B g: garge coupling, real.

* Convention dependent.


Some authors used +! Vector fields

(garge fields)


(garge fields) Denote U = exp(i2x) TA) $D_{\mu}\psi \rightarrow (\partial_{\mu} - ig B_{\mu})\psi' = (\partial_{\mu} - ig B_{\mu}) \mathcal{U}(x)\psi(x)$ = U(x) 2,4 + (2, U(x))4 - ig B/U(x)4 = U(x) 2,4 + UU (0,11)4 - ig UU B, U4 = U[2,4+1-(2,2)4-igUB,U4] = UID, + U D, U - igU B, U]Y = UD,4 This implies U-1 gru - ig U Br U = -ig Br i.e. By must known as $B'_{\mu} = \mathcal{U} B_{\mu} \mathcal{U}^{-1} - \frac{i}{g} (\partial_{\mu} \mathcal{U}) \mathcal{U}^{-1}$

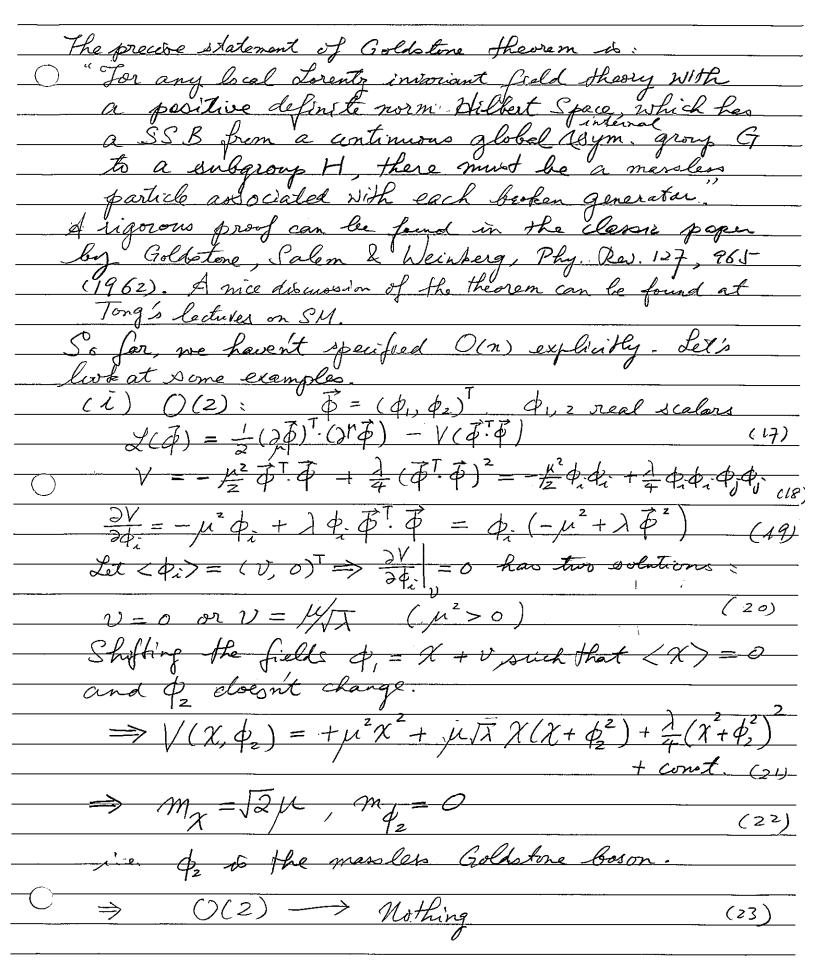


Field Strength Carvature is defined as
This correlates with Di = 20 Dig An
Field Strength Curvature is defined as
ED,, D, It = Dig Ful = -ig Fit TAY
Under gange transformation, Definition of Covariant derivatives
Under gauge transformation, Definition of Covariant denivatives [Dn. Pv]4 -> ([Dn, Dv]4) = U([Dn, Dv]4]
Definition = U(-igFav4) = -igFav4
$\Rightarrow = -ig F'_{\mu} \psi$
= -12 F 121 W
and the call
Cince of so arbitrary, we must have
UFw = Fw U > Fw = UFw U
* For non-abelian theories, the field strength is no longer invariant by itself. It drawforms homogenously instead.
invariant for itself It drawstorne homogenously instead
O X 24
* However Tr Fur Fur is invarient under Fur = UFur U
- I W
ZK-E. = - = /2 for f so a gange invariant
Dance Call
1 - 4 - R m - C 1 22
$= -\frac{1}{a} \int_{\mathcal{U}} \int_{\mathcal{T}} \frac{1}{2} \left[\frac{1}{2} \right]^{2}$
18AB (fundamental)
<u> </u>
= - 1 FA FMA in anologous to Mexwell's
Note TA 7 of 18 1 is Tal to a 321 the
What is Find From definition, -ig Fur 4 = [Du, Dv]4 = [Du-igBu)
$\partial_{y} - ig B_{y} \psi = [\partial_{y}, \partial_{x}]\psi - ig [B_{y}, \partial_{y}]\psi - ig [\partial_{y}, B_{y}]\psi - g^{2} [B_{y}, B_{y}]\psi$
$ = 0 - ig \left(B_{\mu} \partial_{\nu} \psi - \partial_{\nu} \left(B_{\mu} \psi \right) \right) - ig \left[\partial_{\mu} \left(B_{\nu} \psi \right) - B_{\nu} \partial_{\nu} \psi \right] - g^{2} \left[B_{\mu} B_{\nu} \right] \psi $
= -ig [Budy -(0,Bu)4 - B, d,4] -ig [(2,Bv)4 + B, d,4 - B,d,4]
$-g^{2}LB_{\mu},B_{\nu}J\Psi=-ig[-(\partial_{\nu}B_{\mu})\Psi+(\partial_{\mu}B_{\nu})\Psi]-g^{2}LB_{\mu},R_{\nu}J\Psi$
中央研划院物理研究所 / ' / / / / / / / / / / / / / / / / /

The most elegant approach to quantize a YM gauge theory
The most elegant approach to quantize a YM gauge theory Os wring Path integral quantization à la Faddow-Popou. Heynman's
Feynman's
Détails can be found in any decent COFT text books. Partial lists of the Jeynman rules are (Perkir-Schroeder,
Partial lists of the Jeynman rules are (Perkir-Schroeder,
Jig. 16.1, page 507):
W.A.
)
$= ig \gamma^{\mu}(T^{A})_{ab}$
μ, A
/ E J R
$= g \int_{a}^{ABC} \left[g^{\mu\nu} (k-p)^{\rho} + g^{\nu\rho} (p-q)^{\rho} + g^{\nu\rho} (p-q)^{\rho} + g^{\nu\rho} (q-k)^{\nu} \right]$
+ 9 Pr (9- k) 2]
$\frac{1}{\sqrt{2}}$
(p+q+k=0)
μ, A ν, B
CASE CODE COMPONO O NOGYÓ
$=-ig^2\left[f^{ABE}f^{CDE}(g^{\mu}g^{\mu}-g^{\mu}g^{\mu})\right]$
+ face f BDE (grago - grogo)
P. E O, D + f ADE & BEE (g) rgpo - g) grow
P, C 0, D 4) J (J J - J J.
Janes Of A December 1
Fermion, Ghast loop (-1)
+ ghost vertices.

 $\Rightarrow V(\phi') = m^2 {\phi'}^2 + \sqrt{\lambda} m {\phi'}^3 + \frac{1}{4} \lambda {\phi'}^4$ (6)___ Several observations for the \$\phi' - theory: (1) the discrete symmetry is now hidden since there's the cubic term \$ 13 that breaks the symmetry (SSB) (2) p has a mess \2m. (3) Despite generaling a new cubic term, the theory is still renormalizable by porter countings and only Two counterterms are readed for m2 & 2 This is ar important aspect of SSB, and this idea had been the rationale brokind using SSB in gange theories to give masses to garge bosons.

(4) The other vacuum $\langle \phi \rangle = -m/J$ or $\langle \phi \rangle = \langle \phi \rangle - \frac{m}{J}$ = - 2 m/ downet show up in perturbation theory, because the field must be changed everywhere in spacetime to get there and hence required infinite energy to do so in perturbation theory. However this doesn't exclude non-particulative effects to Strangite from one Nacuum to the true one in OFTwith a multiple vacua (Bubble formation, while not a tuneling effect!) (5) In finite system where we can take of as q, the position of Jare the Two degenerate states. According to the general turneling combinations $|+\rangle = \frac{1}{7}(1L)\mp |R\rangle$ The farity-even $|+\rangle$ will effect! The flowing wind state in QM. In QFT with infinite the degenerary to a clime, such state is forbidden by superselection unique ground Trulas Monperturbative effects like instantors in QCD, is a state of Alle to Alle

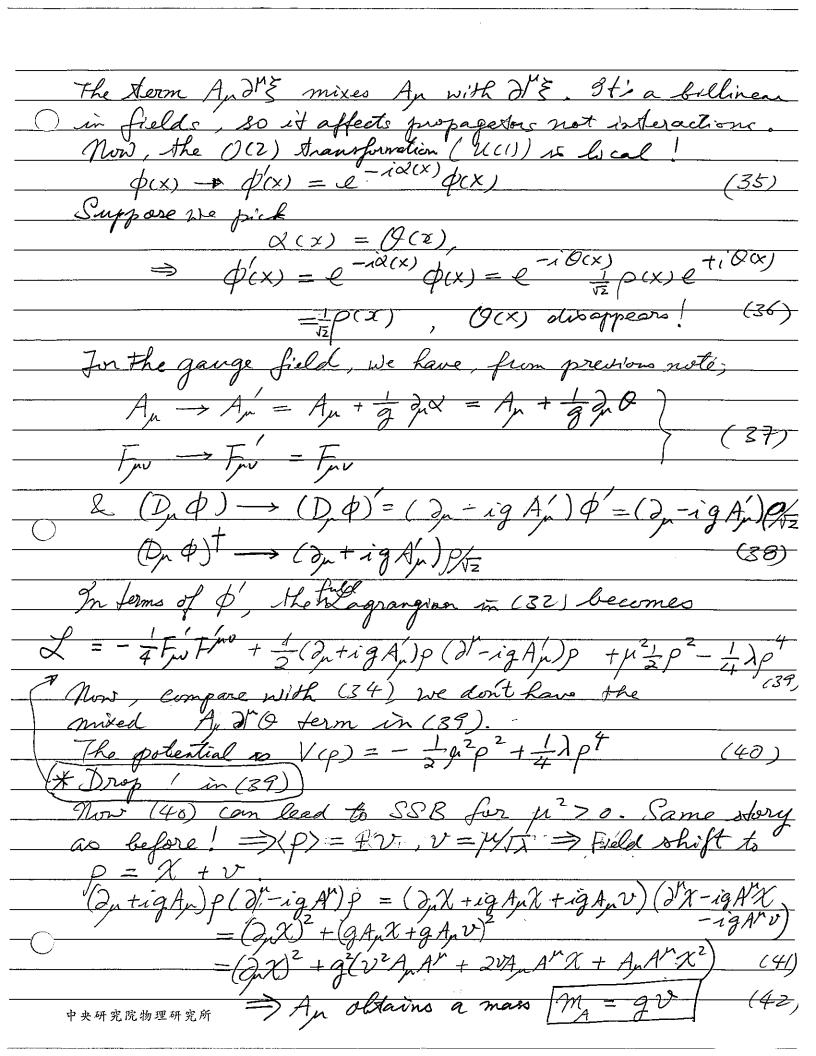

Goldstone / hearem	7,844
	
Tora set of scalar Gielde & we can talk	about
Tor a set of scalar fielde \$\phi\$, we can talk internal continuous symmetry.	
Pala 12 10h	A set (Vector) Heinstian
(1) L(4) = = = = + 2/4 - V(4) , 4 = /	demition
The same of the sa	Toldo f fil
The Lograngian to invariant under	(P ₁)
The Lograngian & invariant under = a OCh) continuous sym group (Global).	Hara Carlotte Control of the Control
(2) $\delta \phi = i \epsilon_a T^a \phi + T^a : generators of$	(170
$O(2)$ I_{2}	7:00
* This implies $V(\phi)$ must be a function of $\phi^2 = \phi$	T d
\sim 4	γ
Notation: $V: (\phi) = \frac{\partial^n}{\partial x^n} V(\phi)$	
Motation: \sqrt{j} $=\frac{\partial^n}{\partial \phi_1 \partial \phi_2 \cdots \partial \phi_n} \sqrt{(\phi)}$	(3)
The state of the s	~ ~ ` · ·
of V such that one can do perturbative Let V be an externeum of V(b) defined.	a minimum
1 of 27 he are one can do forturbative	Calculations.
Let vice an expression of vice) defined	oy
$V_{j}(v) = 0$	c7).
Oralle la à a itua il	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
V Will be a minimum if	
V. (11) > 0	(8)
$(v) \geq 0$	
* Vi-(27) is the man matrix of the	ala Bard
Proof:	was fields 4.
(v) is the mass metric of the so $(\phi) = V(\phi + v)$	
$= V(v) + \phi_j V_j(v) + \frac{1}{2} \phi_i \phi_j V_{ij}(v) +$	31 Tito The life
+ - 4 0 4 4 V (V) +	(9)
· · · · · · · · · · · · · · · · · · ·	(1
= irrelevant const. + $O + = V_{ij}(v)\phi_{ij}$	+ interaction
中央研究院物理研究所	y terms.

 $\Rightarrow (M^2) = V_{ij}(v) > 0 \Rightarrow Mo \text{ tachyons!}$ (10) Now what's the effect of SSB to the transformation $S\phi = i \epsilon_a T^a \phi$? $\langle S\phi \rangle = i \epsilon_a T^a \langle \phi \rangle = i \epsilon_a T^a v$ One has two possibilities: $T^{a}v = 0 \quad \forall a$ -> All synonestry so not broken by V. (Of course, U = 0 is a solition lout it is unstable solution.) The important point of (12) to that the vacuum.
I downt carry the charge Ta, so the charge doesn't disappear into the vacuum. (vi) Tav + o for some a (13). Physically, (13) means there is charge disappearing winto the vacuum, even though there is a conserved current in the theory! => SSB * The set of Tav = 0 form a subgroup of unbroken symmetry of the theory. This set is closed because The =0, The =0 => [Ta, Th] U =0! Most, since V(4) to invariant under the transformation (2), we have $O = V(\phi + \delta \phi) - V(\phi) = V_j(\phi) \delta \phi_j = i V_j(\phi) \epsilon_{ij} \delta_{ij} \delta_{ij}$ Differentiate (14) again, we have $O = i V_{ij}(\phi) \epsilon_{a}(T^a)_{jk} \phi_k + i V_j(\phi) \epsilon_{a}(T^a)_{jk} \delta_{ki} \qquad (15).$ Set $\phi = 79$ in (15), and since $V_{j}(v) = 0$, we deduce M'Tav=0 → broken generator Ta where Tav +0, M² has a moreless eigentalue!

— 中央研究院物理研究所

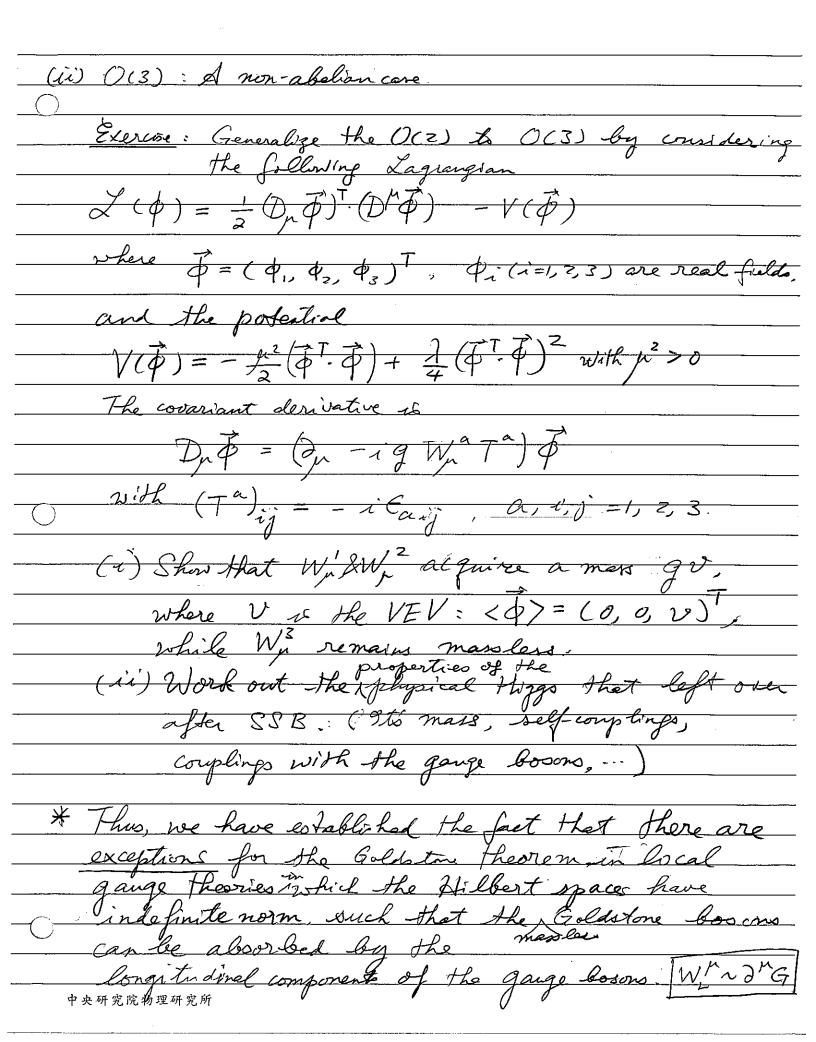
— For every broken generator in centimions symmetry, there's a mess less Goldstone

— Boson!



infinitesimal $\frac{(\varphi_1)}{(\varphi_2)} \xrightarrow{(\cos \alpha)} \frac{(\cos \alpha)}{(\varphi_2)} \frac{(\varphi_1 + \alpha)}{(\varphi_2)} + \frac{(\cos \alpha)}{(\varphi_2)} \frac{(\varphi_1 + \alpha)}{(\varphi_2)} + \frac{(\cos \alpha)}{(\varphi_2)} \frac{(\varphi_1 + \alpha)}{(\varphi_2)} + \frac{(\varphi_1 + \alpha)}{(\varphi_2)} + \frac{(\varphi_1 + \alpha)}{(\varphi_2)}$ # 8 9, so a rotation plus a translation, tangent to the circle S' (degenerate vacuum). This is the main reason of maxlessness of the Goldstone made Pz. * Suppose & 15 bcal, i.e. X(X) has x-dependence. Then $S\phi_2 = -Q(x)(X(x) + V)$. One may wonder if Q(x) can be chosen to remove ϕ_2 completely in the local case. Celininate) To see this let parameterize & in polar coordinate system as $\frac{\partial}{\partial z} = \rho (\cos \theta, \sin \theta) \quad \text{with } \rho = \sqrt{\psi_1^2 + \psi_2^2} \quad \text{$2 \sin \theta = \frac{\psi_2}{2}$}$ Under infinitesimal O(Z), $\rho \to \rho \quad \text{$2 \oplus \theta \to \theta - \phi$}$. (24)

Systems crinicide each other: $S = (\psi_1^2 + \psi_2^2)^{1/2} = (\chi^2 + 2v\chi + v^2 + \psi_2^2)^{1/2} = \chi + v^2 +$ $\sin \theta = \frac{\Phi_z}{P} \Rightarrow \theta = \frac{\Phi_z}{v + \chi} \simeq \frac{\Phi_z}{v}$ which implies $SO = \frac{1}{V}S\phi_2 \simeq \frac{1}{V}(-\alpha(x+v)) \simeq -\alpha.$ (28) Now, promoting O(2) to local, p(x) -> p(x) reachanged, but $O(x) \rightarrow O(x) - Q(x)$. (29) \Rightarrow By choosing Q(x) = O(x), one can eliminate the iO(x) poler angle d.o.f. completely in $\phi(x) = \rho(x) \in$ => Only physical d.o.f. left over is pox


The above simple calculations lead us to consider in more detail a local O(Z) (or U(1)) gauge theory. (30) $Z_{\phi} = |D_{\phi}\phi|^2 - V(\phi), \quad \phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2), \quad \phi = \frac{1}{\sqrt{2}}(\phi_1 - i\phi_2)$ $\Rightarrow \mathcal{O}(2) \longleftrightarrow \mathcal{U}(1), \quad \varphi \to e^{-i\alpha} \varphi \qquad (31)$ = 4 + 1 + 2 # The complete $\mathcal{U}(1)$ theory to described by

gauge $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + || D_{\mu} \Phi||^2 + || \mu \Phi||^2 + || \mu \Phi||^2 + || \mu \Phi||^2$ (32) * This is the original Higgs model. (µ'>0) * $D \phi = (2 - igA) \phi , (D \phi)^{\dagger} = (2 + igA) \phi^{\dagger}$ * In terms of the polar coordinates, $\phi = \frac{1}{\sqrt{2}} \rho e^{i\phi}$, $\phi = \frac{1}{\sqrt{2}} \rho e^{-i\phi}$ $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2) = \frac{1}{\sqrt{2}}\rho(\cos\theta + i\sin\theta) \Rightarrow \phi_2 = \rho\sin\theta \text{ same}$ $\begin{array}{c} \text{as before.} \\ \hline \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array}$

And $V(\chi+v) = -\frac{1}{2}\mu^{2}(\chi+v)^{2} + \frac{1}{4}\lambda(\chi+v)^{4}$ $= -\frac{1}{2}\mu^{2}(\chi^{2}+2\nu\chi+\nu^{2}) + \frac{1}{4}\lambda(\chi^{2}+2\nu\chi+\nu^{2})$ $= -\frac{1}{2} \mu^2 \chi^2 + \dots + \frac{1}{4} \lambda \left(2 \chi^2 v^2 + 4 v^2 \chi^2 \right) + \dots$ $=-\frac{1}{2}\mu^{2}\chi^{2}+\frac{3}{2}\nu^{2}\chi^{2}+--$ = - = 1 12 72 + 3 1 12 72 + --= + px + cubic/quartic terms + Const (43) => X has a man \(\sqrt{2} \mu \) \(\mu_{\text{x}} = \sqrt{2} \mu_{\text{x}} \mu_{\text{x}} \\ \mu_{\text{x}} = \sqrt{2} \mu_{\text{x}} \\ It has been absorbed by the longitudinal component of An: (An) ~ In O which gains a maro gv, according to (42). Thus we find an exception of the Goldstone theorem in or local UCI) gauge theory. The gange choice $\alpha(x) = O(x)$ such that $\phi(x) = \int_{\overline{z}} \rho(x)$ so called unitary (or unitarity) gange. * Unitary gauge to useful to obtain the tree level mass spectra. But it is difficult to use in loop calculation because it is not a rensimalizate garde. In fact, in the unitary gauge, the Vector books propagator is i - 1 (9 - 4-72)

- q^2 - m_2^2 (9 m) - m_2^2) The second Herm (longitudinal) give ruse to bad divergencies in loop diagrams But, ---

