Studying chiral symmetry restoration employing many body femtoscopy

Klimt, Lutz, Weise PLB 249 (1990) 386

M. Korwieser, L.Fabbietti Technical University of Munich, E62 8th of November 2024 WPCF 2024, Toulouse

Chiral symmetry in a nutshell

$$L_{QCD}^{m=0} = \bar{\psi}(i\gamma_{\mu}D^{\mu})\psi - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}$$

- Chiral symmetry (CS) is manifest in the QCD lagrangian density for massless quarks
- A consequence is parity doubling, i.e. mass degenerate states of opposite parity (spin)^{parity}

Chiral symmetry in a nutshell

$$L_{QCD}^{m=0} = \bar{\psi}(i\gamma_{\mu}D^{\mu})\psi - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}$$

- Chiral symmetry (CS) is manifest in the QCD lagrangian density for massless quarks
- A consequence is parity doubling, i.e. mass degenerate states of opposite parity (spin)^{parity}
- **Spontaneous breaking** of CS breaks this degeneracy
 - The QCD vacuum is **not** invariant!!

Chiral symmetry in a nutshell

$$L_{QCD}^{m=0} = \bar{\psi}(i\gamma_{\mu}D^{\mu})\psi - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}$$

- Chiral symmetry (CS) is manifest in the QCD lagrangian density for massless quarks
- A consequence is parity doubling, i.e. mass degenerate states of opposite parity (spin)^{parity}
- Spontaneous breaking of CS breaks this degeneracy
- Order parameter is the chiral condensate $< qq >^* < 0 |q\bar{q}|0 >$

*very simplified notation

R. Rapp and J. Wambach Adv.Nucl.Phys 25 (2000)

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

I Observables linked to the <qq> condensate

QCD Sum Rules

S. Weinberg, Phys. Rev. Lett. 18 (1967) 507

$$\int_0^\infty \frac{ds}{\pi} [\Pi_V(s) - \Pi_{AV}(s)] = m_{\pi}^2 f_{\pi}^2 = -2m_q \langle \bar{q}q \rangle$$

Chiral symmetry restoration manifests itself through mixing of vector and axial-vector correlators

D Observables linked to the <qq> condensate

QCD Sum Rules

S. Weinberg, Phys. Rev. Lett. 18 (1967) 507

$$\int_0^\infty \frac{ds}{\pi} [\Pi_V(s) - \Pi_{AV}(s)] = m_\pi^2 f_\pi^2 = -2m_q \langle \bar{q}q \rangle$$

Directly links <qq> to hadron masses!

Chiral symmetry restoration manifests itself through mixing of vector and axial-vector correlators

D Observables linked to the <qq> condensate

QCD Sum Rules

S. Weinberg, Phys. Rev. Lett. 18 (1967) 507

$$\int_0^\infty \frac{ds}{\pi} [\Pi_V(s) - \Pi_{AV}(s)] = m_\pi^2 f_\pi^2 = -2m_q \langle \bar{q}q \rangle$$

Chiral symmetry restoration manifests itself through mixing of vector and axial-vector correlators

Gell-Mann Oakes Renner (GOR) Relation

1

Gell-Mann Oakes and Renner Phys. Rev. 175 (1968) 2195

$$\pi$$
 Decay Constant in vacuum

$$m_{\pi}^2 f_{\pi}^2 = -\frac{1}{2}(m_u + m_d) < u\bar{u} + d\bar{d} > \qquad f_{\pi} = 93.3 \,\mathrm{MeV}$$

It relates the pion mass and decay constants to the value of the condensate (spontaneous chiral symmetry breaking) and the values of the quark masses (explicit chiral symmetry breaking)

$$\langle \bar{q}q
angle pprox -(240\,{
m MeV})^3 imes {\it N_f}$$

 Value of <qq> is predicted to drop for increasing temperature (T) and density (ρ)

$$\langle \bar{q}q
angle pprox -(240\,{
m MeV})^3 imes {\it N_f}$$

 Value of <qq> is predicted to drop for increasing temperature (T) and density (ρ)

How to measure degree of restoration experimentally?

$$\langle \bar{q}q
angle pprox -(240\,{
m MeV})^3 imes {\it N_f}$$

 Value of <qq> is predicted to drop for increasing temperature (T) and density (ρ)

How to measure degree of restoration experimentally?

- Study excitation functions of hadrons
 - Modifications expected in-medium
 - Degeneracy of chiral partners

$$\langle \bar{q}q
angle pprox -(240\,{
m MeV})^3 imes {\it N_f}$$

 Value of <qq> is predicted to drop for increasing temperature (T) and density (ρ)

How to measure degree of restoration experimentally?

- Many searches for CSR on-going
 - Recently with pionic atoms piAF Coll. Nature Physics 19 (2023)
 - Line shape analyses of ρ NA61 EPJC 61 (2009)
 - Study of M(ee) to access
 ρ meson modifications
 HADES Coll. arXiv:2205.15914v2

Idea in a nutshell

 Access in-medium properties

 Emulate dense medium by small distances

Idea in a nutshell

- Access in-medium properties
 - Emulate dense medium by small distances
 - Already at ²/₃ n₀ drop of <qq> of approx. 23% piAF Coll. Nature Physics 19 (2023)

Idea in a nutshell

- Access in-medium properties
 - Emulate dense medium by small distances
 - Study excitation function of particles of interest

- Systematically approach many-body effects
 - Measure two-body correlations
 - Establish procedure for many-body femtoscopy
 - Tag particles surrounded by close-by nucleons

- Systematically approach many-body effects
 - Measure two-body correlations
 - Establish procedure for many-body femtoscopy
 - Tag particles surrounded by close-by nucleons

- Systematically approach many-body effects
 - Measure two-body correlations
 - Establish procedure for many-body femtoscopy
 - Tag particles surrounded by close-by nucleons

Establish procedure for many-body femtoscopy Ο Tag particles surrounded by close-by nucleons Ο No Tagging with Tagging with tagging two collimated three collimated nucleons nucleons Yield Yield Yield Vector Meson Axial-vector Vector Meson Vector Meson Axial-vector Axial-vector Mass (GeV/c²) Mass (GeV/c²) Mass (GeV/c²) 21 Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

Applying femtoscopy to CSR searches

Systematically approach many-body effects

Measure two-body correlations

Experimental work

Ο

Small sources in pp at the LHC

 $\circ\,$ Emitting source function anchored to p-p correlation function $$\widehat{\ensuremath{\epsilon}}$$

$$C(k^*) = \int S(\vec{r}) \left| \psi(\vec{k}^*, \vec{r}) \right|^2 d^3 \vec{r}$$

 \circ Two-component model

 $S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times \frac{\text{Effect of short lived}}{\text{resonances (ct ~ 1 fm)}}$

- O Universal source for all hadrons (cross-check with K⁺-p, π-π, p-Λ, p-π)
- Small particle-emitting source created in pp collisions at the LHC

See also talks of D. Mihaylov and M. Lesch

ALICE Coll., arXiv:2311.14527 accepted by EPJC ALICE Coll., PLB, 811 (2020), 135849 ALICE Coll, paper in preparation

Do we see vector meson baryon interactions?

Do we see vector meson baryon interactions? Yes!

- ALICE already measured ϕ -p and recently the ρ^0 -p correlations!
- With Run3 potentially other vector meson baryon correlations are within reach
 - by usage of triggers and wealth of data

Do we see vector meson baryon interactions? Yes!

- ALICE already measured ϕ -p and recently the ρ^0 -p correlations!
- With Run3 potentially other vector meson baryon correlations are within reach
 - by usage of triggers and wealth of data

Idea in a nutshell

- Access in-medium properties
 - Emulate dense medium by small distances
 - Study excitation function of particles of interest

- Systematically approach many-body effects
 - Measure two-body correlations
 - Establish procedure for many-body femtoscopy
 - Tag particles surrounded by close-by nucleons

Correlation function:

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^*$$

relative momentum:

 $k^* = \frac{1}{2} |\vec{\mathbf{p}}_a + \vec{\mathbf{p}}_b|$

M.Lisa, S. Pratt et al., ARNPS 55 (2005), 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402 relative distance:

 r^*

Correlation function:

$$C(Q_3) = \int S(\rho) |\boldsymbol{\psi}(\boldsymbol{Q}_3, \boldsymbol{\rho})|^2 \rho^5 \, d\rho$$

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

See also talk of M. Lesch

Correlation function:

$$S(Q_3) = \int S(\rho) |\psi(Q_3, \rho)|^2 \rho^5 d\rho$$

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

Exp:

ALICE Coll., EPJ A 59, 145 (2023) ALICE Coll., EPJ A 59, 298 (2023) ALICE Coll. arXiv:2308.16120 (2023), accepted by PRX STAR Coll. arXiv:2208.05722 (2022), proceedings HADES Coll. arXiv:2402.09280 (2024), proceedings

Theory (ALICE): RDG et al. EPJC 82 (2022) 244 M. Viviani et al, PRC 108 (2023) 6, 064002 A. Kievsky, et al., PRC 109 (2024) 3, 034006 E. Garrido et al., arXiv: 2408.01750 (2024)

Three-body analyses in

- \circ pp collisions at ALICE: p-p-p, p-p-Λ, p-p-K⁺⁻, p-p-π⁺⁻, K-d, p-d, Λ-d
- Au-Au collisions at STAR: p-d, d-d
- Ag-Ag collisions at HADES: p-d, p-t, p-³He

Correlation function:

$$S(Q_3) = \int S(\rho) |\psi(Q_3, \rho)|^2 \rho^5 d\rho$$

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

Exp:

ALICE Coll., EPJ A 59, 145 (2023) ALICE Coll., EPJ A 59, 298 (2023) ALICE Coll. arXiv:2308.16120 (2023), accepted by PRX STAR Coll. arXiv:2208.05722 (2022), proceedings HADES Coll. arXiv:2402.09280 (2024), proceedings

Theory (ALICE): RDG et al. EPJC 82 (2022) 244 M. Viviani et al, PRC 108 (2023) 6, 064002 A. Kievsky, et al., PRC 109 (2024) 3, 034006 E. Garrido et al., arXiv: 2408.01750 (2024)

Three-body analyses in

- pp collisions at ALICE: p-p-p, p-p-Λ, p-p-K⁺, p-p-π⁺⁻ K-d, p-d, Λ-d
- Au-Au collisions at STAR: p-d, d-d
- Ag-Ag collisions at HADES: p-d, p-t, p-³He

Idea in a nutshell

- Access in-medium properties
 - Emulate dense medium by small distances
 - Study excitation function of particles of interest

- Systematically approach many-body effects
 - Measure two-body correlations
 - Establish procedure for many-body femtoscopy
 - Tag particles surrounded by close-by nucleons

TIM π NN and π NNN correlations as testbed

- Employ multi-correlation technique to study πNN and πNNN interactions in small colliding systems \rightarrow doorway to access ,large densities'
- Lower order well under control' plethora of πN and πNN scattering data

TIM π NN and π NNN correlations as testbed

- Employ multi-correlation technique to study πNN and πNNN interactions in small colliding systems \rightarrow doorway to access ,large densities'
- Lower order well under control' plethora of πN and πNN scattering data Momentum Correlations in pp

 π properties in-medium

collisions (or p-Pb, peripheral Pb-Pb)

TIM π NN and π NNN correlations as testbed

- Employ multi-correlation technique to study πNN and πNNN interactions in small colliding systems \rightarrow doorway to access ,large densities'
- Lower order well under control' plethora of πN and πNN scattering data

π properties in-medium

Momentum Correlations in pp collisions (or p-Pb, peripheral Pb-Pb)

I Do we see genuine π NN correlations?

- Paper in preparation
- 2B and 3B correlation measured
- Model available for 2B but missing full 3B calculations at the moment
- Hint of 3B effects observed using Kubo's cumulant method [1] (see back-up!)

[1] J. Phys. Soc. Jpn. 17, pp. 1100-1120 (1962)

Idea in a nutshell

- Access in-medium properties
 - Emulate dense medium by small distances
 - Study excitation function of particles of interest

- Systematically approach many-body effects
 - Measure two-body correlations
 - Establish procedure for many-body femtoscopy
 - Tag particles surrounded by close-by nucleons

TIP Future plans for πNN , πNNN and $\pi NNNN$

- Measure the correlations systematically starting from 2 body
- Perform a differential ($m_{\rm T}$, multiplicity) analysis to pin down the particle emitting source
- Stimulate theory efforts to calculate predictions for the many body correlation function
 - Extract in-medium pion decay constant

$$f_{\pi NNN} \propto f_{\pi}^*$$

I Do we see genuine π NN correlations?

- Measured three particle correlation function includes both two-body and genuine three-body interactions.
- We use Kubo's cumulant method [1] for the same pair distribution and define a femtoscopic cumulant to access genuine 3B correlation [2].

[1] J. Phys. Soc. Jpn. 17, pp. 1100-1120 (1962)[2] ALICE Coll., Phys.Rev.C 89 (2014) 2, 024911

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

I Do we see genuine π NN correlations?

Do we see genuine π NN correlations?

41

Do we see genuine πNN correlations?

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

Do we see genuine π NN correlations?

I Do we see genuine π NN correlations?

- In both cases cumulant compatible with zero for large Q₃ → No three-body effects
- Three-body effects for small Q₃< 200 MeV/c Repulsion for π⁺pp Attraction for π⁻pp

ALI-PREL-576418

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

Constraining the source

 Three-particle source as independent Gaussian emitter

$$S(x_1, x_2, x_3) = S(x_1) S(x_2) S(x_3)$$

$$r_{12}$$

$$r_{23}$$

• Pair radii r_{12} , r_{23} , r_{31} obtained from common source model using the $m_{\rm T}$ of the pairs in the triplets.

ALICE Coll., arXiv:2311.14527 accepted by EPJC ALICE Coll., PLB, 811 (2020), 135849 ALICE Coll, paper in preparation

An additional motivation.. Beyond standard model

Axions are good candidate to stabilize the otherwise very soft hadronic equation of state of neutron stars

The challenge is to determine the in-medium properties of axions

An additional motivation. Beyond standard model

Axion-Nucleon coupling

$$c_N \frac{\partial_\mu a}{2f_a} \bar{N} \gamma^\mu \gamma_5 N, \quad N = p, n$$

$$\frac{(g_A)_n}{(g_A)_0} = \frac{(\Delta u - \Delta d)_n}{(\Delta u - \Delta d)_0} \simeq 1 + n \left(\frac{c_D}{4(g_A)_0} f_\pi^2 \Lambda_\chi - \frac{1}{3f_\pi^2} \left(2c_4 - c_3 + \frac{1}{2M}\right)\right)$$
(Schwenk et. al. 1103.3622)

Pion in medium properties not known ... either need higher order nucleon pion interactions in vacuum or some way to measure directly ...