

ID de Contribution: 69 Type: Non spécifié

Centrality dependence of Lévy-stable two-pion Bose-Einstein correlations in 200 GeV Au++Au collisions at PHENIX

lundi 4 novembre 2024 15:25 (25 minutes)

The PHENIX experiment measured the centrality dependence of two-pion Bose-Einstein correlation functions in $\sqrt{s_{NN}}=200$ GeV Au

+Au collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The data are well represented by Lévy-stable source distributions. The extracted source parameters are the correlation-strength parameter λ

, the Lévy index of stability α , and the Lévy-scale parameter R as a function of transverse mass m_T and centrality. The $\lambda(m_T)$ parameter is constant at larger values of m_T , but decreases as m_T decreases. The Lévy scale parameter $R(m_T)$ decreases with m_T and exhibits proportionality to the length scale of the nuclear overlap region. The Lévy exponent m_T is independent of m_T within uncertainties in each investigated centrality bin, but shows a clear centrality dependence. At all centralities, the Lévy exponent α

is significantly different from that of Gaussian ($\alpha=2$) or Cauchy ($\alpha=1$) source distributions. Comparisons to the predictions of Monte-Carlo simulations of resonance-decay chains show that in all but the most peripheral centrality class (50\%-60\%), the obtained results are inconsistent with the measurements, unless a significant reduction of the in-medium mass of the η' meson is included. In each centrality class, the best value of the in-medium η' mass is compared to the mass of the η

meson, as well as to several theoretical predictions that consider restoration of $U_A(1)$ symmetry in hot hadronic matter.

Auteur principal: LOKOS, Sandor (MATE KRC, IFJ PAN)

Orateur: LOKOS, Sandor (MATE KRC, IFJ PAN)