

New insights from CMS pPb data at $\sqrt{s_{NN}}$ =8.16 TeV

SANDRA S. PADULA (FOR THE CMS COLLABORATION)

SPRACE

Intriguing results in pPb collisions at 8.16 TeV

pPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV \rightarrow large data sample (2016):

- o 6.4 billion Min Bias events (Multiplicity range: 10 to 185)
- search for jet suppression due to medium interaction (jet quenching)
 - \circ back-to-back jets

$$\circ$$
 jet (im)balance → ratio of jet p_T → $x_j =$

pPb collisions at 8.16 TeV (2016) & PbPb collisions at 5.02 TeV (2018)

investigate v₂{4} at large p_T in pPb and PbPb collisions
 cumulant method → using 0, 2 and 3, 4 subevents (reduces non-flow and back-to-back jets)

SEARCH FOR JET QUENCHING IN PPB COLLISIONS AT 8.16 TEV

Jet quenching measured as jet imbalance

pPb collisions

Measured in CMS thrgough jet imbalance in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV:

for inclusive jets

Jet

PbPb collisions

CMS R_{AA} and azimuthal anisotropy results

Nuclear modification factors (inclusive centrality class)

- □ R_{AA} → largest suppression in PbPb for 2 < p_T < 30 GeV
- □ R_{pPb} → no suppression in 2-20 GeV region in MinBias pPb

Azimuthal anisotropy: low $p_T < 3 \text{ GeV}$

- observes ridge in pPb
- geometry + fluctuations
- □ v_2 {4} ~ v_2 {6} ~ v_2 {8} → collectivity (High Mutliplicity)

Datasets and MC simulations Analysis workflow

pPb@8.16 TeV

- minimum-bias trigger
 - ~ 6.4 billion Minimum Bias events in total
 - multiplicity range: 10 to 185
- high multiplicity triggers
 - multiplicity range: 185 to 250
 - $\circ \sim$ 498 Million events in total
 - multiplicity range: > 250
 - $\circ \sim$ 32 Million events in total
- simulations: PYTHIA8+EPOS
 - ~ 22 million dijet events (all multiplicities)
 - for corrections, unfolding and data-model comparison

Measurement setup

Dijet selection

- particle Flow
 - anti-k_T jets with R = 0.4
 - p^{j1}_T > 100 GeV
 - p^{j2}_T> 50 GeV
 - $|\Delta \varphi_{dijets}| > 5\pi/6$

Observable

$$\mathbf{x}_j = rac{p_{\mathrm{T}}^{j_2}}{p_{\mathrm{T}}^{j_1}}$$

Analysis methods

- \Box ratio high-to-low multiplicity (~ "R_{CP}-like")
- \Box probe proton and lead directions (check η dependence)
- apply <u>D'Agostini unfolding</u> to correct for resolution (first x_i unfolding at CMS)

x_i in different multiplicities and η ranges

Study of x_i as function of multiplicity and pseudorapidity

- Multiplicity ranges: [10,60], [60,120], [120,185], [185,250] and [250,400]
- Probe jets in both proton and lead directions
 - Midrapidity: $|\eta_{CM}| < 1$
 - Forward (p direction): $1.2 < \eta_{CM} < 2.4$
 - Backward (Pb direction): -3.3 < $\eta_{\rm CM}$ < -1.2
- Dijet combinations studied:

Unfolding x_j procedure

First x_i unfolding at CMS

- \Box x_j reconstructed vs x_j generated
 - For each $\eta_{\rm CM}$ combination
 - In different multiplicity bins
 - [10,60], [60,120] and [>120]

Effects taken into account in the response matrices

- Fakes \rightarrow Negligible
- Swap $\rightarrow \sim 20\%$
- $\square Missing \rightarrow ROOUnfold$
- Data/MC differences
 - p^{j1}_T vs p^{j2}_T PDF map applied to the matrices

Performed with D'Agostini unfolding via ROOUnfold Unfolding procedure → Validation: MC prior (I) and MC Closure (II) (see backup)

Unfolding x_i – example with data

Results – I: x_j dependence on multiplicity

Changes in shapes seen from low to high multiplicity ranges

Especially around $x_i \sim 1$

No simulations for the highest multiplicity range

CMS PAS-HIN-23-010

11

Results – II: x_j dependence on η (forward)

Very similar behavior for all different jet rapidity combinations

CMS PAS-HIN-23-010

- Small changes in shapes
 - results for η backwards are very similar (see backup)

x_j ratios to lowest multiplicity range (10< $N_{trk}^{offline}$ <60)

Useful for cancellation of systematic uncertainties

- **a** Ratio > 1 at low x_i and < 1 for high x_i
- □ Data well described by PYTHIA8+EPOS MC in all multiplicities and η combinations!

PYTHIA8+EPOS do not include energy loss mechanism

CMS PAS-HIN-23-010

Possible effects: multijets contribution, energy-momentum conservation, etc.

offline $\langle x_i \rangle$ ratios to lowest multiplicity range (10 $\langle N_i \rangle$

CMS PAS-HIN-23-010

14

Summary – Part I

First measurement of unfolded x_i using high multiplicity up to $N_{\rm trk}^{\rm offline} \sim 400$

No modifications observed at high multiplicity for any configuration of jet-jet geometry

CMS PAS-HIN-23-010

- ratio deviations from 1 seen → possible effects:
 - Energy-momentum conservation, multijets, among others
 - Well described by PYTHIA8+EPOS (no energy loss)

$V_{2}{4} \rightarrow CUMULANT METHOD WITH SUBEVENTS$

CMS azimuthal anisotropy results at low and at high $p_{\rm T}$

- □ Azimuthal anisotropy: low p_T <3 GeV
 - observes ridge in pPb

17

- geometry + fluctuations
- well described by hydrodynamics
 - v_2 {4} ~ v_2 {6} ~ v_2 {8} → collectivity (High Mutliplicity)

- □ Azimuthal anisotropy: high $p_T > 10$ GeV
 - geometry + fluctuations → different path lengths of high-p_T parton energy loss in QGP medium

Analysis technique: cumulant method

- Multiparticle correlation technique
- Non-flow suppression

$$= \bigoplus_{\varphi_2}^{\varphi_1} \bigoplus_{\varphi_4}^{\varphi_3} + \bigoplus_{\varphi_4}^{\varphi_5} \bigoplus_{\varphi_4}^{\varphi_5} + \bigoplus_{\varphi_4}^{\varphi_5} \bigoplus_{\varphi_4}^{\varphi_6} \bigoplus_{\varphi_6}^{\varphi_6} \bigoplus_{\varphi_6}^$$

$$c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle \langle \langle 2 \rangle \rangle$$

PRC 83 (2011) 044913

Q-cumulant

flow

Q-vector:
$$Q_n \equiv \sum_{i=1}^M e^{in\phi_i} \langle \langle 2 \rangle \rangle = \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$$
, and $\langle \langle 4 \rangle \rangle = \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle$

• cumulants • $c_n\{2\} = \langle \langle 2 \rangle \rangle$ • $c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$

•
$$v_n\{2\} = \sqrt{c_n\{2\}}$$
 • $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$

differencial cumulant :

$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$$
1 POL 3 RFPs

differential flow:

Analysis Method

Subevent cumulant techniques

□ suppress few-particle correlations for exploring collective correlation signals

- lacksquare uses subevent cumulant techniques ightarrow rapidity gaps among the particles
 - 2 subevents \rightarrow can reduces non-flow contribution within the Jets
 - 3 & 4 subevents → can remove back-to-back contributions

Analysis method – I

Differential cumulant d_2 {4}: standard and 2 subevent methods

□ standard (no subevents) method

$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$$

2-subevent method

Analysis method – II

Differential cumulant d_2 {4}: 3 and 4 subevent methods

3-subevent method

21

Results

 v_2 {4} in 185 $\leq N_{trk}^{offline}$ < 250 as a function of p_T

<u>CMS-PAS-HIN-23-002</u>

At low p_T: PbPb has larger v₂{4} than pPb
 At high p_T: similar magnitude and similar trend of subevents v₂{4}

Results: 4-subevent v_2 {4}...

Summary – part II

v₂{4}: subevents for pPb at $\sqrt{s_{NN}}$ = 8.16 TeV & PbPb collisions $\sqrt{s_{NN}}$ = 5.02 TeV

- Extended phase space investigated for the first time in small systems
 - insights into potential indication of high-p_T parton energy loss
- \square significant positive value for v₂{4} at high p_T in pPb collisions after removing nonflow with subevent methods
- □ striking similarity of high multiplicity pPb and peripheral PbPb collisions→ similar mechanism?

These results provide new information on the interaction of high-p_T partons with the medium in collisions of small system

Thank you!!

This material is based upon work supported by the SÃo Paulo Research Foundation (FAPESP) Grants No. 2018/01398-1 and No. 2013/01907-0. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of FAPESP

BACK UP SLIDES

Validate the unfolding procedure at MC (I): prior

Data/MC reconstructed pdf (p^{j1}_{T} , p^{j2}_{T}) \rightarrow applied to remove sensitivity to prior shape

Procedure is tested using an "oversampled MC"

□ Very different prior between the nominal and oversampled test-MC

Nominal MC (PYTHIA+EPOS)

Oversampled MC

(PYTHIA+EPOS, no invariant p_T rescale)

Validate the unfolding procedure at MC (II): closures

Closures achieved even with drastically different priors!

Shows advantage of using the pdf-convoluted response matrices for cases when no reliable Monte Carlo exists

Results – III: x_j dependence on η (backward)

Very similar behavior for all different jet combinations

- Small changes in shapes
 - results for η backwards are very similar (see backup)

CMS PAS-HIN-23-010

<x_i> ratio high-to-low multiplicities: reco vs. unfolded

- Similar behavior between reconstructed and unfolded
- Ratio decrease with multiplicity
- Overall good data/mc agreement

CMS PAS-HIN-23-010

Supplement: v_2 {4} cumulant with subevents

 v_2 {4} in different $< N_{trk}^{corrected} > bins with POI p_T > 6 GeV$

	pPb		PbPb	
$N_{ m trk}^{ m offline}$ range	$\langle N_{\rm trk}^{\rm offline} \rangle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$	$\langle N_{\rm trk}^{\rm offline} \rangle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$
(0,60)	27	33 ± 1	23	39±2
[60, 120)	83	$101{\pm}4$	87	152 ± 6
[120, 150)	132	160 ± 6	135	233 ± 10
[150, 185]	164	198±7	168	287 ± 12
[185, 250)	202	$245{\pm}10$	216	$368{\pm}16$

CMS-PAS-HIN-23-002

Cross-check with simulation

Previous Measurements of v_n in pPb at High p_T

- 2-particle correlation technique (nonflow contamination)
- Template fit method for nonflow subtraction
- Based on strong assumptions